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ON THE UNIQUE REPRESENTATION OF NON-GAUSSIAN
LINEAR PROCESSES

By, QIANSHENG CHENG

Peking University

In this paper, we prove the uniqueness of linear i.i.d. representations
of non-Gaussian linear processes on a countable abelian group under a
basic invertibility condition, without requiring the existence of higher than
second moments.

1. Introduction. Let x, be a stationary linear process on a countable
abelian group G:
(1.1) X,= WU, = ) Wk,
seq@
where u, is an independent and identically distributed random series with
Eu,=0, Eu? = 0% > 0, w, is a square-summable constant sequence. We give
the condition

(1.2) W(y) # 0, dy (a.e.),

where W(y) is the Fourier transform of w, [for related symbols, see Cheng
(1990)].

The uniqueness of linear representations of non-Gaussian processes plays
an important role in the theory and application of time series modeling.
Donoho [(1981), pages 569 and 575, G = Z], Lii and Rosenblatt [(1982),
G = 7], Rosenblatt [(1985), pages 46 and 235, G = Z and Z?], Findley [(1986),
G = Z; (1990)] and Cheng (1990) have established uniqueness results under
(1.2) in combination with other conditions. These supplementary conditions
involve either the existence of a nonzero kth order cumulant (£ > 2) of the
random series u, and/or a stronger summability condition on the constant

sequence w,.
In this paper, we prove the uniqueness theorem only under the basic

condition (1.2).

2. The uniqueness theorem. Now we will prove the uniqueness theo-
rem.

THEOREM 2.1 (The uniqueness theorem). Let
(2.1) X, = W, * U, = W, * Uy, tegq,

where u, and u, are i.i.d. and w, and w; are square-summable sequences
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satisfying (1.2). If x, is non-Gaussian, then

1
r v
(2.2) uy=au,_,, w; = - Wity

where a is a nonzero constant and t, is an element of G.

Proor. If (2.1) holds, then by formula (3.5) of Cheng (1990), we have

(2.3) Uy=coxu, =3 C Uy,
s

(2.4) uy=d,xu,y =) du,_,.
s

According to the theory of infinite product pfobability spaces [see Loéve
(1963)], we can construct the random variables 2(¢,s), t,s € G, on certain
probability space which are i.i.d. with the same probability distribution as «',.
Set

(2.5) vo= ¥ d,z(t,5).

It is evident that y, is an i.i.d. series. Comparing (2.5) with (2.4), we see that y,
has the same probability distribution as u,. Let us consider

(2‘6) 4 é chys = Z Z Csdtz(s’t)‘

By comparison with (2.3), we know that z and v/, have the same distribution.
Since x, is non-Gaussian, «/, is non-Gaussian too. Hence in (2.6), 2(s, t) are
i.i.d. and non-Gaussian with the same probability distribution as 2. Thus, (2.6)
implies © X (c,d,)? = 1. According to Theorems 5.6.1 and 3.3.1 in Kagan,
Linnik and Rao (1973), it follows from (2.6) that there exists (¢,, ¢;) such that
¢, ds, # 0, cd, = 0 [(s, ) # (¢),¢,)). This leads to ¢, = 0 (s # ¢,). From (2.3),
we have u), = au,_,, where a = ¢, . From this and (2.1), we get (2.2). D

CoroLLARY 2.1. Let x, and u, bei.i.d. and x, = w, * u,, x, be non-Gauss-
ian, then

w, = ab‘t_to,

where a is a nonzero constant, t, is an element of G, 8, =1 and 8, =0 for
t#0.

The proof of the corollary is immediate.

REMARK. In this paper, we do not require the existence of higher than
second moments. If we keep the assumption of the existence of higher than
second moments, the independence and identical distribution assumptions can
be weakened, which was pointed out by Findley (1990), after carefully reading
and analyzing the proofs in Findley (1986) and Cheng (1990).
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