The Annals of Statistics
1991, Vol. 19, No. 4, 2120-2144

MIXTURES WITH A LIMITED NUMBER OF MODAL INTERVALS'

By J. H. B. KEMPERMAN
Rutgers University

We derive necessary and sufficient conditions in order that each mix-
ture of a given family of probability densities have no more than s modal
intervals, with special attention to ordinary unimodality and strong uni-
‘modality of such mixtures.

1. Introduction. In the sequel, unless otherwise stated, each density f is
a nonzero integrable function f(x) > 0, x € R, all whose discontinuities (Gf
any) are of the first kind. We further let c¢(x) = max(f(x — 0), f(x + 0)).
What really matters is the associated finite and nonzero measure du = fdx,
thus, one may assume that for each x, either

f(x=0)<f(x)<f(x+0) or f(x+0)=<f(x)=<f(x-0).

Let further F(x) = u((—», x]) be the associated distribution function (d.f.).

What exactly is meant by a mode x, of a density f? One cannot define a
mode as any local maximum x, of f. For instance, when f(x)=1 for
0<x<1; f(x)=2for 1 <x <2; f(x)= 0, otherwise, one would not con-
sider each point 0 < x, < 1 to be a mode of f.

We will certainly regard x, € R to be a mode of f if f(x) < c = c(x,) holds
throughout some neighborhood of x, and, moreover, f(x) < ¢ for at least one
point in every left and every right neighborhood of x,. In this situation,
J(xy) = [x4, 4] = {x,} Wwill be considered to be a degenerate modal interval
of f.

A nondegenerate compact interval [a, b], a < b is defined to be a modal
interval of f, if, first, f(x) =c¢ > 0 on (a, b); second, f(x) < ¢ in an entire
open neighborhood of [a, b]; and third, f(x) < ¢ for at least one point in every
left neighborhood of a and at least one point in every right neighborhood of .
There always is at least one modal interval (Lemma 1) and distinct modal
intervals must be disjoint. We define a mode of f to be any point x, which
belongs to some (necessarily unique) modal interval [a, b]; in that case we also
write J(x,) = [a, b]. See Definition 2.3 for further details.

Let s be a fixed positive integer and let F,, be a given family of densities f
on R. In this paper, we will be espec1ally concerned with conditions that are
necessary and sufficient in order that an arbitrary superposition of densities
f € F, have at most s modal intervals. Besides its greater generality, a further
compelling reason to also admit densities f having discontinuities, is the fact
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that a mixture of continuous densities can easily be discontinuous; see the
example following (4.2).

By osc(s), we will denote the class of all densities f such that its (secant)
slope has at most s — 1 changes of sign from strictly negative to strictly
positive (when moving to the right); see Definition 3.1 for a more precise
statement. If f € C?, then f € osc(s) is equivalent to its slope having no more
than s changes of sign from strictly positive to strictly negative. By Osc(s) we
denote the class of all continuous d.f.’s F such that the second difference
A% F(x) has at most s — 1 changes of sign from strictly negative to strictly
positive (when moving to the right); see Definition 3.6 for a precise statement.

The condition f € osc(s) is obviously sufficient for the density f to have at
most s modal intervals. It turns out (Theorems 1 and 3) that the latter
property is in fact equivalent to f € osc(s) and also to F € Osc(s). Moreover
(Theorem 2), each F € Osc(s) is the integral of an essentially unique f€
osc(s). We also describe the precise structure of a density f which has exactly
s modal intervals.

Let F, be any given class of densities. Then (Theorem 6) in order that each
mixture g of densities f € F,, have at most s modal intervals, it is (necessary
and) sufficient that this be true for each special mixture g = X p, f;, p; > 0,
which involves at most 2s densities f; € F,,. Here, the integer 2s cannot be
replaced by a smaller one. A dual type of condition, which is necessary and
sufficient for each F,-mixture to be in osc(s), is given in Theorem 7.

The remaining results all concern ordinary unimodality or strong unimodal-
ity. A density f is said to be unimodal if it has precisely one modal interval,
that is, f € osc(1). In order that each mixture of F, be unimodal, it is
necessary and sufficient (Theorem 4) that this be true for each special mixture
p.f1+ P2 f, Applicable necessary and sufficient conditions for the latter prop-
erty are given by Theorem 8 and Proposition 1. Under strong side assump-
tions, related necessary and sufficient conditions are due to Kakiuchi (1981).
Analogous results hold for discrete density functions.

A density f is said to be strongly unimodal if J = {x: f(x) > 0} is an
interval and, moreover, log f(x) is concave on J. In order that each mixture of
a family F, be strongly unimodal, it is (necessary and) sufficient that each
special mixture p, f; + p, f, be strongly unimodal (where f; € F, and p;, > 0);
see Theorem 5. A useful necessary and sufficient condition for the latter is
given in Theorem 9. .

Sections 2-6 largely consist of definitions and results, together with a
running discussion and many applications. Most of the proofs have been
collected in Section 7.

2. Modal intervals. In the sequel, F denotes the d.f. F(x) = u((—o, x])
of a finite nonzero measure p on R. Each point x, with u({x,}) > 0 should be
regarded as a mode. Replacing u by its continuous component, we may and
will assume from now on that F is continuous. Thus, by a d.f. F, we will mean
any nondecreasing continuous function on R such that F(—») =0 and 0 <

F(x) < ., Usually, we take F of the form dF = fdx with f as a density. In
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that case
(2.1) F(x) = f:of(u) du.

Here, by a density we mean any nonnegative measurable function on R such
that 0 < [f(x)dx < «. In addition, unless otherwise stated, we also assume
that the discontinuities of f (if any) are of the first kind. That is, for all x € R,
both left-hand limit f(x — 0) and right-hand limit f(x + 0) exist; these are
equal for all but countably many x, the so-called jump points of f. The actual
values f(x) at these jump points are irrelevant as to F. Since they also should
be irrelevant as to the modal properties of f, we may and will assume that

(2.2) min( f(x - 0), f(x +0)) <f(x) <max( f(x — 0), f(x + 0))

for all x € R. Below, a density f as usual will be one having the above
properties. It suffices that f be a continuous density.

The above assumptions are satisfied when the density f happens to be
piecewise monotone. The latter means that R is the union of finitely many
intervals J, such that, for each r, the restriction of f to int(J,) is either
nondecreasing or nonincreasing. Besides upward or downward jumps of f
inside these intervals, we also allow f to have an upward or downward jump at
the junction x, of a pair of adjoining intervals J, [the value f(x,) itself must
satisfy (2.2) but is otherwise irrelevant]. For instance, f might be increasing
on (a, x,) and also increasing on (x,, b), but not on the full interval (a, b), due
to a downward jump of f at x,.

If f is piecewise monotone, then the associated d.f. F is piecewise convex-
concave. Here, a continuous d.f. F' will be said to be piecewise convex-concave
if R can be partitioned into finitely many intervals o/, such that F is either
convex on J, or concave on J,, this for each r. Consequently, the (nonnega-
tive) left- and right-hand slopes F'(x — 0) and F'(x + 0) exist everywhere, and
they are equal for all but at most countably many x. These slope functions are
monotone on int(J,), and may have jumps there. In addition, they may have
an upward or downward jump at the junction of any pair of adjoining inter-
vals J,.

Such a continuous piecewise convex-concave d.f. F is absolutely continuous
implying that, conversely, F is simply of the form (2.1) with f as a piecewise
monotone function; thus, F'(x — 0) = f(x — 0) and F'(x + 0) = f(x + 0). For,
suppose a d.f. F' is convex on the interval [a, b], thus, its slope is nondecreas-
ing there. Letting 0 <& <b —a and K(e) = (F(b) — F(b — ¢))/e = 0, one
has

|F(x) —F(y)| < K(e)|lx —y| forallx,y € [a,b—¢],
showing that F is absolutely continuous on [a, b]; similarly, when F is
concave.

(2.3) DEFINITION. The precise definition of a mode and a modal interval is
not entirely trivial. Let f be a density as above, having only discontinuities of
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the first kind. Let x, € R and define
(2.4) ¢ = c(xo) = max(f(xo — 0), f(x, + 0)),

thus, ¢ = f(x,) if f is continuous at x,. We say that x, is a mode of f if
¢ = c¢(x,) > 0 and, moreover, the associated quantities

a(xy) = sup{x <x,: f(x) <c},  A(x,) =sup{x <x,: f(x) >c},

(2.5) b(x,) = inflx > xo: £(x) < c}, B(x,) = inf{x > xy: f(x) > c}

are such that
A(xy) <a(xy) and b(x,) < B(x,), hence,

(26) A(x) < a(xg) <xo<b(xy) <B(x,).

In this case, the corresponding finite closed interval

(2.7) J(%9) = [a(x,),b(x,)]

will be regarded as the modal interval associated to the mode x,. Distinct
modal intervals are easily seen to be disjoint. In many applications, a(x,) =
b(xy) = %, in which case J(x,) = {x,} is degenerate.

(2.8) REMARK 1. Let us describe the situation in some more detail. Con-
sider a mode x, of f as above, thus, ¢ = c(x,) > 0. Put J = J(x,) = [a, b] =
[a(x,), b(xy)]. Then c(x) =c for each x € J, thus, f(x) =c > 0 for each
x € int J = (a, b). Moreover, f(x) < ¢ throughout an entire (open) neighbor-
hood of J [with (A(x,), B(x,)) as the largest such neighborhood]. Finally,
inside each (open) left neighborhood of a and each (open) right neighborhood
of b, there are points with f(x) < c. These properties characterize the notion
of J = [a, b] being a modal interval. Note that each x € J = [a, b] is also a
mode of f having c¢(x) = ¢ and J(x) = .

(2.9) REMARK 2. Suppose J = [a, b] is a modal interval of f with f as a
plecewise monotone density, in particular, f is monotone (either nonincreasing
or nondecreasing) in a sufficiently small left neighborhood of a. Therefore,
either f(a — 0) < f(a + 0) =c or else f is nondecreasing and nonconstant
(that is, F is convex but not linear) on some left neighborhood U of a, in such
a way that f(x) <f(a — 0) =¢, for all x € U. Similarly, either f(b + 0) <
f(b — 0) or else the density f will be nonincreasing and nonconstant (thus F
is concave but not linear) on some right neighborhood V of b. In both cases,
f(x) < c on a sufficiently small right neighborhood V of b. Possibly ¢ = « but
then a = b.

However, if f(a — 0) < f(a + 0) = ¢ (the slope of F has an upward jump at
a), then it is possible for F to be concave (and not convex) in a left neighbor-
hood of a. Similarly, if f(b + 0) < f(b — 0), then it is possible for F to be
convex (and not concave) in a right neighborhood of b.
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Definition 2.3 still makes sense when f > 0 is not integrable and has an
open interval K of R as its domain, still assuming that f has only discontinu-
ities of the first kind. In this context, the notion of a modal interval is
invariant under monotone transformations. More precisely, if ¢: K — R is
strictly increasing and continuous, then the subinterval [a, b] of K is a modal
interval for a function f> 0 on K if and only if [¢(a), $(b)] is a modal
interval for the associated function g(x) = f(¢~(x)) on ¢(K).

LeMMA 1. Let f be a density as usual (having only discontinuities of the
first kind). Let further I = (a, B) be a finite or infinite open interval such that

(2.10) f(x) >f(a+0) and f(x)>f(B—0) forsomexel.

Then I contains at least one modal interval.

Proor. Let ¢ =sup,.; f(x) thus f(a+0)<c and f(B —0) <ec. Let
%, €I be such that f(x,) - ¢ and lim, x, = x,. Clearly, a < x, < 8.

Necessarily, ¢ = c(x,), with c(x,) as in (2.4). The quantities (2.5) are easily
seen to satisfy A(x,) <« <alxy) <xy <b(xy) <B < B(x,). Hence, J =
[a(xy), b(x,)] is a modal interval contained in I = (a, B). O

REMARK. Lemma 1 also holds for a closed interval I = [a, B], provided in
(2.10) we replace f(a + 0) by f(a — 0) and f(B — 0) by f(B + 0). Similarly
for half open intervals (a, 8] and [«, B).

CoroLLARY 1. Each density f (as usual) has at least one modal interval.

Proor. Let x' be fixed such that f(x’) > 0. Since f=> 0 is integrable,
there exists a <x’ with f(a + 0) < f(x') and also B > x’ with f(B8 — 0) <
f(x"). Now apply Lemma 1. O

COROLLARY 2. Let f be as usual and suppose that
Ay, f(x1) >0 and A, f(x;) <0,

(2.11)
wherex; <x; + h; <x, <xy + h,.

Then the interval | =[x, x, + h,] contains at least one modal interval of f. If
f is right-continuous at x, and left-continuous at x, + h,, then even the open
interval (x,, x, + h,) contains a modal interval of f.

REMARK. Most results of the present paper can also be applied to the
restrictions of d.f.’s F and densities f to a fixed open interval K = (p, q)
(possibly p = —o or g = +). In this connection, it is useful to consider the
density f defined by f(x) = f(x) for x € K and f(x) = 0, otherwise, and its
associated d.f. F. Clearly, f and f have the same modal intervals  insofar as
J is entirely contained in K = (p,q). If J =[a,b] is a modal interval for f
with @ <p < b < g, then [p, b] is a modal interval for f (it is essential that
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p < b). The converse is false. For instance, a modal interval of f of the form
[p, b] need not derive from a modal interval of f.

3. The classes osc(c) and Osc(s). Let s be a fixed positive integer. We
will be interested in densities f having at most s modal intervals (necessarily
disjoint). Such a function f does not admit more than s disjoint intervals as
described in Lemma 1 or Corollary 2. The class of densities having the latter
property is denoted by osc(s). A more precise description is as follows.

(3.1) DeFINITION. We will say that f € osc(s) if f is a density as usual
(having only discontinuities of the first kind), such that it is impossible to find
numbers x, and k,, r = 1,...,2s, satisfying

(3.2) x;,<xy,< -+ <2xy, O0<h, <x,,;—%,, r=1,...,2s;

Xg9e41 = +, and

(3.3) (-1)'A, f(x,)>0 forr=1,...,2s.

An equivalent definition obtains when one insists that, in addition, all the 4s
points x, and x, + k, be continuity points of f and/or that A, < ¢ for all r,
with ¢ > 0 preassigned. Essentially, we are requiring that the slope of f
changes its sign at most s — 1 times from strictly negative to strictly positive
(when moving to the right).

LEMMA 2. Suppose that f is a continuous density which is differentiable at
each point x outside a discrete subset D of R. Then f € osc(f) if and only if it
is impossible fo find a set of 2s points x, & D such that

(84) x,<xy3< -+ <xy, and (-1)f'(x,)>0, r=1,...,2s.

Proor. The necessity follows from the definition of a derivative and the
sufficiency from the mean value theorem. O

LEMMA 3. A density f belongs to osc(s) if and only if it is impossible to find
numbers z,, r = 0,...,2s, such that

(85) z,_1<z, (-1)(f(z,)—f(z,_1))>0 forr=1,...,2s.
Proor. See Section 7.

REMARK. In many applications, there exists a finite interval (c, d) such
that f is nondecreasing on (—, ¢] and nonincreasing on [d, «). Since (3.4)
requires that x, <x,, and f'(x;) <0, f'(x,,) > 0, one may assume that
¢ <x; < -+ < x5, <d. An analogous remark applies to (3.2) and (3.5).

THEOREM 1. In order that a density f have at most s different modal
intervals, it is necessary and sufficient that f € osc(s).
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Proor. See Section 7. The necessity of f € osc(s) follows from Lemma 1.

(3.6) DEFINITION. Let s be a positive integer. We say that F € Osc(s) if F
is a continuous d.f. such that it is impossible to find numbers x, and 4,,
r=1,...,2s, satisfying

(83.7) x;,<x53< ++ <xy, 0<h,<(x,,1—x,)/2, r=1,...,2s,
X541 = , and

(3.8) (-1)"A, F(x,) >0 forr=1,...,2s.

Here, A% F(x) = F(x + 2h) — 2F(x + h) + F(x).

THEOREM 2. Each f € osc(s) is piecewise monotone and each F € Osc(s) is
Dpiecewise convex-concave.

THEOREM 3. If f € osc(s), then the associated d.f. as in (2.1) belongs to
Osc(s). Conversely, each F € Osc(s) is the integral of a density f € osc(s).

Proor. See Section 7.

What exactly is the structure of a density f having precisely s modal
intervals? First consider the case s = 1. From Theorem 1, since every density
has at least one modal interval (Corollary 1 of Lemma 1), this case is
equivalent to f € osc(1). Which requires precisely that a strict decrease of f is
never followed by a strict increase of f. In other words, there exists x, € R
such that f is nondecreasing for x < x, and nonincreasing for x > x,. This
coincides with the usual definition of a unimodal density.

When s > 2, we have from Theorem 1 that a density f has precisely s
modal intervals if and only if both f € ose(s) and f & osc(s — 1). In particular
(Theorem 2) such a density is piecewise monotone.

The case where f has exactly s modal intervals can be described as follows.
There exists a partition of R into 2s disjoint nonempty (open, closed or half
open; finite or infinite) intervals J,,...,J,, with J,,, immediately to the
right of J,. Moreover, on each odd interval J,._; (even interval J,,.) the
density f is nondecreasing (nonincreasing) and nonconstant.

For 1 < k < 2s, let x;, be the right end point of ¢/, (it belongs to either J,
or J, ;). The precise values f(x,) are irrelevant, except that we insist on
condition (2.2). It will be allowed that /, is degenerate, but only when f has a
jump at x,. In that case, J, = {x,} while x,_, = x, does not belong to either
J,_; or J,, ;. More precisely, if J, = {x,} with & odd, we require that f hasa
nonzero upward jump at x, (note that f is nonincreasing on each of the
adjoining even intervals J,_; and J,,,). In this special case, by convention,
we will regard f as being nonconstant on J,; similarly, when % is even.
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If J, is nondegenerate and x, € J, and further f has a nonzero jump at
%, then we insist that this be an upward (downward) jump when % is odd
(even). In such a case, by convention, we always regard f to be nonconstant on
dJ), [it would be for most choices of the value f(x,)]. Similarly when x,_; € J,.

The rigorous proof, that the above structure is necessary and sufficient, for
f to have exactly s modal intervals, is rather long and will be omitted. The
partition on hand is not always unique, due to the presence of continuity
endpoints x, and/or intervals of constancy, which can be included in either an
even or an odd interval.

ExampLE. Let f be defined by
(3.9) f(x) = {(x— [x])/s, if0<x<s,
0

. otherwise.

Then f has precisely s modal intervals, namely, the one-point sets
{1},{2},...,{s}, thus, there are also precisely s modes. Note that f has a
downward jump at each of the s modes but, otherwise, is nondecreasing
everywhere. The latter structure intervals oJ;,...,J,, can presently
be chosen as oJ; = (—o,1);d, = {1 J5 = (1,2); J, = (2}; ...; Jp,_p =
{s — 1y dye_1 = (s — 1,8); ey, = [s, +).

4. Mixtures. In the sequel, F denotes a nonempty family of continuous
nonzero d.f.’s, that is, each G € F is a nondecreasing continuous function on
R such that G(—») = 0 and 0 < G(+ ) < x,

A d.f. G is said to be a mixture of F (or also an F-mixture) if it is of the
form

(4.1) G(x) = fF(t,x)p(dt).

Here, ¢ runs through a measurable space T while p is a o-finite nonzero
measure on T'. Further, F(¢, x) is any function which is measurable in ¢ and
which, as a function of x, belongs to F. We also require that G(«) < «. From
the dominated convergence theorem, G is always continuous.

By a density f, we mean any measurable function f> 0 on R with
0 < ffdx < . In most applications below, each G € F is absolutely continu-
ous and then the corresponding (nonempty) family of densities will be denoted
as F,. In this case, if G is a mixture of F as in (4.1), then (Fubini) G is
absolutely continuous with a density of the form

(4.2) g(x) = [f(t,%)p(dr).

Here, f(t,x) > 0 is jointly measurable while f(¢, ) € F, is a density for
F(¢, - ). Thus, the mixture G of F has a mixture g of F, as its density.
Below, we always assume that F is a subset of Osc(s) for some s > 1. But
then we know (Theorem 2) that each G € F is piecewise convex-concave and
further that dG = gdx with g € osc(s). In this situation, we may and will
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assume that F, is a subset of osc(s). In particular, all f & F, are then
piecewise monotone and thus densities as usual.

ExavpLE. Even if each f € F,, were continuous, it does not follow that the
mixture g in (4.2) will be continuous. For instance,

X

1
f(t,x)=';[1— 1—7

is a continuous probability density with support [0,2¢]. Nevertheless, the
mixture

], x€R;t>0,
+

g(x) =Y 27'f(27,x) =2(1 —x), if0<x<]1,
£=1 ]
[g(x) = 0, otherwise], is discontinuous at 0.

THEOREM 4. In order that each F-mixture G be unimodal, it is (necessary
and) sufficient that each special F-mixture

(4.3) G(x) =piFi(x) + pyFy(x)
be unimodal. Here, F; € F, p; > 0(j = 1,2), p; + py > 0.

AprpPLICATION. Behboodian (1970) showed that each mixture of two normal
(my, 0y) and (m,, o,) densities is unimodal when |m, — m,| < 2 min(oy, o).
Let Q=[-1,+1] X [1,») thus |u; — u,l <2 < 2min(v,,v,) if (x,,v,) € Q
(r = 1, 2). Combining Behboodian’s result with Theorem 4, we conclude that

g(x) = [exp(~(x — u)’/(20))p(du, dv)

is a unimodal density for each choice of the o-finite measure p on , at least
when g is finite on R. More generally, the same proof shows that each such
mixture g is unimodal on any open interval on which it is finite.

Theorem 4 follows from the special case s = 1 of Theorem 6 below. A d.f. G
is said to be unimodal if it is continuous and has only one modal interval.
Equivalently, G € Osc(1). That is, G is continuous and x, € R exists such
that G is convex for x < x, and concave for x > x,. Equivalently, G has a
density g which is unimodal in the usual sense.

A df. F will be said to be strongly unimodal if the convolution F* H is
unimodal for each choice of the continuous unimodal d.f. H. A result due to
Ibragimov (1956) states that F' has this property if and only if it is absolutely
continuous with a log-concave density f. That is, f(x) = exp(—u(x)) with
u: R(—o, +x] as a convex function. The support {x: f(x) > 0} = {x: u(x) < o}
is always an interval.

THEOREM 5. In order that each F-mixture G be strongly unimodal it is
(necessary and) sufficient that each special F-mixture as in (4.3) be strongly
unimodal.
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Proor. 1t is given that each special F-mixture (4.3) is strongly unimodal.
We must prove that any given mixture G of F is strongly unimodal. Let H be
any fixed continuous unimodal d.f. It suffices to show that G * H is unimodal.

Since G * H is clearly (Fubini) a mixture of the family F;, = {F « H: F € F},
it suffices (Theorem 4) to verify that any special Fj-mixture is unimodal.
Indeed, if p; > 0and F, € F,i = 1,2; p;, + p, > 0, then

P(Fi*H) +py(FyxH) = (p,F) + p,Fy)* H

is unimodal, simply because p,F, + p,F, is strongly unimodal. O

REMARK 1. It is useful to reformulate Theorem 5 in terms of log-concave
densities. Namely, if a family F, of densities is such that each special F,-mix-
ture p,f; + pyf; (p; > 0; f; € Fy) is log-concave, then each Fj-mixture is
log-concave.

Formulated this way, the result even carries over to log-concave densities on
R" (n > 1). For, let g be a mixture of a given family F, of densities on R". In
showing that g is log-concave, it suffices to show that, for each choice of
X9,Yo € R", the associated function k(s) = g(x, + sy,) > 0 is log-concave in
s € R. From (4.2), h itself is a mixture of the family Fy(x,, yo) = { f(x, + sy,):
f € Fy} of densities on R. In view of Theorem 5, reformulated as above, it
suffices that each special mixture of Fy(x,,y,) be log-concave on R. And the
latter property, for all x,,y, € R", is equivalent to the condition that each
special mixture of F, be log-concave on R".

REMARK 2. Theorems 4 and 5 have obvious analogues for discrete densities
{p,}, c2, (Z = integers). Here, {p,} is said to be unimodal if, for some n,,
Pn+1 =P, When n <n, and p,,, <p, when n > n,. Equivalently, there
exist no m,n € Z with m <n, p,,,, <p,, and p,., > p,, and strong uni-
modality property is equivalent to having p,_,p,.; <(p,)? forall n €Z, a
result due to Keilson and Gerber (1971).

THEOREM 6. Let s > 1. In order that each mixture G of a family F of
continuous d.f.’s have at most s modal intervals, that is, G € Osc(s), it is
(necessary and) sufficient that this be true for each special mixture

(4.4) G(x) =piFy(x) + -+ +py, Fye(x)

involving at most 2s members F, € F, (p; > 0; ¥, p; > 0). The analogous
result is true for a mixture g of a family F, of densities relative to the property
g € osc(s).

Proor. See Section 7.

Theorem 4 follows from the case s = 1 of Theorem 6. For a good under-
standing of Theorem 6, the reader should also consult Theorems 1, 2 and 3.
For instance, the last assertion of Theorem 6 immediately follows from the
first because of Theorem 3. Theorem 6 is only interesting when each G € F
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has at most s modal intervals, that is, G € Osc(s). Equivalently, each G € F
is absolutely continuous, which admits a corresponding density g € osc(s), in
particular and is piecewise monotone.

SHARPNESS. The integer 2s in (4.4) cannot be replaced by any smaller one.
To show this, it suffices to exhibit a family F, consisting of 2s continuous
densities f;, j = 1,...,2s, such that

(45) - &(x) =pifi(x) + -+ 4Py fos(x),  p;=0,%;p;>0,

has at most s modal intervals as soon as p; = 0 for some 1 <j < 2s while, on
the other hand, the density (4.5) has more than s modal intervals when p; > 0
for all j.

For k > 1, let ¢,(x) denote the continuous trapezoidal density defined by
¢, (x) = 1for1 <x < 2k — 1; furthermore ¢,(x) = x, for x < 1and ¢,(x) =
2k —x), if x>2k — 1 [where z,= max(0,2)]. In particular, ¢,(x) =0
when x & (0,2k). For r=1,...,s, let f,,_(x)=¢,(x) and let f,(x) =
¢s.1-,2s + 2 — x) [having support (0, 2r) and (2r, 2s + 2), respectively].

The resulting density g as in (4.5) is continuous and piecewise linear. As is
easily seen, g has slope

(46) g'(x) = (—l)jpj ontheinterval [j,j + 1], Jj=1,...,2s.

In addition, g is linear with slope p; + p; + +* +py,_; on [0, 1] and linear
with slope —(p, + p, + -+ +py,) on [2s + 1,2s + 2]. Finally, g(x) =0 if
x &[0,2s + 2].

If p; = 0 for some j, then g € osc(s) in view of Lemma 2. On the other
hand, suppose that p; > 0 for all j. Then g & osc(s), again from Lemma 2. In
fact, (4.6) clearly shows that the slope g’(x) does have s changes of sign from
strictly negative to strictly positive. And no more such changes, thus, g €
osc(s + 1). Presently, g has the s + 1 (degenerate) modal intervals {2 — 1},
J=1,...,s + 1. They are separated by the ‘valleys’ {2/}, j =1,2,...,s.

(4.7) ConpITION. Let F, be a given subset of osc(s), (s > 1). The present
condition requires that, for each choice of the numbers x, and 4,, r =

1,...,2s, such that x, <x, + h, <x,,; (x5,,,; = ®), there exist nonnegative
numbers a,, r = 1,...,2s, not all zero, such that

2s
(4.8) Y (-1)'a.A, f(x,) <0 forall feF,.

r=1

THEOREM 7. Let F,, be a (nonempty) subset of osc(s). Then Condition 4.7
is necessary and sufficient in order that each mixture of F,, [as in (4.2)] belong
to osc(s).

THEOREM 7'. Let F, be a subset of osc(s). Then in order that each mixture
of F,, belong to osc(s), it is necessary and sufficient that, for each choice of the
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numbers z, <z, < -+ <2y, there exist nonnegative numbers a,, r =
1,...,2s, not all zero such that

2s
(4.9) Y (-1'a,[f(z2) —f(2,_.1)] <0 forallf € F,.

r=1

THEOREM 7". Let F, be a given subset of osc(s) and suppose that each
f € F, is everywhere continuous and, moreover, has a derivative f'(x) at each
x & D. Here, D is a discrete subset of R which is independent of f.

Then in order that each mixture of F, belong to osc(s), it is necessary and
sufficient that, for each choice of the x, & D, r =1,...,2s, with x, <«x

r+1
there exist nonnegative numbers a,, r = 1,...,2s, not all zero such that
2s
(4.10) Y (-Da,f'(x,)<0 forallf €F,.
r=1

ProoF. See Section 7.

Note that (4.8) implies that the analogous inequality holds for each mixture
g of F,. Hence, in view of Definition 3.1 of osc(s), it is obvious that Condition
4.7 is sufficient in order that each F,-mixture belongs to osc(s). The necessity
of Condition 4.7 is less trivial. Similar remarks hold for Theorems 7' and 7’,
using Lemma 3 or Lemma 2, respectively.

5. Unimodality. Let f be any unimodal density, that is, f <€ osc(1).
Its unique modal interval will be denoted as [m(f), M(f)], —» <m(f) <
M(f) < ». Thus, f is nondecreasing for x < M = M(f) and nonincreasing
for x > m = m(f), therefore, f(x) is constant for m < x < M. Further
flm +0)=f(M—-0)=c>0and f(x) =c for m <x <M. Finally, f(x) <c
for all x <m and all x > M.

Let F, be a family of unimodal densities. We will be interested in sufficient
conditions in order that each mixture g of F, be unimodal. From Theorem 4,
this is true if and only if each special mixture

(5.1) &(x) =pyfi(x) + pafa(x)

is unimodal. Here, f; € F, and p; > 0; p; + p, > 0.

Let f,, fo be fixed unimodal densities. We want necessary and /or sufficient
conditions in order that each mixture g as in (5.1) be unimodal. One may as
well assume that p; > 0, i = 1,2. Let [m(f,), M(f,)] be the unique modal
interval of f;. Let further

(5.2) a = min(M( f,), M(f,)), B = max(m( fy), m( f3))-

Then f,, f, and thus g are nondecreasing for x < a and nonincreasing for
x > B. Thus g is always unimodal when B < a and it only remains to consider
the case that @ < B. Our major concern is then with the behavior of g on the
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interval [a, B]. Interchanging f;, f, if necessary, one may suppose that

(5.3) M(f) =M(fs),

thus @ = M(f,). Further m(f)) < M(f,) = a < B thus B = m(f,), yielding
that

(5.4) M(f) <m(f2),

which in turn implies (5.3).

We may assume that f;(a) = max(f(a — 0), fi(a + 0)) and similarly for
f{B). One has fi(x) < fi(a) for all x > a and fy(x) < fy(B) for all x <B. In
addition, f; is nonincreasing for x > a (hence on [a, B]) and f, is nonde-
creasing for x < B (hence, on [a, B]).

For p, > 0 fixed, the mixture g is not unimodal [that is, g & osc(1)], if and
only if some strict decrease of g is followed on the right by some strict increase
of g, in the sense of either (3.3) or (3.5). More precisely, g & osc(1) is
equivalent to the existence of numbers x, such that
(5.5) X, <xy <x3<x, and g(xy) <g(x,);8(x4) > 8(%x3).

From the above properties of g, if the situation (5.5) occurs at all, then (5.5)
can also be realized with the x, such that @ < x; < x, < B. If desired one may
insist on having x, = x5, see (3.5).

The situation (5.5) definitely occurs when fi(a + 0) <fi(a — 0) = f(a)
while f, is continuous at a. For, then g(x) always has a downward jump
at « while, for suitable points x5 < x, < B close to B, one will have g(x3) <
g(x,), as soon as p,/p, is sufficiently small. Similarly, when f,(B — 0) <
fof B + 0) = fo(B) and f; is continuous at B. This happens, for instance, when
fi(x)=e"*for x > 0, fi(x) =0 for x < 0and fyx)=fi(x —-p),B>0.

THEOREM 8. Let f,, f, be unimodal densities such that M(f,) < M(f,).
Then in order that each mixture g as in (5.1) be unimodal, it is necessary and
sufficient that

fi(z0) fi(z1)  fi(z2)

(5.6) fa(20)  fa(z1)  fal2s) >0,
1 1 1

whenever M(f,) < zy < 2z, < 2y < m(f5).

LEMMA 4. Let u; and v;, i = 1,2, be given nonnegative numbers. Then in
order that there exist numbers p; > 0, i = 1,2, such that

(5.7) Pisy — Py > 0> pyuy — pyvy,
it is necessary and sufficient that u,v, — uyv, > 0.

Proor (Necessity). Clearly, (5.7) implies that p; > 0, p, > 0 and u,; > 0,
vy > 0. Thus the assertion is obvious unless u, > 0, v; > 0. But then

(5.8) U1/uy <P1/P2 <Uy/Uy.
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(Sufficiency.) Suppose u,v, — uyv; > 0 thus u, > 0, vy > 0. If u, = 0, then
choose p, > 0 and p; > p,v,/u,. Otherwise, choose p,, p; > 0 so as to satisfy
(5.8). O

Proor oF THEOREM 8. Use criterion (5.5) with x, = x5 and a < x; <x, <
B, where @ = M(f,) and B = m(f,). Thus, in order that some mixture g as in
(5.1) not be unimodal it is necessary and sufficient that numbers a < z, <
2, < 2z, < B exist such that for some choice of p; > 0, p, > 0 one has

g(20) > g(2;) and g(z;) > &(2y), there g(x) =p,fi(x) +pafa(x).

For fixed values z;, this is equivalent to condition (5.7) with u; = fi(z; ;) —
fz;) and v; = f(2;) — fo(z;_1), j = 1,2. One has u; > 0 and v; > 0, since f;
is nonincreasing on [, 8] and f, is nondecreasing on [a, B8]. By Lemma 4, the
system (5.7) admits a solution p; > 0, p, > 0 if and only if u,v, — uyv, > 0.
The latter inequality is easily seen to be equivalent to the negation of (6). O

ReEMARK. It also follows from the proof that, in the case M(f;) < M(f,),
the set of numbers p > 0 such that g = pf, + f, is not unimodal is an open
set equal to the union of all open intervals of the form

fo(21) — fa(20) <p< fo(25) — fa21)

fi(z0) — f1(21) fi(z) — fu(zs) '

one for each choice of the numbers M(f)) <z, <2z, <z, <m(f,) such
that fi(z,) > fi(z)) and fy(2;) < folzy) [none if m(fy) < M(f)) < M(fy)). If

fi(z)) = fi(2,), then the right-hand side of (5.9) is to be interpreted as + .
Condition (5.6) requires precisely that the interval (5.9) be always empty.

(5.9)

THEOREM 8'. Let f,, f, be unimodal densities such that M(f;) < M(f,).
Suppose further that f, and f, are continuous for M(f,) <x < m(f,), and
differentiable for M(f,) < x < m(f,). Then in order that each mixture g as in
(5.1) be unimodal, it is necessary and sufficient that

fi(x)  fi(»)

G101 Ak

>0, whenever M(f,) <x <y <m(fy).

Proor. Exactly as the proof of Theorem 8, but this time using the crite-
rion (3.4) instead of (3.5) (with s = 1). Or else use the generalized mean value
theorem in showing that (5.6) and (5.10) are equivalent. O

ReEMARK 1. Provided f] and f; exist, condition (5.10) is equivalent to

fi(z)  fi(x)
fa(x)  f32(x)

> 0, whenever M(f,) <x <m(fs).
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REMARK 2. The following is a related result for arbitrary s > 1. Namely, let
f; € osc(s) be differentiable and put u;(x) =f/(x), j=1,...,2s. Then in
order that a density g = p,f, + *** +py, fos, P; = 0, L;p; > 0, have no more
than s modal intervals, it is clearly sufficient that the derivative g’ =
P14y + *++ +pyUus, have no more than 2s — 1 distinct zeros (if there were
s + 1 modal intervals there would be also s valleys; we also used that a
derivative g’ always has the mean value property). Equivalently, if for each
choice of x; < -+ <x,, the system ¥ ;p,u (x,) = 0, r = 1,2s, has no non-
trivial nonnegative solution. It would be sufficient that

det(u;(x,);i,r=1,...,25) #0 when x; < -+ <ux,,.

In the latter case, {u,,..., u,,} would be a type of Tchebycheff system, see
Karlin and Studden (1966). If moreover u ; =[] is continuous, then the latter
determinant would be of one sign, such as always strictly positive. The special
case s = 1 of this sufficient condition coincides with the strict version of
(5.10).

PropoSITION 1. Here, we make the same assumptions as in Theorem 8'.
Let E be the set of points M{(f) < x < m(f,), such that either f,(x) # 0 or
fo{x) # 0. Define

(5.11) o(x) =|f1'(x)/fé(x)| foreachx € E.

Here, ¢(x) = o if f{(x) #+ 0 and fy(x) = 0.

Then in order that each mixture g as in (5.1) be unimodal, it is necessary
and sufficient that ¢: E — [0, =] be nondecreasing.

In particular, the following conditions are necessary.

() Ifx € E; f(x) =0, thenf(y)=0 forally >x;y €E.
(i)) Ify € E; fi(y) =0, then fi(x) =0 forallx <y; x € E.

ProoF. Note that f; <0 and f, >0 when M(f) <x < m(f,). Since
(5.10) is trivially true if either x € E or y ¢ E, one only needs to verify that,
for each fixed pair x,y € E, condition (5.10) is equivalent to ¢(x) < ¢(y). Both
are trivially true when f;(x) = 0 [thus ¢(x) = 0] and also when fy(y) =0
[thus ¢(y) = + ). Thus one may assume that fj(x) < 0 and f,(y) > 0, thus
d(x) > 0 and o(y) < . If fy(x) =0, thus ¢(x) = , then both (5.10) and
d(x) < ¢(y) are false. If also f,(x) > 0, the equivalence follows by dividing
(5.10) by f,(x)fo(y). The last assertion amounts to saying that if x,y € E;
x <y, then ¢(x) = © must imply ¢(y) = © and ¢(y) = 0 must imply ¢(x) = 0.

0O

ReEMARK. The discrete analogue of Proposition 1 is as follows. Let {p,},
{q,}, n € Z be discrete unimodal densities. Thus max; p; is assumed for
m(p) < n < M(p), while p, is nondecreasing for n < m(p) and nonincreasing

for n > M(p). Similarly for {q,}. One may assume that M(p) < M(q). Since
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{p, + 6q,}, 6 > 0 is obviously unimodal if M(p) > m(q) — 1, let us assume
that M(p) < m(q) — 2.

In that case, we have that {p, + 6¢,} is unimodal, for all 6 > 0, if and only
if(p,+1 — P.)/(@,+1 — q,) is nondecreasing for M(p) < n < m(q) — 1. Here,
we ignore the integers n with both p,,; =p, and ¢,.; = q,. The above
condition requires, in particular, that for M(p) + 1 <n <m(q) — 1, one
cannot have both p,,, =p, and q,,, > q,. And neither both p,_, > p, and

qn—l =,qn'

PROPOSITION 2. Again we make the same assumptions as in Theorem §'.
Let 0(f,, f,) denote the set of all numbers 6 > 0 such that g = f, + 6f, is not
unimodal. Let E and ¢ be as in Proposition 1. We claim that 6(f,, f,) is
precisely the union of all open intervals (¢(y), #(x)), over all pairs x,y € E
such that x <y and ¢(y) < ¢(x).

Proor. Clearly, 6(f;, f;) consists of all & > 0 such that g'(x) < 0 < g'(y)
for some choice of x, y with M(f)) <x <y < m(f,). In particular, x,y € E.
Equivalently, 6( f,, f,) is the union of all intervals

{6: fi(x) +0f5(x) <O <fi(y) +0fa(»)} = {0: B(¥) <0 < $(x)},

one for each choice of x,y € E with x <y. O

ExampLE. Let fi(x) = exp(—Ix]), fy(x) = exp(—I|x —al), a > 0. Then
M(f)) = 0 and m(f,) = a. Further ¢(x) = exp(a — 2x) for 0 < x < a, yield-
ing that 0(f,, f;) = (e™%,e?).

AppLicATIONS. Let f and g be fixed densities, each unimodal about
0. Thus m(f)<0<M(f) and m(g) <0 <M(g). Put M=M(f) and
m = —m(g), thus m, M > 0. We shall be interested in the largest value
¢* > 0 such that

(5.12) h(x) =pf(x) + qg(x —¢)

is unimodal for all p,q > 0 and all 0 < ¢ < ¢*. Since A is trivially unimodal
when 0 <c¢c <M+ m (whatever p,q > 0), one only needs to study the
case ¢ > M + m. Thus, letting fi(x) = f(x) and fy(x) = g(x — ¢), one has
M(f)=M<c—m=m(f,).

We will assume that, for x > M, the function f is continuous with two
derivatives and such that f’(x) < 0. Similarly, for x < —m, we assume g to
be continuous on x < —m, with two derivatives and such that g’(x) > 0. Let
u(x) and v(x) be defined by

(56.13) —f'(M+x) =exp(—u(x)), g(-m-—x)=-exp(-v(x)), x>0.
We claim that
(5.14) c¢*=m+M+inf{s +¢t:5s> 0;¢> 0;u'(s) +v'(¢) > 0}.
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Proor. With f,, f, as above and ¢ as in (5.11), one easily sees that
(5.15) ¢(x) =exp[—u(x—M) +v(c—-m—-x)] fM<x<c-m.

From Proposition 1, & is unimodal, for all p,q > 0, if and only if, on the
interval M <x <c¢ — m, the function ¢(x) is nondecreasing, that is,
u(x — M) —v(c — m — x) is nonincreasing. Letting s =x — M and ¢t =c —
m — x, this leads to the necessary and sufficient condition that u'(s) + v'(¢) <
0 when s > 0;¢ > 0; u + v = ¢ — M — m. Therefore, the largest possible such
value c is given by (5.14).

Often m = M = 0 and then u'(s) = —f"(s)/f'(s) and V'(¢) =
g'(—=t)/g'(—t), s,t > 0. In the further special case that g(—x) = f(x) for
x > 0, one has v'(¢) = ¥/(¢), t > 0. In that case, the infimum (5.14) is often
assumed with s = ¢ = s*, hence, ¢* = 2s*, with s* satisfying u'(s*) = 0. That
is, f"(s*) = 0 thus s* is an inflection point of the density f.

Assuming f = g, this happens for the Cauchy density f(x)=1/(1 + x?),
with s* = 3712 and c* = 2s* = 1.1547. Also for the normal density f(x) =
exp(—x2/2), with s* =1 and c* = 2. Similarly for f(x) = exp(—|x|*) when
l1<a<2

The situation is more complicated when f(x) = g(x) = exp(—x*). Then the
infimum (5.14) is assumed for s = (-1 + 3/%)/2 and ¢t = (1 + 3'/2)/2, thus,
c* = 372 = 1.732. Choosing ¢ = 1.74 (just slightly larger than c*), it turns
out (somewhat surprisingly) that the mixture

h(x) = p exp(—x*) + q exp(—(x — 1.74)")

is unimodal when q/p = 1 but not when g/p = 0.655. In the latter case, one
has the two modes x; = 0.262 and x, = 0.500. O

NORMAL CASE. Suppose

fi(x) = ciexp(—x2/2),  fax) = cyexp(—(x — n)*/(20?))

are normal probability densities with w > 0; 0 > 0. It is easily seen then that
the mixture g as in (5.1) cannot have more than two modes. Robertson and
Fryer (1969) already determined precisely what mixtures g are unimodal;
their results are also described in Titterington, Smith and Makov (1985). They
would also follow quite easily from Propositions 1 and 2, using that

22 (p—x)”

—— 4+ ———, when0<x <y,

log ¢(x) =d + log# " 3 oy

with d as a known constant.

GAMMA CASE. Suppose f, =x% * and f, = x% %, where 0 <a <b and
put ¢ =b —a [x > 0; f(x) =0, otherwise]. Then @ = M(f;) =a and B =
m(fy) =b. In order that each mixture (5.1) be unimodal, ¢(x) must be
nondecreasing for a < x < b. From (5.11), we find that ¢(x) = x"(x — a)/
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(b — x). Calculating ¢'(x), one is led to the condition that (¢ — x)(x — b) <«
for a < x < b. It is easily checked that this is true if and only if ¢ < 1 + Vda .
Equivalently, if V& < 1 + Va . Thus each mixture of f= x%~* relative to the
parameter a is unimodal (even strongly unimodal, see Section 6), provided we
restrict this parameter to a fixed interval [ A, B], such that 0 < A < B and
B < (1 + YA)2. The latter bound is best possible.

6. Strong unimodality. In this section, F, is a given family of strongly
unimodal densities, all having the same open interval K as their common
support [such as (0, 1) or (0, ) or (—x, »)]. Equivalently, each f € F, is of the
form f=e * with u = u(x) as a convex function on R which is finite on K
and infinite off K. Let U denote the corresponding class of convex functions u.
For convenience, we will assume that each u € U has two derivatives on K,
thus, u"(x) > 0.

LEMMA 5. Let f, = exp(—u,;) € F, (i = 1,2). Then the mixture

(6.1) g =p1f1+P2fo =Prexp(—u,) + pyexp(—uy)
is strongly unimodal for all p,, p, > 0, if and only if

(6.2) (%) — up(x)| < wi(x)"? + uy(x)"® forallx K.
Proor. See Section 7.

THEOREM 9. In order that each Fy-mixture be strongly unimodal, it is
necessary and sufficient that for each x € K,

(6.3) fgg[u'(x) ~w'(x)"?] < inf [w/(x) + ()],

Proor. Condition (6.3) says that (6.2) holds for all pairs f,, f, € F,,. Hence
from Lemma 5, condition (6.3) is necessary and sufficient in order that each
special mixture (6.1) be strongly unimodal. Hence, it is certainly necessary in
order that each F,-mixture be strongly unimodal. That (6.3) is also sufficient
follows from Theorem 5, which states that each Fj-mixture is strongly uni-
modal as soon as each special mixture (6.1) is strongly unimodal. Since the
proof of Theorem 5 is not entirely simple, also because of the use of Ibragimov’s
theorem, we include in Section 7 a more elementary sufficiency proof which is
valid for a wide class of mixtures, including all finite mixtures. O

COROLLARY. Let f = e * be a strongly unimodal density of class C% on R.
Let Fy = {f(x) = f(x — ¢): 0 <c < c*}). Then the largest value c* such that
each mixture of F, be strongly unimodal, is given by

(64) c*= inf{|x — gyl w(x) =W (y) > () +uw ()% %,y € R}.
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Proor. Immediate from Theorem 9. Note that (6.4) is the analogue of
formula (5.14) for the unimodal case. O

AppLICATIONS. Choosing f(x) = exp(—x2/2), one has u'(x) = x, u"(x) = 1
and (6.4) yields that c¢* = 2. Thus each mixture of exp(—(x — ¢)?/2), with ¢
restricted to [0, 2], is strongly unimodal and this interval cannot be replaced by
a larger one (even when one only requires that each mixture be simply
unimodal, see Section 5).

More generally, suppose there exist positive constants A and B such that
A? < u"(x) < B? for all x € R. Then |t/(x) — ¢/(y)| < B2|x — y| and (6.4) yield
that c* > ¢,, where ¢, = 2A/B?. This estimate is sharp in the normal case
u(x) = x2/2.

As an application of (6.2) or (6.3), suppose F, is some class of gamma
densities f(x) =x% "™, a > —1; r > 0. Provided a > 0, this density is always
strongly unimodal with K = (0,) and u(x)= —alogx —rx [if x> 0;
u(x) = +x, otherwise]. Choosing

fi(x) = x%™", fa(x) = xbe™**, x>0;a>0;6=0,
one finds that condition (6.2) is never satisfied when r # s; that is, if r # s,

then no nontrivial mixture of f;, f; is strongly unimodal. On the other hand,
when r = s, then (6.2) holds if and only if

(6.5) Va — Vb < 1.
It follows that, for any choice of ¢ > 0, r > 0, the family
(6.6) F, = {f= f(x) =x% "™, where g2 <a < (q + 1)2}

has the property that each F-mixture is strongly unimodal. The a-interval on
hand cannot be enlarged. In fact, it happens to coincide with the maximal
interval we already found (Section 5) relative to the property of simple
unimodality.

REMARK 1. Lemma 5 and Theorem 9 carry over to log-concave densities
f=e* of class C? on an open convex subset K of R*. Namely, a mixture

& =p1f1 +pP2fa=p1e”™ + pye”?, p1>0;p, >0,
is log-concave on K if and only if it is log-concave (that is, strongly unimodal),

on each line segment in K. It follows easily from Lemma 5 that each such
mixture is log-concave on K if and only if the inequality

1/ 1/2
(6.7) Z (u; - vi)‘fil < [Z E u; ;&€ Z E vijfifj}
i 14 J 12 J

holds for all x € K and (¢,,...,¢,) € R". Here, i, j € 1,2,...,n while u,, u,;
denote the first and second order partial derivatives of u(x); similarly v,
and v, ..

As éne application, suppose f; is the density of X = (X,..., X,,) with the
X, as independent standard normal random variables. Thus f(x) =

2
+
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a exp(—||x|I?/2) with |lx| as the Euclidean norm of x € R”. Let f,(x)=
fi{x —¢), c € R™. Then (6.7) holds if and only if |lc|l < 2. Let E be any subset
of R™. It follows that each mixture of the associated family of normal densities
{fi(x —¢): c € E} is log-concave if and only if E has diameter < 2. For
example, E could be the closed ball of radius 1 about the origin. However,
adding even a single point to that ball, one would obtain a set E with diameter
larger than 2 and thereby destroy the latter mixing property.

REMARK 2. There also exists an analogue of Lemma 5 and Theorem 9 for
integer valued random variables X. The discrete density p, = Pr(X = n),
n € Z is strongly unimodal if and only if, for each n € Z, one has (p,)? >
DPp_1Pp+1- Equivalently,

D12 — 2p,w, +p,,, <0 forsome w, €R.

Moreover, if F, is a family of strongly unimodal densities {p,,),, < z, then each
Fy-mixture is strongly unimodal if and only if w, can be chosen so as to be
independent of the particular member {p,} of F, (the sufficiency is obvious).
Equivalently, if and only if

Pn 0 | [(P) = PaiPues]” [(00) — dus@nnd]
- < +

P d,-1 P qdn-1

for all n € Z and for all pairs {p,}, {q,} in F, as long as both p,_, > 0 and
9n-1 > 0.

7. Proofs.

Proor oF LEMMA 3 (Necessity). Suppose first that the z, are as in (3.5).
One may assume that the z, are continuity points of f. Introduce x, = z,_,
and h,=2,—2,_, —¢,r=1,2,...,2s. Choosing £ > 0 sufficiently small, one
has properties (3.2) and (3.3), thus, f & osc(s).

(Sufficiency.) Suppose the x, and h, are as in (3.2) and (3.3). Let S denote

the set of 4s distinct points x, and x, + h,, r = 1,...,2s. Consider any choice
of the w; €S, j=1,...,4s such that w;, <w, < - <w,, and
(7.1) (=1)"(f(wy,) = f(wy,_1)) >0 forr=1,...,2s,

thus, w,y,_; < w,,. One example would be Wy,_; =x, and w,, =x, +h,,
r=1,...,2s.

Each pair w,,, w,,,, with w,, <w,,,;, 1 <r < 2s — 1 will be regarded as
a gap. Now suppose the w; have been chosen such that, moreover, the
number of gaps is as small as possible. We assert then that there are no gaps at
all, that is, w,, = w,y,,, for all r=1,...,2s — 1. If it is true, then (7.1)
implies that (3.5) holds with z, = w,,, r=1,...,25s — 1 and 2y = w;; 2y, =
w4s.

If there were such a gap, then there exists 1 <¢ < 2s — 1 such that
Wy, < Wy 1. If (= 1)*(f(wy,, 1) — f(wy,)) > 0, then property (7.1) remains valid
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on replacing w,, by w,,,; (leaving the w; with j # 2¢ unchanged). In the
remaining case, property (7.1) remains valid on replacing w,,,; by w,, (leav-
ing the w; with j # 2t + 1 unchanged). In each case, the number of gaps
would be reduced, yielding a contradiction. O

Proor oF THEOREM 1 (Necessity). It suffices to show that f has at least
s + 1 modal intervals when there exist numbers x,, k,, r = 1,...,2s satisfy-
ing (3.2) and (3.3). One may assume that the x, and x, + h, are continuity
points of f.

There exist numbers x, and k, such that x, < x, + hy < x; and A, f(xq) >
0. For, if not, then f(x) would be nonincreasing for x < x,. Since f> 0 is
integrable, one would have f(x) = 0 for all x < x,, hence, f(x,) = f(x; — 0) =
0. But then we have f(x, + h;) =4, f(x,) <0, a contradiction. One may
assume that x, and x, + h, are continuity points of f.

Similarly, there exist numbers x,,.; and hy,,, > 0 with x5, ; > x5, + Ay,
and A,  f(x5,,,) <0. One may assume that x,,,; and x5,,, + hy,,, are
continuity points of f. Using Corollary 2 of Lemma 1, we conclude that each of
the s + 1 disjoint open intervals (x,,, x5,,; + hy,,1), r = 0,1,..., s contains
at least one modal interval of f. This proves the stated assertion.

(Sufficiency.) Suppose there exists s + 1 distinct (and thus disjoint) modal
intervals [a,,b;], i =0,1,...,s. Here, a; <b; and b;<a;,;, 1 =0,1,...,s;
a,,, = . It suffices to show that f & osc(f). Equivalently, that there exist
numbers x, and k,, r = 1,...,2s satisfying (3.2) and (3.3). Which amounts to
(at least) s changes of sign from strictly negative to strictly positive for the
slope of f.

Consider the modal interval J(x,)] = [a, b] = [a;, b;], where 0 <i <s is
fixed. Here, a = a(x,) and b = b(x,) are as in Definition 2.3 while x, € [a, b]
is arbitrary. Let 8 > 0 be arbitrary but fixed. It suffices to show that the slope
of f has at least one change of sign from strictly positive to strictly negative in
(a — 8,b + 8). More precisely, it suffices to show that there exist numbers ¢, u
and 7, v satisfying

a—-0<¢é¢<é+u<n<n+v<b-34, A,f(¢§) >0 and A, f(7n) <O.
We will use the notations of Definition 2.3. Thus f(x) = ¢ for a <x < b and

max( f(a — 0), f(a + 0)) = max( f(b - 0), f(b+0)) =c.

Here, ¢ > 0. Choosing & > 0 sufficiently small, one has A(x,) <a —§ and
b + & < B(x,), therefore, f(x) < ¢ throughout (a — 8§, + 6).

Suppose no numbers ¢ and u exist such that a —6 <¢{<é+u<a
and A, f(¢) > 0. Then f would be nonincreasing on (a — 8, a). Because a =
sup(x < a: f(x) < c)[see (2.5) with x, = a], it follows that f(a — 0) < c, thus,
f(a + 0) = c. Therefore, A, f(¢) > 0 will hold by choosing ¢ slightly to the left
of a and ¢ + u slightly to the right of a.

Similarly, if no numbers 7 and v exist such that b <n <n+v<b+34d
and A,f(n) <0, then f is nondecreasing on (b,b + 8) thus f(b +0) <c,
hence, f(b — 0) =c. And in the latter case, one can attain A,f(n) <0 by
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choosing 7 slightly to the left of b and n + v slightly to the right of b. There
is no difficulty to achieve that, moreover, ¢ + u < n. For, the two above
exceptional situations cannot occur simultaneously unless a < b. O

Proor oF THEOREM 2. Suppose F € Osc(s). We assert that F is piecewise
convex-concave. Let —o < x, < « and denote by @ = Q(x,) the set of values
with —® < ¢ < x, and such that either F is convex on [g, x,] or F is concave
on [g, x,]. Suppose @ were empty. Then F is not concave on (-, x,], hence,
there exist x, and h, such that x;, <x, + 2h; < x, and A} F(x,) < 0. Simi-
larly, since F is not concave on [x, + 2hy, x,], there exist x,, h, with
x; + 2k, < xy <%, + 2h, < x4 and A% F(x,) < 0 and so on. Since the process
could be continued indefinitely, it would follow that F & Osc(s) (for all s), a
contradiction.

Thus Q is nonempty. It is easily seen that also a(x,) = inf @ belongs to @.
In a similar way, one has, for each — < x, < », that there exists a largest
value B = B(x,) with x, < B < » and such that either F is convex on [x,, 8]
or F is concave on [x,, B].

Choosing x, = — and letting b, = p(—»), b, > —, we find that F is
convex on (—,b,] (it is impossible for F' to be concave and not =0 on
(-, b,]; after all, F is nondecreasing and bounded below). Moreover, b, < ,
since F' is bounded and not constant.

Next, let b, = B(b,) and, in general, define b,,, = B(b,) as long as b, is
finite. Note that b, < b, ;. If b, <b,,, = +», for some n > 1, then F is
clearly piecewise convex-concave. Suppose on the contrary that b, < « for all
n > 1 and consider b, = lim b, and a = a(d,) < b,. Thus either F is either
convex on [a, b_] or F is concave on [a, b,]. For n sufficiently large, b, > a,
thus b, ,, = B(b,) > b, and we have a contradiction.

Next, suppose f € osc(s) and let F be the associated integral as in (2.1). We
assert that F € Osc(s). If not, then there exist numbers x, and h,, r =
1,...,2s, satisfying (3.7) and (3.8). In particular, the 2s intervals I, =
[x,, x, + 2h,] are disjoint. From (3.8), (—1)"F(x) is not concave on I,, thus
(= 1)’f(x) is not non-increasing on I, that is, there exist {, € I, and u, > 0
such that ¢, + u, €I, and (-1)A, f(¢(,) >0, r=1,...,2s. But this contra-
dicts the assumption that fe& osc(s). Knowing that F € Osc(s), it follows
that F is piecewise convex-concave, hence, its integrand f is piecewise mono-
tone. O ‘

Proor oF THEOREM 3. We just proved the first assertion. Conversely, let
F € Osc(s). We know from Theorem 2 that F is piecewise convex-concave.
From the remark preceding (2.3), we have that F is absolutely continuous,
that is, F is of the form (2.1) with f as a piecewise monotone function. We
claim that f € osc(s). If not, then there exist numbers x, and b, r =1,...,2s
satisfying (3.2) and (3.3). One may even assume that x, and x, + h, are
continuity points of f. From (2.1) and (3.3), the absolutely continuous func-
tion (—1)"F(x) has at x, + h, a strictly larger slope than at x, and thus is not
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concave on [x,, x, + h,]. Therefore, there exist numbers ¢, and u, such that
X, <& <& +2u,<x.+h, and (-1)'ALF(§)>0, r=1,...,2s.

And it would follow (Definition 3.6) that F ¢ Osc(s). O

Proor or THEOREM 6 (Sufficiency). Consider a general mixture G of F as
in (4.1), where F(¢, - ) € F and suppose that G ¢ Osc(s). From Definition 3.6,
since G & Osc(s), there exist numbers x, and h,, r = 1,...,2s, satisfying

x,<x,+2h,<x,,; and ¢, = (—l)rAzhrG(x,) >0, r=1,...,2s;
X954+1 = ©. Further define measurable functions ¢,: T — R by
$,(t) = (~1)"43 F(t, x,)
=(-1)[F(t,x, + 2h,) — 2F(¢t,x, + h,) + F(t,%,)],

r=1,...,2s, and put ¢(¢) = (¢(2),...,¢,,(¢)) and ¢ = (cy, ..., cy,). Thus ¢:
T — R* and ¢ € R It follows from (4.1) that ¢ = [¢(¢)p(dt), implying that
c belongs to the convex cone K in R?* which is spanned by all the vectors ¢(2),
t € T. [The assertion ¢ € K follows easily from a proof by induction with
respect to the dimension m = 2s, see Kemperman (1968), page 95 for a closely
related result]. As is well known, since ¢ € K, there must exist p;, > 0 and
t;€T, j=1,...,2s, such that ¢ =p;¢(t) + -+ +py,é(ty,). Equivalently,
¢, =L,;p;¢,(¢;)for r=1,...,2s. Since c, > 0, one has * ;p; > 0.

Finally, let G(x) = p,F(¢;,x) + - -+ +p, F(t,, x), thus, G is a special
F-mixture as in (4.4). It satisfies

(- 1)rA2h,G-(xr) = Z pi(— l)rAZh,F(tj, x,) = Z p;j®,(t;) =c, >0
J J
(for all r = 1,...,2s), showing that G ¢ Osc(s). This completes the proof. O

Proor orF THEOREM 7. We will arrange the proof so as to also yield a new
proof of Theorem 6. We want to show that the following assertions are
equivalent. Here, f; € F, and p; > 0, £ ;p; > 0.

(i) Each special Fy-mixture g = p,f; + -+ +py, fo, belongs to osc(s).
(i) Condition (4.7) holds for each subfamily of F of size < 2s.
(iii) Condition (4.7) holds for F, itself.
(iv) Each mixture g of F, belongs to osc(s).

We already showed that (iii) = (iv), see the comments following (4.10), while it
is trivial that (iv) = (i). Hence, it suffices to show that (1) = (ii) = (ii).

Proof that (ii) = (iii): Let x;, <x, < -*+ <x,, be fixed as well as the
numbers h, > 0, such that x, + h, <x,,,, r=1,...,28; xy,,,; = ». Let fur-
ther S denote the simplex which consists of all vectors a = (a4,...,a,,) such
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that a, > 0; £ ,a, = 1. For each f: R —» R, put

S(f) = {a €S: T (~1) 0,0, f(5) < 0}.
r=1

Thus, assertion (iii) says that the collection {S(f): f &€ F,} of compact and
convex subsets of S has a nonempty intersection. Since dim(S) = 2s — 1, it
follows from Helly’s theorem [see Valentine (1964) page 70] that the latter is
true as soon as each subcollection, which consists of at most 2s sets S(f)),
f; € Fy, has a nonempty intersection. Clearly, the latter property is nothing
but a restatement of (iii).

Proof that (i) = (ii): Let f; € F, j = 1,...,2s, and let the x,, h, be as in
Condition 4.7. Further put b,; = (=1)A, fi(x,), r,j=1,...,2s. It follows
from (i) and Definition 3.1 of osc(s) that there do not exist numbers p; > 0,
J=1,...,2s, such that © ;b,;p;, > 0, r = 1,...,2s. While (i) says that there
do exist numbers a, > 0 not all zero such that ©,a,b,,<0, j=1,...,2s.
And it is well known that these two properties are equivalent, see, for instance,
Fishburn [(1985) page 24]. Geometrically, this equivalence means: In order
that the convex cone in R?* which is spanned by the columns of B = (b,;) be
disjoint from the open first quadrant, it is necessary and sufficient that this
cone be contained in some half space {z € R*: T ,a,2, < 0} with a, > 0 and
not all zero. O

The proofs of Theorems 7' and 7" are completely analogous, except that now
one uses the criterion furnished by Lemma 3 or Lemma 2, respectively.

Proor or LEMMA 5. We want that the mixture g be always log-concave on
K, that is,

(d/dx)* log| p, exp(—u,(x)) + py exp(—uy(x))] < 0

for all x € K; p;, p; > 0. Let x € K be fixed. Putting q = (p,/pylexp(—u, +
u,), this is equivalent to

(7.2) u;q? —2Bq +uy >0 forall g > 0.

Here, 2B = (v} — u,)®> — u’} — u’. Note that v’ > 0, i = 1, 2. Condition (7.2)
holds if and only if either B < 0 or else B? — uju; < 0. Equivalently, if and
only if B < (uju’5)'/2. And the latter inequality is equivalent to (6.2). O

Proor oF THEOREM 9. We are still assuming that u € C? and {x: u(x) <
o} = K for all u € U. As we observed already, Theorem 9 immediately follows
from Lemma 5 and Theorem 5. For instance, the necessity of (6.3) follows
from Lemma 5. The following is a more elementary proof that, in the case on
hand, cordition (6.3) is sufficient for a large class of F,-mixtures g to be
log-concave on K. This will include all mixtures

(73) g~ [fio(dt) suchthat g'= [fip(dt) and g"= [flp(dt).
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Here, f, € F,, t € T while p is a finite nonzero measure on some measurable
space T'. Property (7.3) is certainly true if p has a finite support, that is, for all
mixtures involving only finitely many f, € F,,.

Let x € K be fixed. We want to show that g as in (7.3) is log-concave at «x,
that is, (g'(x))? — g(x)g"(x) > 0. Equivalently,

w3g(x) + 2wg'(x) +g"(x) <0

for at least one number w = w(x). From (7.3), it suffices that there exists a
constant w = w(x) such that

(74) wif(x) + 2wf'(x) +f"(x) <0 forall feF,.

If f=e % then u' = —f'/f and u” = (f'® — ff")/f2. One easily verifies that
(7.4) demands precisely that w = w(x) belongs to all intervals J(f), f € F,,
where

J(f) = [u’(x) - u”(x)l/z, u'(x) + u”(x)l/z].
Clearly, such a point w exists if and only if (6.3) holds. O
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