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INFERENCE FOR THE CROSSING POINT OF TWO
CONTINUOUS CDF’S

By D. L. HAWKINS AND SuBHASH C. KOCHAR

University of Texas, Arlington, and Indian Statistical Institute

Let % denote the set of cdf’s on R with density everywhere positive.
Let C4 = {(F,G) € FX F: there exists a unique x* € R such that
F(x) > G(x) for x < x* and F(x) < G(x) for x > x*},Cp = {(F,G) € X
&: (G, F) € C4). Based on independent random samples from F and G
(assumed unknown), we give distribution-free tests of Hy,: F = G versus
the alternatives that (F,G) € Cy, (F,G) € Cg or (F,G) € C4, U Cp. Next,
assuming that (F,G) € C4 (or in Cp), a point estimate of the crossing
point x* is obtained and is shown to be strongly consistent and asymptoti-
cally normal. Finally, an asymptotically distribution-free confidence inter-
val for x* is obtained. All inferences are based on a special criterion
functional of F and G, which yields x* when maximized (minimized) if
(F,G) e C, [(F,G) € Cgl.

1. Introduction. Let % denote the set of cdf’s on R with density every-
where positive on c R. [We consider only .= R or .= (0, ), assumed to
be known a priori.] Let C, = {(F,G) € & X Z: there exists a unique x* € .
such that F(x) > G(x) for x <x* and F(x) < G(x) for x > x*}, and let
Cy={(F,G)e X & (G, F) € C}. Assuming that we have independent
random samples X;,..., X, and Y,...,Y,, from F and G (both unknown),
we first obtain distribution-free (under H,) tests for H,: F = G versus each of
HA: (F,G)eC,, HE: (F,G) € Cyz and H{#B: (F,G) € C, U Cyz. We then
obtain point and confidence interval estimates of x*, given that (F,G) € C, or
(F,G) € Cy. The point estimate is shown to be strongly consistent and
asymptotically normal. The confidence interval is asymptotically distribution-
free and has endpoints which are order statistics of the combined sample. All
of our inferences are based on the criterion functional (2.1).

Perhaps the most immediate application of these results is to the following
problem. Suppose treatments C (e.g., control) and T (e.g., a “live’’ treatment)
are applied (respectively) to two groups of subjects whose lifetimes X; ~ F and
Y; ~ G are then observed. The hypothesis H A is of interest since (F,G) € C,
means that there exists some lifetime x* such that 1 — F(x) < 1 — G(x) for
all x <x* and 1 — F(x) > 1 — G(x) for all x > x*. That is, control subjects
have a lower chance of survival to age x < x* than treatment subjects, but a
higher chance of survival to any age x > x*. An example of this particular
setting, given in Doksum (1974), is discussed in Section 3.1.
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All of our results are for large samples. Hence we set N = n + m, and for
some fixed A € (0, 1), assume that
(1.1) n=ny=[NA], m=my=N —[NA]

(where [s] denotes the integer part of s). This amounts to assuming that
ny/N > A, my/N - 1— ) as N — o Further, let ay, = nymy/N.

Section 2 contains the main results. All results are stated and proved
assuming that = R. Only minor modifications are required for the case
= (0, ). These are omitted for brevity. Section 3 contains some applications
of our methods. First, we apply our estimation technique to the above-men-
tioned survival dataset considered by Doksum, in which the survival functions
cross. We compare our estimation results with those of Doksum. In this
process, we uncover the nonrobustness of our estimator to local shifts in the
data. Second, we compare the power of our test with some competitors for
testing HP and special cases of it. Particularly, we make comparisons with
tests recently proposed by Deshpandé and Shanubhogue (1989) for testing the
special case of HZ where x* is known to be the common ath quantile of F
and G, with a known. Section 4 contains proofs of the theorems. The proofs of
some technical lemmas required in Section 4 are given in Hawkins and Kochar
(1990). Software for implementing all of our methods is available from the first
author.

2. Main results. For (F,G) € &, afixed A € (0,1) and ¢ € R, let
(21) w() = [* [F(x) = G@)] dHy(x) ~ [[[F(x) - G(x)] dH =),

where H(x) = AF(x) + (1 — A)G(x). All inferences in this paper are based on
. The weight function H, may be replaced (without destroying the essential
properties of ) by any increasing bounded differentiable function, yielding
test statistics and estimators with possibly different (better?) properties than
the ones studied here. Alternatively, different functions of (F' — G) might be
considered in the integrand, cf. Koul (1978). These variations may be investi-
gated in a future paper.

2.1. Hypothesis tests. Clearly ¢(¢) = 0 for all ¢ under H,. Further, it
is easy to see by differentiation that under H{, ¢(¢) is increasing in ¢ < x*
and decreasing in ¢ > x*, with ¢(x*) = sup{y(¢): ¢ € R} > 0. Similarly,
under HE, y(t) is decreasing in ¢ < x*, increasing in ¢ > x* and ¥(x*) =
inf{y(t): t € R} < 0. These observations suggest the following test statistics.
Let F(x)=n"'L7 ,I(X;<x) and G, (x)= m~'L7 I(Y; < x) denote the
empirical cdf’s. For ¢ € R, define

bt =y e { [ 153 = 6] dBn(2)

[T - 6,(0) dit o),

2.2) n+m
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where H,,(x) = (n + m) YnF(x) + mG, (x)). For testing the indicated hy-
potheses, we propose:

for H, versus H{*: T = sup{,.(¢): t € R},
for H, versus HP: (B = inf{§i%,(¢): t € R},
for H, versus HAB: T(AB) = sup{lzz,’fm(t) B R}.

Since the bracketed ({ }) factor of §* (#) converges to y(¢) [see (2.8)], each of
these statistics will be near 0 under H,, but T4 will be large positive under
H{, T'B will be large negative under H2 and TA® will be large positive
under H{B,

By a standard argument (essentially given in the.proof of Theorem 1), one
may show that for F € & the distribution of ¢}, (¢) under H, is the same as
if F and G were uniform cdf’s. Thus all of the statistics 7.4, T5) and T (4B
are distribution free over & under H,,. Of course, their distributions will be
complicated functions of n and m, so asymptotic distributions are needed.

The asymptotic null distributions of these statistics are given in Theorem 1.
In this direction, let Z = {Z(u): 0 < u < 1} denote a mean-zero Gaussian
process with covariance E{Z(v)Z(u)} = 1(u® — v3) — 2(u? + v?) + 2uv? —
W+ Hfor0<v<ux<l

THEOREM 1. Under H, and (1.1), as N — o,

(i) T =, Zg2 sup{Z(u):0 <u < 1},
(ii) TB,  —,Z 2 inf{Z(u):0<u <1},
(iii) TR - , Z, 2 sup{lZ(u)l:Osusl}.

For 0 <pB <1, let Zg 4 Z;, and Zp ; denote, respectively, the 1008
quantiles of Zg, Z, and Z,. Since Z= — Z we have Z, . Zg, so that
Zg,1_g = —Z} 5. By Monte Carlo simulation of the process Z (500 realizations
using the Cholesky method on a grid of 500 points on [0, 1]), estimates of Zj,
and Zj, ; were obtained. These are given in Table 1.

Some comparisons of the power of these tests with that of competing tests is
given in Section 3.2.

TABLE 1
Approximate critical values for tests

B Zg;p Zp;p
0.90 0.499 0.504
0.95 0.574 0.587

0.99 0.743 0.745
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2.2. Point estimation of x*. We consider estimating x* when it is known
(or assumed) that (F,G) € C,. Since (F,G) € C, if and only if (G, F) € Cg,
the case (F,G) € Cz may be trivially reduced to the case (G, F) € C, by
reversing the labels F' and G. Condition (1.1) is assumed throughout this
section, for some fixed A € (0,1). °

For ¢t € R, let §,,,() = /(n + m)/nm ¥ (@), @) = §, m(t). Then it is
proved in Hawkins and Kochar (1990) that regardless of F, de Z,

(2.3) sugln/AlN(t) - ul/(t)l -0 asas N - o,
te

If (F, G) € C,, then as noted above, () has, regardless of A € (0, 1), a global
maximizer at ¢ = x*. In view of (2.3), it is natural to estimate x* by any value,
X% say, which maximizes zZN(t). However, it is easily checked, writing Z;, <
Zgy < *++ <Zy, as the order statistics of the samples X,,...,X, and
Y;,...,Y,, combined, that

In(t) = N—l{ Y [FZw) - GnfZw)]
{k: Zy,y <2}

(2.4)

Z )[FnN(Z(k)) - GmN(Z(k))]},

{k: Zy=t

and hence that lI[}N(t) is a left-continuous step function with jumps at the
Zy's. Thus the maximum of Un(2) is attained in the set (Zgy, ..., Zn) & Oy
or at ¢t = Z )+ Although (2.3) implies that, as N — «, the maximizer becomes
unique, there is a positive probability of multiple maxima for each finite N. So,
to make our estimate £3 well defined for each N, we set

(2.5) &% = min{t: §(t) = max[dy(s): s € R]}.

The following result gives the strong consistency of £%.

THEOREM 2. If (F,G) € C,, then £ — x* a.s. as N — .

The next result says that £3 is asymptotically normally distributed with
mean x* and variance which, as might be expected, depends dramatically upon

how fast F and G are changing near the crossing point x*. Put p* = F(«*) =
G(x*) and f(x) = F'(x), g(x) = G'(x).

THEOREM 3. If (F,G) € C,, then
al*(£% — x*) > N(0,p*(1 - p*) /{ f(x*) - g(x*)}*) asN > w.
We see that estimating the asymptotic variance of £} involves estimating

densities. This problem is essentially circumvented in Section 2.3 by the
confidence interval for x*, which requires no such estimation.
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The quality of the approximation in Theorem 3 was studied via Monte Carlo
simulation. Generally, the results indicate that the approximation improves as
n = m increases and deteriorates as |f(x*) — g(x*)| decreases. Apparently, the
rate of convergence in Theorem 3 depends on | (x*) — g(x*)|. Although we did
not investigate this issue theoretically, some illumination of it is provided by
the proof of the theorem.

2.3. Interval estimation of x*. In this section we give an asymptotically
distribution-free confidence interval for x*, assuming that (F,G) € C,. Such
is, of course, provided by Theorem 3 if consistent estimates of f(x*) and
g(x*) [or of f(x*) — g(x*)] are available. Our interval does not require such
estimates, but only certain quantities computed as by-products of the compu-
tation of £3%. Our method for obtaining this interval is an adaptation of the
method outlined in Serfling (1980), page 103, for obtaining a confidence
interval for a specified quantile. .

To define our interval, let p% = Hy(£}) [Hy(x) = ﬁnNmN(x)] and let z,
denote the 100(1 — &) quantile of N(0, 1). Define random sequences { Ky} and

{K}y) for N > 1 by
26) N='Kiy =B — an'z[ (1 - B3],
N “Kyy = bl + ax'z.[ 53 (1 — 5%)]*w,

where

by =2/Uy, Uy=2 % dn{ln(Zonm) — In(Ze)},

i€Ay

Ay={i:|i/N - p%| < Apn},
dy:i=(/N-p5)" ] ¥ (J/N-

JEAyN
and {A} is a sequence of constants satisfying
(2.7 Ay =O(N~1/4+%) " some § > 0.

Finally, for j = 1,2, let K;y = Ky if K}y is an integer and [K’N] + 1,
otherwise. Then our asymptotlc 100(1 - 2a)% confidence interval is [ N(a) =

[ZaKhﬂ’ZOQNﬂ

THEOREM 4. If (F,G) € C,, then under (1.1) and for any {Ay} satisfying
2.7, as N - «,

(i) Pl{x*ely(a)} > 1-2a,

3y 1, p*@—pH]*
(ii) a%z Z(KzN)—Z(KlN) 2ay 1/2 g(x*) — f(x*) =Op(1)'
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TABLE 2
Performance of confidence interval I5(0.025), F = N(0,4), G = N(0, 1)

Coverage probability Length
n 1,(0.025) JIx(0,025) 1,(0.025) J(0.025)*
20 0.841 0.919 4.12 3.11
50 0.923 0.941 291 1.97
100 0.934 0.951 1.70 1.39

*Length = 2 (1.96)a /% p*(1 — p*)/[ f(x*) — g(x*)}/2.

Part (i) says that I () is asymptotically distribution free. Part (ii) says that
the length of Iy(a) is asymptotically that of the 100(1 — 2a)% confidence
interval, say Jy(a), £% + an'/%2 [p*A — p*)%/|g(x*) — f(x*)|, which de-
rives from Theorem 3 if p*, g(x*) and f(x*) are known.

Table 2 gives Monte Carlo estimates (based on 1000 trials) of the coverage
probability and average length of 1,(0.025) (with Ay = N~1/*) for a typical
(F,G) € C, and m = n. These are compared with the length and Monte
Carlo-estimated coverage probability of the interval Jy(0.025). (Note that
both intervals have nominal 95% coverage probabilities.) Generally, we see
that 1,/(0.025) compares well with (0.025) if n > 50. Further Monte Carlo
results, given in Hawkins and Kochar (1990), indicate that the coverage
probability of Iy(a) deteriorates as |[f(x*) — g(x*)| decreases.

3. Some applications and evaluation

3.1. Life distributions. We first apply our procedures to the survival prob-
lem of Doksum (1974) noted in Section 1. The data [due to Bjerkdal (1960)] on
n = 65 control and m = 60 treated (with tubercle bacilli) guinea pigs are
displayed in Doksum’s paper. From the graph of the empirical cdf’s, the cdf’s
F and G of the control and treatment group lifetimes apparently cross once at
about 160; the value of T2 = 2.07 is significant at the 0.01 level. In this
situation, where crossing is apparent, primary interest would be in estimating
the crossing point x*. We obtained £% = 114 and (using Ay = N™'/*) the
approximate 95% confidence interval 1,(0.025) = [52, 160]. This value of £3; is
surprising in light of the empirical cdf plot. By comparison, using Doksum’s
method (which indirectly estimates x*), we obtain from his Figure 2 the
estimate 130 (approximately) for x* and 90% confidence interval (— o, 250].
(His confidence interval has no lower limit.)

In trying to uncover the source of our apparently ‘“bad” estimate £}, we
noticed that the guinea pig data contain several ties. Since our assumptions
about F and G imply that ties occur with probability 0, we decided to break
the ties at random by replacing X; by X/ = X, + U;/1000, Y, by V=Y, +
W;/1000, where Uy, . . ., U, W,...,W, areiid U(0, 1) variables. The resulting
estimates are much more appealing: £ = 181.0, I,(0.025) = [114, 291]. This
dramatic change surprised us until we noticed from (2.4) and (2.5) that £3 will
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clearly be nonrobust to small shifts in the data. One might possibly derive the
influence function of £3;; we expect the local shift sensitivity to be +o.

3.2. Power comparisons for HE and related hypotheses. To the authors’
knowledge, there are no competing tests aimed specifically at testing H,
versus any of H{*, HE or HB. Of course, certain omnibus tests, such as the
Kolmogorov-Smirnov test, may be viewed as competitors in a general sense.
Further, Deshpandé and Shanubhogue (1989) have devised two tests for H,
versus HDS (say), which is a special case of HP in which it is assumed that
F(x*) = G(x*) = a for some known « (i.e., F and G have common a-quantile,
say &,). Hence it is of interest to compare the power of our test for H,, versus
HE to that of the Kolmogorov—Smirnov test and the Deshpandé-
Shanubhogue tests.

The first Deshpandé—Shanubhogue test is based on

T, = fém(x)J( ,,(x)) Fo(x)
+f:1v°'n(x)[1 - Ja(m—lém(x))]dém(x)’

where J_(u) is the indicator function of (0, a]. T, is an estimate of
0* = [g"G(x)dF(x) + wa(x)dG(x),
— 00 ga

which equals i under H, and strictly exceeds i under HPS. Thus H,
is rejected in favor of HPS if T, is “large.” The second Deshpandé-Shanub-
hogue statistic is the following modification of the Mood (1954) scale statistic:

N
M,= ¥ {i = (N + Da)*Wy,
i=1
where Wy, equals 1 if Z ;) is an X observation and equals 0, otherwise.

Another special case of HP arises in the context of the classical scale
problem. Consider HS: F(x) = F%x — ¢,), G(x) = F%0(x — ¢,)), 8 < 1, where
F° is an unknown increasing cdf satisfying F°(0) = a. Then under HJ,
(F,G) € Cy with x* = £,, making HS a special case of HP® if & is known
and a special case of Hf regardless of a. Our test of H, versus H? may thus
be viewed as a competitor of the scale tests due to Mood (1954), Ansari and
Bradley (1960) and others. Of course, since these latter tests use the informa-
tion about the known common a-quantile and are aimed directly at scale
alternatives, they may be expected to have higher power against Hy than our
test.

Table 3 gives the results of a small Monte Carlo study comparing the power
of our test (HK) based on T2, with that of the tests of Kolmogorov and
Smirnov (KS), DS (DST denotes the test based on T,%,, DSM the test based on
M_), Mood (M) and Ansari and Bradley (AB). All powers are estimates based on
1000 Monte Carlo trials at the nominal 0.05 significance level, with n = m
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TaBLE 3
Power comparisons for H,, versus HE special cases
(nominal significance level is 0.05)

. Estimated power
F G n HK KS DST DSM M AB
N(0,1) N(0,4) 20 0.152 0.122 0.468 0.638 0.798 0.728
50 0.546 0.398 0.941 0.981 0.990 0.969
100 0.945 0.782 0.999 1.000 1.000 1.000
Exp* Weib 20 0.237 0.188 0.301 0.484 0.645 0.580
50 0.624 0.537 0.792 0.864 0.944 0.900
100 0.956 0.883 0.987 0.995 0.996 0.992
*F = Exponential(mean = 2/7'/2), G = Weibull(a = 2, A = 1); x* = 2/71/2 = 1.13;
mean(F) = mean(G).

Large-sample critical values are used in all cases. Setting 1 is a scale alterna-
tive with a = 0.50, for which M and AB are specifically designed. The power
results reflect this fact. Setting 2 satisfies (F,G) € Cg, but is not a scale
alternative (although F and G have the same mean). Predictably, DST and
DSM have higher power than HK, since they use knowledge of a (here
a = 0.72) which HK does not require. Surprisingly, M and AB have higher
powers than the other tests, even for this nonscale alternative. Comparing HK
with KS, we see that HK has slightly higher power than KS, although for
n = 20, KS is slightly conservative, making comparison difficult.

4. Proofs of the theorems.

Proor oF THEOREM 1. For 0 < p < 1 put

30 = | 7 | [P R0 = 6] ()

+jF_1(p)[é,,,(x) - Fy()] dF(x)},
(4.1) ,

Bon(p) = n'i—m{ [ [Bux) - 6u(®)] dBun()

[G(x) - ()] dH,.m(x)}

F‘l( )

Then T = sup{(/lnm(p) 0<p<1}, T® =infl§?, (p): 0<p <1} and
T(AB) = sup{lt//,,m(p)l 0<p<1).
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We first deal with §°%(p). Via the transformations u = F(x), U, = F(X)),
V. = F(Y;), and defining

Wy (u) = (nNmN/N)”Z{nrvl é[l(a <u) - u]

—lez[I(V<u)—u] 0O<ucx<l,

Jj=1

we have
(42)  9%,.(p) = j Wy (z) du — [ Wy(u)du, O0<p<l.

Now it is classical that if Wy = {Wy(u): 0 < u < 1}, then
(4.3) Wy -, W° as N - o,

where W° denotes the Brownian bridge process and —,, denotes weak conver-
gence of measures on D ([0, 1]); see Billingsley (1968). Further, by (4.2),

(4‘4) nNmN(p) = (TWN)(p) 0 <p=< 1,
where T: D(0, 1)) —» D([0, 1)) is defined by
(Th)(p) = j‘”h(u)du— j‘h(u)du.

One may verlfy that T is Skorohod continuous (i.e., hy —g h implies Thy —g
Th). Put $2° {d;,,NmN(p) 0 < p < 1}. Then, by (4 3) and (4.4),

(4.5) dY = TWy >, TW® as N - .
Now put &9 = {zlanm (p): 0 < p < 1). Then [writing Hy(x) = nNmN(x)]

sup |¢nNmN(p) = 4% (P)]

0<p<
(4.6) < 0suplf WN(u)d(HN(F l(u)) —u)
<p=<
+ sup f Wy (2)d( By (F~(u)) - u)|-
<p=<

Further, we may [upon assuming with no loss of generality under H, that F is
" the U(0, 1) distribution] repeat the steps of Csérgé and Révész (1981), page
187 [beginning at line 3, with their B2(y) replaced by our WN(u)] to obtain
that the quantity in (4.6) is 0,(1). [This will require using (4.3) and its
implication that {Wy} is tight.] Expressmns (4.5) and (4.6) thus imply that

(4.7) &Y -, TW® as N > .
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Now (i), (ii) and (iii) all follow from (4.7) by the Skorohod continuity of the

“sup”, “inf” and “sup| - | functionals, if we verify that TWO =, Z. That

TW? is Gaussian is immediate, as is the fact that E[(TW °Xp)] = 0,0 <p < 1.
The desired covariance structure follows by writing

TW(p) = [ [W(x) - uW(1)] du - [*[W(x) - uW(D)] du,
0 p

where W = {(W(u): 0 < u < 1} is the Wiener process, and using formulas such
as (10), page 133 in Hoel, Port and Stone (1972) to evaluate
cov(TW %(p), TW (p")). O
Proor orF THEOREM 2. We claim that .
(4.8) y(£%) = ¢(x*) a.s.implies that £ — x* a.s.
Given this claim, the result follows by noting that
[W(2%) = v (=) <lw(£8) = dn(£0)] +|dn(£5) — (=)
and observing that the first term on the right side is o(1) a.s. by (2.3), while
the second term equals
supiiy (1) — supy(t)| < supldn(t) ~ ¥(1)] = o() s,
t t t
again by (2.3).
To prove (4.8), we claim that  has the following property:
(4.9) V e > 0,3 n > 0 such that, for every x,
|x — x*| > & implies |¢(x) — ¥(x*)| = 7.

Clearly property (4.9) gives (4.8), since it implies that ¢(x,) — ¢(x*) ensures
that x5 — x* for any sequence {x}.

To prove that ¢ has property (4.9), we follow the argument of Parzen
(1962), Theorem 3.A. If (4.9) did not hold then there would exist an £ > 0 and
a sequence {x,} such that

(4.10) [(x*) — d(x)| <k7!
and
(4.11) lc* — x| > &.

Now since (¢) is decreasing in ¢ > x* and increasing in ¢t < x*, |x,| &
clearly makes (4.10) impossible, so we can assume that |x,| < M, say, for all &.
Thus {x,} contains a convergent subsequence x, — &, with |x* — &| > £. But
then (4.10) 1mp11es that (&) = y(x*), contradicting the fact that x* is the
unique maximizer of . O
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Proor or THEOREM 3. First, write by Taylor’s theorem for some %,
between £ and x* [noting that F(x*) — G(x*) = 0],

(412) ai*{F(£%) - G(£8)} = [ F(£n) — 8(%n)]ak? (25 — =¥).
We then claim that
a}*{F(#%) - G(£%)) = a}*{(G (=*) — G(x%)}

— a¥*{F, (x*) - F(x*)} + 0,(1).

Further, since (F,G) € C,, for x < x* we have

(4.13)

0 <F(x) — G(x) =F(x*) — G(x*) + [ f(x*) — g(x¥)](x — x*) + o(x —x*)?,

which implies that f(x*) < g(x*). Thus, since the two terms on the right side
of (4.13) are independent and trivially asymptotically normal by the iid central
limit theorem, the result follows from (4.12), (4.13) and Slutsky’s theorem
(using Theorem 2).

The tough part is establishing (4.13), for which we need the following
technical results, proved in Hawkins and Kochar (1990).

Lemma 1. If (F,G) € C, and (1.1) holds, then as N — o,
N2 F, (£%) - F(£%)]

(i) A
- NV2[ £, (x*) = F(x*)] = 0,(1),
N'2[G, (£%) - G(£%)]
(if)
- NG, (2*) - G(x*)] = 0,(D),
(i) N2\ B, (2%) = G (£5) | = O,(N~V2).

Given these results (4.13) part is immediate, since upon multiplying the
expression in part (i) by (—1) and adding to that in part (ii), we get

N'Z[F(£%) = G(#)] + NV?[G, (%) - B (40)]
- N'2[G,, (%) - G(x*)] + NV E, (2*) - F(x*)] = 0,(1),

which, in view of part (iii) and the fact that a, = O(N'/2), is the same as
(4.13). O

Proor oF THEOREM 4. The whole thing rests on the following technical
lemma [proved in Hawkins and Kochar (1990)], which is an adaptation of
Serfling (1980), page 104, expression (1).
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LEMMA 2. Under the conditions of Theorem 4,

5% (1 — p%)] /2
(a) Z(Kuv) - {ﬁlfl - zaal_\fl/z [:(1\;,(*) _p;z?j*) } = Op(al‘:ll/2)’

5% (1 — 5*)]1/2
(®)  Zg,, - {ﬁ}fz+zaa&1/2 [:&(*) _pflzl]*) }= p(an'’?)-

Given this result, part (ii) follows easily. Regarding part (i), we have
P{x* & Iy(a)} = P{Z,,, > x*} + P{Zy,,, < x*}.
But by Lemma 2(a),

* 8(x*) — f(x%)

as N — o, the convergence holding by Theorem 3. It similarly follows that

A XK 1 _a 1/2
P{Z g, > *} = P{alﬁz(f}'&—x*) +0,(1) >z (A% (1 ~p%)] } N

ReEMARKs. It has been pointed out to us by an Associate Editor that
Theorems 1 and 3 may also be proved by the statistical differential method,
following Gill (1989). We do not attempt this here or in Hawkins and Kochar
(1990), where only standard results are utilized.
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