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ALMOST SURE ASYMPTOTIC REPRESENTATION FOR A
CLASS OF FUNCTIONALS OF THE
KAPLAN-MEIER ESTIMATOR

By IRENE GIJBELS AND NOEL VERAVERBEKE

Limburgs Universitair Centrum

This paper deals with censored data estimation of a general class of von
Mises-type functionals of the survival time distribution F. Conditions are
given under which an almost sure asymptotic representatlon holds for the
estimator, obtained by applying the same functional to F,,, the product-limit
estimator of Kaplan and Meier.

1. Introduction. Let X,,..., X, be independent and identically dis-
tributed (i.i.d.) nonnegative random variables with common continuous distri-
bution function F, called the survival time distribution. Our model is that of
right random censoring, that is, associated with each X, there is an indepen-
dent nonnegative censoring time Y; and Y;,...,Y, are assumed to be ii.d.
random variables with continuous distribution function G. The observations
in this model are the pairs (7},8;), where T;=min(X;,Y;) and &, =
I(X;<Y,),i=1,...,n. Clearly, the T, are i.i.d. with continuous distribution
function H=1- (1 - F)1 - G).

For estimation of F, based on (T}, §,), i = ., n, Kaplan and Meier (1958)
suggested the so-called product-hmlt estlmator F deﬁned by

n—i \%
1- (————) , it <T,,
F(t) = Tosi\n =i+ 1 . .
1, ift>7T,,and §,, =1,
undefined, if ¢t > T,y and 3,y = 0,
where Ty, < T < -+ <T,, are the order statistics of the T; and
81y - - - » 8(n) are the corresponding §;.

For any distribution function L, we use as a notation: T, = inf{z: L(¢) = 1}.
Note that Ty = min(T%, Tg).

Many characteristics of the survival time distribution F may be expressed
as

m
(1.1) [ [hdxy,. s 20) T dF (),
i=1
where h,(x,,...,%,) is some m-variate function, symmetric in its m > 1
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1458 I. GIJBELS AND N. VERAVERBEKE

variables and possibly depending on some real parameter ¢. Some examples
are: (i) m = 1, h(x) = x gives the mean of F; (i) m = 2, h(x,, xy) = (x; —
x,)%/2 gives the variance of F; (i) h(x,,...,x,)=I(h(x,,...,x,) <?),
t € R, gives the distribution function at ¢ of the function ﬁ(Xl, e X0

If no censoring is present, then a natural way to obtain estimators is to
replace F in (1.1) by the empirical distribution function. This then leads to the
well-developed theory of V-statistics and U-statistics, see, for example,
Serfling (1980).

Applying the same idea in the censored data case leads to substitution of the
Kaplan-Meier estimator F, in (1.1). The resulting estimator has a more
complicated structure because the simple sum structure of the empirical
distribution function is lost by using the Kaplan—Meier estimator. Our ap-
proach to this problem is to use an asymptotic representation result for the
Kaplan—-Meier estimator in which ﬁ’n(t) is decomposed into a leading term
which is an average of i.i.d. random variables and a lower order term r,(¢) (see
Lemma 2). But, without further assumptions, this asymptotic representation
only holds for ¢ < Ty and the order of a.s. convergence of the remainder term
r,(¢) is uniform for ¢ € [0, T'], where T' < Ty. This leads us to considering the
functional

0(F) = [T [T ) T dF(z),

where the upper bound T in the integrals satisfies T' < T; and which is a
restricted version of (1.1). The corresponding estimator is then given by 6,( ﬁ'n ),
where ¥, is the Kaplan—Meier estimator. Thus

6,(F,) = [OT e foTh,(xl, o) IT df (x,).

The truncation of the functional at a fixed time T opens the way to obtain
results for 6(F,) — 6,(F) from the known ones about F(t) — F(t) for t €
[0, T]. This route requires some careful steps so as to end up with weak
conditions on the kernel function %,. From the practical point of view, the
truncation is not so desirable. With for example m = 1 and h,(x) = x, this
means that, instead of the mean survival time, we obtain the quantity
J&¥x dF(x). This functional is related in a simple way to [J(1 — F(x)) dx, the
mean survival time over [0, T']. This difficulty is well known, see, for example,
Sander (1975), Reid (1981), Akritas (1986). Efforts to avoid this unpleasant
restriction have been done in, for example, Susarla and Van Ryzin (1980), Gill
(1983). It should be noted however that very often the truncated functional 6,
is not too different from the one in (1.1). For instance in the important case

where hA/(x,...,%x,) = I(h(x,,...,x,) <t), we have that 0,F) =
P(h(X,,...,X,) <t X, <T,...,X,, <T) and for many functions A this
equals P(h(X,,..., X,,) <t) for ¢t in some large interval. Some examples are:

() if m =1 and h(x) = x, then 6,(F) = F(t) for t < T; i) if m = 2 and
h(xq, x5) = (x; + x5)/2, then 6,(F) = P(X, + X,)/2 < t) for t < T'/2. Hence,
the restriction we have to impose on the functional (for mathematical reasons)
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still allows to estimate the quantity in (1.1), but for a somewhat restricted
range for the parameter ¢. This also means that the results in the last section
allow to study pth quantiles of X, but also of, for example, (X; + X,)/2,... in
a restricted range for p (for instance only small and moderate p).

The main result of this paper is to prove that, under general conditions on
the kernel h,, 6,(F,) — 6,(F) can be written as an ordinary V-statistic, based
on the i.i.d. observations (7}, §;), plus a remainder term which is almost surely
of the order O(n~!log n), uniformly in ¢. It follows from such a representa-
tion that many of the standard limit theorems for ordinary V-statistics con-
tinue to hold for 6,(F,), after suitable normalization.

The paper is organized as follows. After preliminaries in Section 2, the main
result of the paper, the almost sure asymptotic representation for 0t(ﬁn), is
presented as Theorem 1 in Section 3. Asymptotic normality and almost sure
behaviour of 6,(F,) are discussed in Section 4. Finally, in Section 5, we
concentrate on the special choice & ,(xy, ..., x,,) = I(h(x,,...,x,) < t), which
leads to additional results for the corresponding quantile estimator. The
almost sure representations obtained in this paper go beyond the results in
two related papers: Reid (1981) and Akritas (1986). Reid (1981) considered
related estimators via the influence curve approach. In the special case of
indicator kernels, Akritas (1986) obtained weak convergence for the resulting
process and the corresponding quantile process.

2. Preliminaries. In this section we present some preliminaries which
will be required in the proof of the main result.

We first introduce some notation. For a function g of one real variable, the
total variation on an interval [a, b] will be denoted by TV, ,8. If g is a
function of p real variables, then TV[a,b]g(', Y2, ---,Y,) stands for the total
variation of the univariate function g(-,y,,...,y,) with y,,...,y, fixed. We
will write g(y —,¥,,...,¥,) and g(y +,¥,,...,,) for left- and right-hand
limits of this function at y. Integrals of the form [? are meant as [y 4
throughout and integration over other types of intervals will be mentioned

explicitly. For 2 =1,..., m, we will use the abbreviation x.,, =
(%4, X4415- -, %,) and writing X, € [a, b] will mean that x; € [a, b] for
Jj=Fk,...,m.

An important tool in the proofs of our results will be an integration by parts
formula for integrals of the form [Jh/(x;,Xs)dK(x,), where K is some
function of bounded variation. Having in mind the applications in which A, is
of the indicator form, we would like to perform this partial integration under
the weakest possible conditions on & (-, X). One of the conditions will be that
for all ¢ and for all x5, € [0, T], A (-,X ) is continuous, except at some finite
number of points, say J(¢), which is independent of x,. We denote these
ordered (from smallest to largest) discontinuity points by k(X 1), j =
1,...,J(t). Further, we define for j = 1,...,J(¢),

EO) = E(f)(x(z), t) = min(T, max(O, k(X g, t)))
and also 2@ = 0 and EW/®+D = T,
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LemMma 1. If () K is of bounded variation on [0, T'] (i) for all t and for all
X@ € [0,T] R ~,x(2)) is of bounded variation on [0,T] and is continuous
except at a finite number J(t) of points, then

.

h (x4, x(2)) dK (x,)
[0,T]

= [K(0+) — K(0 =)]h,(0,%g) + [K(T +) — K(T =)k (T, xg)

J(t)
+Y I(0 < kD < T)h,(ﬁ(j),x(z))[K(E(j) +) — K(kD _)]
j=1

(2.1) J& o . o
+ ¥ I(ROD < k(“l))[h,(k(“‘) - ,x(z))K(k(J+l) -)
Jj=0

—h (kD + x5 K(RD +)]
J(@)

B .ZO ./(;;(j) g(jn))K(xl) dxlht(xl’x(z))'
j= \

Proor. The proof is immediate by applying the following integration by
parts formula for Lebesgue-Stieltjes integrals: If f and g are of bounded
variation on [a, b] (@ < b) and if f is continuous on (a, b), then

[ f(x)de(x) =f(b-)g(b-) - fla+)g(a+) ~ [ g(x)df(x)
(a,b) (a,b)
[see also Hewitt and Stromberg (1975), page 419]. O

Another important tool for establishing our results is an asymptotic repre-
sentation for the product-limit estimator F'(¢), due to Lo and Singh (1986). In
the next lemma we formulate this result but for the remainder term we state
the order which was recently obtained by Major and Rejtd (1988).

LemMa 2. If F is continuous, then for t < Ty,
A 1 n
(2.2) Ey(8) = F(t) + — L 9i(#) +1a(2),
i=1

where the y;(¢t) are i.i.d. zero mean random variables which are bounded
uniformly in 0 <t < T, with T < Ty and where

(2.3) sup |r,(¢)|=0(rn"'logn) a.s.
te[0,T]
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Moreover,
+I(T; <y) — H(y)
(t)=(1—-F dH*
WD = Q= FO)| [y )
(T, <t,6,=1) — H%“(t) (T, <y,8,=1) —H*(y)
1-— H(t) _/(‘) (1 _ H(y))2 dH(y)

and
Cov(y,(2), ¥i(s)) = (1 — F(¢))(1 — F(s))y(min(2, 5)),
where H* is the subdistribution function of the uncensored observations given
by H“(t) = P(T, < t,6, = 1) and .
t dH"(y)
() = [——.
o (1-H(y))

We conclude this preliminary section with some technical facts about the
functions ¢; and r, appearing in Lemma 2.

First, for each w € Q, the functions ¢,(-, w), i = 1,..., n, are right-continu-
ous and of bounded variation on [0, T']. Indeed, one easily calculates, using
basic properties concerning total variation of sums and products [see, e.g.,
Apostol (1982), page 130], that for each i = 1,...,n and w € {:

(24) TVio,ri( -, @) < Cy,
where

3 r 1+ H(y) Y 1+H(T)+H*T)
C=2|f asagyy @O 1 -Em)

r 1+ H*(y)

+ | —— = dH(y)|.

A (1 - H(y)’

Secondly, for the function r, defined by (2.2), we also have that r,(-, ) is
right-continuous and of bounded variation on [0,T]. Indeed, from (2.2),
TV, pi7n(» @) < TVi 1B, @) + TVig 1y F + n P27 TV, pithi(-, @) < 2 + C.
Hence, for each w € Q,

(2.5) TVEO’T]P,,(', (l)) < 02 = 2 + Cl'

3. Almost sure asymptotic representation. In this section we show
that, up to a remainder term, 6,(F,) — 6,(F) can be represented as a V-statistic
with Kernel of degree m, based on the bivariate i.i.d. observations (T3, §,),
i=1,...,n. The almost sure bound of the remainder term is established
under minimal conditions on A.
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The following conditions will be considered.

(A1) sup sup |h(Xy)| =M, <.
t x(l)E[O,T]
(A2) sup sup (TVjo mhi(:,X@)) = M; <.
t xgelo,T]

For all ¢ and all x, €[0,T]: h/(:,Xy) is continuous
(A3) except at some finite number of points, say J(¢), which is
independent of x 5. Moreover, sup, J(t) = M, < .

It can be noticed from the proof that the previous conditions are slightly too
strong but are put in this form for ease of presentation. Slight extensions
could be obtained by replacing boundedness conditions by certain integrability
conditions.

We consider some examples of kernels which satisfy our conditions.

ExamMpLE 1 (Mean). Take h(x,,...,x,)=@Q/mXx; + -+ +x,). Then
(A1) and (A3) are trivially fulfilled. Also (A2) holds, since TV}y 72+, X)) =
T/m.

ExampLE 2 (Variance). Take m = 2 and h,(x,, x,) = (x; — x,)2/2. Again
(A1) and (A3) are trivial and for (A2), note that TVj, nh (-, x5) = x5 — x,T +
T2/2.

ExaMpLE 3 (Gini’s mean difference). Take m = 2and A,(x, x,) = |x; — x,l.
Here TVjo 1h (-, x5) = T.

ExampLE 4 (Indicator function). Here

(3.1) Ri(%1s.nor %) = I(h(%y,...,x,) <t),

where ii(xl, ...,%,,) is some function, symmetric in its arguments and satisfy-
ing the following condition (B) [which is similar to Assumption 3.1 in Akritas
(1986)]:

There is a partition of the real line such that the function
(B) h(-,X ) is continuous and monotonic within each interval

of the partition. Moreover, the number of intervals in this

partition, say Mj, is finite and independent of x ,,.

It is easily seen that under the assumption (B) on A(x,,...,x,,), the kernel
h{xy,...,x,) in (8.1) will satisfy (A1)-(A3), with M, and M, bounded by
2M;. Some examples of functions 4 are (i) h(x,,...,x,) = (x; + -+ +x,)/m.

Here M; =1, J(¢) = 1; (iD) fz(xllxz) = (x; — x,)?/2. Here M; = 2, J(t) = 0 if
t<0,1if ¢t =0, 2if ¢ > 0; (iii) h(x, x;) = |x; — x,|. Here M} and J(¢) are as
in (ii).
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Our main result is now formulated in the next theorem. It provides an
almost sure asymptotic representation for 6,( ﬁ’ ) — 6,(F) as a V-statistic plus a
remainder term. (It should be noticed that we w111 use sum and product signs
with the usual conventions concerning empty sums and empty products).

THEOREM 1. Assume conditions (A1)-(A3). Then

0,(F,) = 0,(F) + V,(2) + R,(2),
where V,(t) is a V-statistic

n(t) =n"" E

i;=1
with kernel k, defined by
kt((Tl’ 61)’ cey (Tm’ 6m))

PN VY RN T C

(3.2) E=11<j,< - <jp<m "0

(( T,,8.)-»(T;,5:,))

|| M“

k m
X [Tdu;(x;) T1 dF(x;)
i=1 J=k+1

and where
sup|R,(¢)|=0O(n"'logn) a.s.
t

Proor. Using Lemma 2 we can write
T T
0,(F) = e TR (%, %,
t( n) ]; ];) (%1 )

Xﬁ dF(x)+lE dy;(x;) +dr,(x;)].

j 1

(3.3)

The product in this integral will be expanded using the following general
formula:

m

l_[(ai +b,+c¢;)

i=1

m m m
+Y X Z E Il a,
k=1 1=0 1<i;<- - <izsm 1<j;<--- <j;sm ‘1.=1. .
J 1s- y.’le(lly 7"]!} qe(ll lk,"l’“""l}

ijl coe bjzcil o cik‘
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Applying this formula to (3.3) gives
ot(ﬁn) - ot(F)

m R n n T T
=XntL - % L [hdan o, 5,)
k=1 Ji=1 Jr=11<i;< -+ <iz=m "0 0
m
X l-Il dF(xJ) dl/’jl xil) M dlpjh xik
j=
JE(i, ..., 1)
(34) m m-—k n n
+X Yot} o X X X
k=1 1=0 g,=1 q=11l<i)1<---ip<m 1<j,< -+ <j;<m
J 1 7.][*("1’ lk}
T T b
[ [hy, e %) 1‘[ dF(x,)
0 0 =
qeliy,... i .11, < Jid

XAy %)+ Ay (%) dry(x;) -+ dr(x,,).

Using the symmetry of k,, the first term on the right-hand side of (3.4)
simplifies to

n n

f ('Z)n_k y - % fT"'];Thp(xl’--~,xm)

k=1 a=l =170
Xdy;(x1) - dgs(x) 11 dF(x;)
j=k+1

and using the ideas of Hoeffding’s decomposition theorem for U-statistics [see,
eg., Serﬁing (1980), Lemma A, page 178-179] this is also equal to V,(¢) as
defined in the statement of the theorem. The symmetry of h, also simplifies
the second term in (3.4) and leads to the decomposition 0t(ﬁ )=0,F)+
V.(¢) + R,(¢), where

_ v N(my(m—k) g
Bal?) k§1 zz=:o (k )( ! )n qlz=:1 q12=1
(3.5) (e [Chan s m) dry(x) - dr()

Xd(%p41) -+ AYp() T1  dF(x,).
q=k+1+1

To show that sup,/R,(¢)] = O(n~! log n) a.s., we consider the integral in (3.5)
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and proceed as follows:

T T
Lo [l mn) dr(x) - dr(x)

m
Xd¢q1(xk+l) e dl”ql(xk+l) ].—[ dF(xq)
q=k+1+1

l
(3.6) < [TV[O,T]rn]k_l[ l_IlTV[o,m‘/'q,][T"}o,nF]m_k_l
2

X sup sup
t x4€[0,T]

A "(%1, X)) dro(x,)

< C} Clsup sup
t x(z)E[O,T]

)

T
fo Ro(%1,Xg)) dr(%;)

where C; and C, are the constants in (2.4) and (2.5). By Lemma 1 and
conditions (A1)—(A3), we have for all ¢ and all x,, € [0, T']:

<K sup [r(y),
yel0,T]

(37) b xa) dri)

where K is a constant only depending on M, M,, M,. Hence, from (3.5), (3.6)
and (3.7),

m—

m k
sup| R,(1)| <K swp || T ()(™ *)ete
k=1 0

y€l0,T] l=
=0(n"'logn) as.

by (2.3). This proves the theorem. O
COROLLARY 1. Assume conditions (A1)-(A3). Then
0t(ﬁn) = ot(F) + Un(t) + Rn(t)’

where U,(¢) is a U-statistic

U,(t) = (:,L;)_I Z . kt((Til’ 5;‘1)’---’(Ti,,,, 5i,,,))

1<i;< iy

and where

sup|R,(¢)|=0(n"logn) a.s.
t

Proor. This follows immediately from the well-known relation between
U-statistics and V-statistics [Serfling (1980), page 206] and the fact that for all
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tandalll <i,,...,i,, <n,

(3.8) |e(Thys 81, (T, 0 8:))| < é( )M Ct. o

4. Further asymptotic results. The representation in Theorem 1 opens
a way to carry over asymptotic properties of the V-statistic V,(¢) [or, by
Corollary 1, also of the U-statistic U, (¢)] to the quantity of interest 6,(F) —

0,(F).

First note that E[k,(T\,$s,),...,(T,,5,,))] = 0. This is easily seen from
(3.2) by using Lemma 1 with K =y¢; and the fact that E[y;(x —)] =
Ely;(x) — 1/ — Gx)I(T;, = x,8; = 1)] = E[¢,;(x)] = 0 (since F and hence
H*" is continuous). .

An important quantity in the limiting theory of U-statistics is the condi-
tional expectation of the kernel k,, denoted by

kl((thdl);t) =E[kt((T1’61)"' T 78m))|(T1’81) (tl’ dl)]
Again using Lemma 1, it can be calculated that

1 .7
ky((Ty,8,);t) = _n;j;) &(x[t) dy(x),

where

T T i
(4.1) g(xlt) =m [ - [Thy(x,%,...,x,) [1 dF(x)).

0 0 Jj=2
The processes ,(x) and B°(y(x)/(1 + y(x)X1 — F(x)X1 + y(x)), with B°
the Brownian bridge process on [0, 1], have the same covariance structure [see,
for example, Shorack and Wellner (1986), page 308]. Hence, for calculating the

covariance of [fg(x|t) diy,(x) one can proceed as in Akritas [(1986), page 625],
keeping in mind our present definition of g(x[¢). Therefore,

Cov(ky((T1, 81)5v), ka((T1, 81)5¢))

- %{jj‘g(x[t)g(xlv)(l — F(x))*dy(x)
+ [ain)| [[81o) d((1 - F0)7(»))]
xd((1 - F(x))(1 + y(x)))

@ +[ e[ 201 A1 - Fo))r)|
xd((1 - F(=)(1 + ()
- [Tatalo) (1~ F)y() [ g(ale) a((1 - F) ()
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and

£1(t) = Var(ky((Ty, 8,);¢))
1 2
(4.3) = m{fgz(xlt)(l - F(x))"dy(x)

-2 a(at)| 201 d((1 = F) ()| aF ().

We can now state the following theorem on strong consistency, law of
iterated logarithm and asymptotic normality of 6 (F’ ), by invoking the same
results for U-statistics [see, e.g., Serfling (1980)] and using the representations
in Corollary 1.

THEOREM 2. Assume conditions (A1)-(A3). Then, for all t,

0,(F,) > 0(F) a.s.
and if £,(t) > 0,
n'/%(¢ 6,(F
lim su ( t( ) « ))
n—o  (2m?,(t)loglog n)

and
n'/2(8,(F,) — 6,(F)) -4 N(0; m%,(t)).

ExampLE (Variance). Take m = 2 and h/(x, x,) = (x; — x,)%/2. A
straightforward calculation shows that for this particular example, expression
(4.2) leads to

4¢,(t) = gX(T)(1 — F(T))*y(T)

(4.4) ~28(T)(1 - F(T))fT(l ~ F())v()8'(y) dy

T
of m[[( _F()g(x) ds| aHA(y),

with, from (4.1),
g(xlt) = x°F(T) — 2xay(T) + ay(T)
and a,(T) = [Jx*dF(x), k = 1,2.

Assume that E(X*) < « and that [7 dH*(y)/(1 — H(y))? < . If we take
the limit for T' — o, then only the last term in the sum on the right-hand side
of (4.4) will give a contribution different from zero. Hence, for T — «, 4£,(¢)
tends to

2

1 - Fx)) @5 - 20y dx| am®
/ (I_H(y))z[fy (1 - F(x))(2x - 2a,) »),
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with @; = E(X), an expression which can also be derived from formula (3.5) in
Reid (1981). We finally mention that in the uncensored case with T' — o, it can
be calculated that (4.4) reduces to the familiar expression for the asymptotic
variance of the variance estimator, namely E[(X — E(X))*] — Var%(X).

5. Asymptotic representation for quantiles. In this section we focus
on Example 4 in Section 3, that is, the case where %, has the indicator form

Ro(%ys..s %) = I(R(%y,...,%,) <t),

where the function 4 satisfies condition (B). Instead of 6,(F) and 0. F,), we
will use a notation which is more convenient for this case, namely

Hg(t) = 'I(;T j;)TI(ﬁ(xl,...,xm) St)ﬁ dF(x;),
Hp () = jOT fOTI(ﬁ(xl,...,xm) < t)f[1 dF (x,).

Note that Hp(t) and Hj (t) are increasing functions of ¢ and that Hp(x) =
(F(T)™ and Hp () = (F(T)™.
For 0 < p < Hp(»), the quantity

Q, = Hy'(p) = inf{t: Hp(t) = p}
is well defined. Similarly, for 0 < p < Hj (), we put
Q, = Hi(p) = inf{t: Hy(t) > p}.

The next theorem gives a Bahadur-type representation for @,, with re-
mainder term of order o(n~1/%) in probability. For quantiles of the classical
empirical distribution function, the analogous result has been obtained by
Ghosh (1971). Also note that, instead of dealing with Q,, with p fixed, our
theorem allows quantiles of the form @, .n» With {p,} a sequence of numbers
tending to some fixed p.

THEOREM 3. Let 0 <p < Hy(x). Suppose that Hy is differentiable at Qp,
with Hi(Q,) = hz(Q,) > 0. Let {p,} be a sequence of numbers (0 <p, <
Hp () such that Pn— P =0(0n""?). Then, as n > o,

Hp(Qp)

Qpnn = Qp + hF(Qp)

+o0,(n"1?).

Proor. We only give a sketch of the proof since it follows more or less
the same lines as that of Theorem 1 in Ghosh (1971). If we denote V, =
nQ, . — @ + (p — p,)/hp(Q,)] and W, = n'/%(p — Hp(Q, ))/hF(Q ),
then we prove that V,-W,-,0 by venfylng the conditions of Lemma lin
Ghosh (1971).
The first condition requires the boundedness in probability of W,, but this
is clear from the representation in Corollary 1 and the boundedness in
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probability of n!/ 2I'i’n(Qp) and n'/?U,(Q,). The latter can be seen as follows.
For any 6 > 0,

P(w1U,(@)]>,5) = n6~* Var(U1(@,)

and Var(U,(@Q,)) can be approximated by m?n~'Var(k,(T},5,);Q,)) [see
property (3.8) and Lemma A(ii) in Serfling (1980), page 183].

The second condition of Lemma 1 in Ghosh (1971) reduces (omitting details)
to verification of the fact that

[Hﬁ(t*) N HF(t*)] - [HF(Q ) —HF(QP)] =o0p(n™?),

where t} = @, + O(n~'/?). Because of the result in Corollary 1, this reduces
to showing that U (&%) — U(@Q,) = op(n~'/2) or to proving that

nVar[U,(t%) — U,(Q,)] = 0.

Using Lemma A(iii) on page 183 in Serfling (1980) and property (3.8), the
variance of the U-statistic U,(¢;) — U,(Q,) can be approximated by

m2
— Var[ky((T1, 8,);23) = ki((T1,81)5 @,)]-
But
Var|ky((Ty, 8,); £%) — ka((Ty, 8,);@,)]
= Var[k,((Ty, 8,);8%)] — 2Cov(ky((Ty, 81);8%), k(T 81);Qy))
+ Var[ k,((T4,8,); Q,)]

tends to zero as n — . This can be shown from expressions (4.2) and (4.3) by
applying the dominated convergence theorem for the multiple integrals [see,
e.g., Loéve (1977), pages 126-127]. One has to take into account condition (B)
on the kernel % and the continuity of F and hence of y. O

The previous representation obviously leads to further results. As an exam-
ple we state the asymptotic normality of the quantiles @, ,. For the case of
fixed p, this is in compliance with Corollary 3.2 of Akritas (1986).

COROLLARY 2. Under the conditions of Theorem 3 and the additional
assumption that n*/*(p, — p) — ¢, we have
c m2
1/2(Qp . ) N §1(Q )
(@) 73(Q,)
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