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OPTIMAL TWO-PERIOD REPEATED
MEASUREMENTS DESIGNS!

By A. HEpAYAT2 AND W. ZHAO
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For the class of repeated measurements designs based on ¢ treatments,
n experimental units and two periods, the following results are obtained.

1. The equivalence of the information matrices of such repeated measure-
ments designs and of certain block designs is established. The implica-
tion of this equivalence on the optimality of both repeated measure-
ments designs and block designs is explored.

2. A family of universally optimal designs or A-eptimal designs is con-
structed depending whether or not n divides ¢.

3. Families of optimal designs for residual effects and for comparing test
treatments with a control are constructed.

1. Introduction. An experiment in which a unit is repeatedly exposed to
various treatments is called a repeated measurements design (RMD). In such
an experiment, ¢ treatments are assigned to n experimental units, each of
which receives one treatment application during each of p periods. Other
names have been used for this type of design including crossover and
changeover design. For details, see Hedayat and Afsarinejad (1975, 1978) and
Matthews (1988).

Repeated measurements designs have been in use for a long time. How-
ever, their optimality aspects were first initiated and studied by Hedayat and
Afsarinejad (1978). They showed that certain types of RM designs are univer-
sally optimal. More results were established by Cheng and Wu (1980) and
Kunert (1983, 1984). We refer the reader to Matthews (1988) for a survey on
some selected optimal and other types of RM designs. However, essentially all
available optimality results are related to the situation where p > ¢. A more
realistic situation is one where p < ¢. In particular, p = 2 is of great impor-
tance in clinical trials. Obviously p = 2 is the minimum number of periods
required to estimate the direct effects of the treatments in a repeated measure-
ments design. For details of their importance and application in clinical trials,
the reader may consult Grizzle (1965), O’Neill (1977), Hills and Armitage
(1979), Barker, Hews, Huitson and Poloniecki (1982), Armitage and Hills
(1982), Laska, Meisner and Kushner (1983) and Willan and Pater (1986).
Other useful references are Balaam (1968) and Brown (1980). Constantine and
Hedayat (1982) constructed families of repeated measurements designs with
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p <t that are balanced for residual effects. These designs were shown to be
connected for both residual and direct treatment effects with a minimum
number of units. Dey, Gupta and Singh (1983) made an attempt to search for
universally optimal designs with p < ¢ in a very restricted subclass. Afsarine-
jad (1985) obtained similar results as in Dey, Gupta and Singh (1983) for the
case p <t with n = 2¢. Stufken (1990) has obtained a series of beautiful
results for RM designs, including designs with a small number of periods.

Unfortunately, there are no results for general n, ¢ and p < ¢, not even for
the case p = 2. This is due to the difficulty of finding the general form of the
information matrix. In this paper, we will present general optimality results
for the case p = 2. Specifically, we will establish the equivalence of the
information matrices of such repeated measurements_designs and of certain
block designs. The implication of this equivalence on the optimality of both
repeated measurements designs and block designs is explored. We will also
construct A-optimal designs for general » and ¢ and universally optimal
designs for n = At for direct and residual effects and for comparing test
treatments with a control.

2. Preliminaries. Throughout, the class of all repeated measurements
designs for comparing ¢ treatments over two periods using a total of n
experimental units will be denoted by RMD(%, n, 2). We note that each d in
RMD(%, n, 2) can be completely characterized by the set of nonnegative inte-
gers Ay 1, J =1,2,...,¢, denoting the number of experimental units that
receive treatment i in the first period and treatment j in the second period. It
will also be useful to know the number of times that the ith treatment is
tested under d in the first and in the second period. These quantities are
denoted by f,; and s, ;, respectively. Clearly, these three sets of quantities are
related as follows:

¢ ¢ ¢ ¢
> Agij = fais Z Agij = 8qj and Z fai = E Sqg; = 1.
j=1 i=1 i=1 i=1
Let d be a design in RMD(¢, n,2) and let d(i, j) denote the treatment
assigned by d in the ith period to the jth unit. By implementing d we obtain
2n observations. The observation collected on the jth unit in the ith period is
denoted by y;;, i = 1,2, j = 1,2,...,n. These 2n observations are assumed to
be generated by the model

E(yyj) = Taq,jy + &1 + Bjs

E(y3;) = Ta@, jy + Paq,jy + @z + Bj»

(2.1) V(yi;) = o?,
Cov(yy,,¥2,) = po?, -1<p<1,
Cov(yij’ylk) =0, otherwise,

for i=1,2 j=12,...,n,1=1,2 and k=1,2,...,n, and where 7, ;,
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Paq,jy @; and B; are called the direct effect of the treatment d(i,j), the
first-order residual effect of the treatment d(1, j), the ith period effect and the
Jjth unit effect, respectively. Observe that model (2.1) postulates that a treat-
ment applied in the first period continues to exert some of its effect on the
observation made on the same unit in the second period. Magda (1980),
Hedayat (1981) and several others have considered optimal designs for models
in which the treatments applied in the second period on a given subject will
leave a residual effect on the observation made on the same subject in the first
period. Such cyclical models have useful applications in rotation experiments,
but we do not consider such models in this paper.

Let Y; = (511, Y125« - - s Y1ns Y210 Y225 - - - » ¥2,)'- Then, in matrix form, we have
EYd = X d@) With .
O = (TyyeeosTiyPrreevrPrr @1, Aoy Bry--nsBr)
and

[P dl On 1n On I n
Xd = ’
P d2 P dl On ln I n
where P,; is the incidence matrix for units and treatments, corresponding to

the ith period, i = 1, 2.
The information matrix for direct effects can be derived as

(2-2) Cd = Cdll - Cd120c?220d21»
and for residual effects as

(2.3) Cy = Cuzs — Cu2:Ca11Carss
where

1 , , 1
Can = ‘Z‘(Pdl - Pd2)(In - ;Jn)(Pdl - sz),
1
Cors = 5 (Pis = Pi) 1 = | Pax = i,
, 1
Cd22 = é‘ dl(In - ;Jn)Pdl'

3. RMD and block designs. In this section we shall establish the con-
nection between designs in RMD(z, n, 2) for the purpose of estimating direct
effects and certain block designs with & blocks, b < ¢. This connection allows
us to make some interesting optimality conclusions for both repeated measure-
ments designs and block designs.

- TueoReM 3.1. Let d be a design in RMD(t, n,2) with t, f4;, A4, ; as defined
previously. Denote the number of distinct treatments appearing in the first
period of d by b. Without loss of generality, let these b treatments be treatments
1,2,...,b < t. Then, there exists a block design d' based on t treatments in b
blocks of sizesk; = f;;,i = 1,2,..., b, whose incidence matrix is (n z;;) = (Ag4;;)
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with
(3.1) Cd' = 2Cd7

where C; is the information matrix for the treatments under the standard
linear additive model for the block design d’'. Conversely, a block design with b
(< t) blocks induces a design in RMD(¢, n, 2), with n equal to the total number
of experimental units in the block design where again the relation (3.1)
between their corresponding information matrices is satisfied.

Proor. We establish the results in two steps. First, we shall construct the
corresponding block design for a given RM design and vice versa. Then, we
shall verify the relation (3.1) between the corresponding information matrices.
Suppose d is a design in RMD(¢,n,2). Let b be the number of distinct
treatments assigned in the first period of d. We now construct a block design
d’ with b blocks utilizing the structure of d. In block i we assign the collection
of treatments that are assigned by d in the second period to those units which
have received treatment i in the first period, i = 1,2, ..., b. In the notation of
Section 2, this collection consists of treatments d(2, j) for which d(1, j) =i.

Conversely, given a block design d’ with b blocks based on ¢ (> b) treat-
ments we can associate with it a design d in RMD(¢, n, 2), where n is the total
number of experimental units in d, in the following way: Let k; be the size of
the ith block. In the first period we assign treatment ¢ to k; experimental
units. To these units, we assign the content of the block ¢ in the second period,
i=1,2,...,b. Note that the labelling of the treatments and blocks is arbitrary
and unrelated.

Now we verify relation (3.1). This can be accomplished in two seemingly
different ways. A direct way is by deriving the information matrices for the
treatments effects using the standard linear additive model under d’ and for
the direct effects under model (2.1) through (2.2) and observing that the
relation (3.1) is indeed true. The second way is to observe that the existence of
the unit effects for d, under model (2.1), forces the linear unbiased estimators
of the estimable contrasts among direct effects to depend only on the differ-
ences of the consecutive observations on the same units, y,; — y;; = §;. This
means that our 2n observations can be remodelled to n observations 6§;’s with
the model

E(5j) =ag —ay + T4, 5y T Paq, jy T Tda, )

(3.2)
V(5;) = 2(1 - p)a?, Cov(s;,8,) =0, i+#j,i,j=1,2,...,n.

. Renaming @, — a; by u and py; ;, — Taq, j) @ Yaq, ) the preceding model is

the same as the standard linear additive model for block designs apart from

the adjustment 2(1 — p) we have to make for V(8,). This should conclude the

proof. O

Therefore, if d in RMD(¢, n,2) assigns only b distinct treatments, say
treatments 1,2, ..., b, to the n units in the first period, then the information
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matrix C, for the direct effects can be expressed as

Sq1 Agir Agie T Agp
Sd2 Aga1 Aage T Agg
2C, = -
Sat ] -
Mg Ages Aaw
-1 ...
fa Agir Aaa Agn
it Aaiz Agez 0 Age
X
-1 . P
fao | Aas  Aaze Aaw

This indicates that an RM design based on two periods is connected for the
direct effects only if every treatment is tested in the second period. Therefore
we will assume in the remainder of this paper that in all RM designs every
treatment is tested in the second period.

We shall now elucidate our finding by two examples.

ExampLE 3.1. Let ¢t =3, n =8. Consider the RM design d with the
following assignment of treatments:

d: 111 2 2 2 3 3
1 2 3 1 1 2 1 38
Then its corresponding block design d’ is given by
d: 1 1 1
2 1 3
3 2

with the columns as blocks. Indeed, as can be easily checked, 2C,; = C,;.

ExampLE 3.2. Consider the block design based on five treatments in four
blocks as given here:

d'

> WwN =
= N

> W N =
NS

A corresponding RM design to d’ is obtained as

d: 11111 2 2 2 3 3 3 3 4 4 4 4
1 2 3 3 4 2 3 11 2 3 41 2 5 4

Once again, C, =2C,.

An important consequence of Theorem 3.1 is that, under certain conditions,
searching for optimal RM designs based on two periods is equivalent to
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searching for the block designs with the corresponding parameters as specified
in Theorem 3.1.
Before proceeding further, we introduce the following definition.

DerINITION 3.1. A design in RMD(¢, n, 2), n = At, is said to be uniform on
the ith period if each treatment is tested A times in this period. A design
which is uniform on both periods is simply called a uniform design on periods.

We note that if a proper block design is converted to an RM design, then it
is a design uniform on the first period. Thus we can conclude the following:

CoroLLARY 3.1.  If a block design with ¢t treatments is optimal in the class
of proper block designs with b < t blocks, then its corresponding RM design is
optimal among all RM designs which are uniform on the first period.

ExampLE 3.3. Kunert (1983) considered the following RM designs in
RMD(3,12, 2).

d: 1 2 3 2 3 11 2 3 2 3 1
2 3 1 1 2 3 2 3 11 2 8
d,: 1 2 3 1 2 31 2 8 2 38 1
1 2 3 2 3 11 2 381 2 8

We note that both designs are uniform on periods. Kunert showed that, for
the direct effects, d, is better than d,; by computing
(3.3) Cd2 = 155_([3 - %Ja) > %(13 - %Ja) = Cdl-
Using Corollary 3.1, we can make a stronger statement concerning the opti-
mality of d,. The block designs corresponding to d, and d, are, respectively,
dj:

di: 2 2

L = W =
N = N =
W N = =
WO N =

W N = W

3
2
3

We observe that d; is a balanced block design (BBD), which is known to be
universally optimal [Kiefer (1975)] in the class of proper block designs. Thus,
among all RM designs which are uniform on the first period, d, is universally
optimal and, indeed, its information matrix dominates any other completely
symmetric information matrix in this class.

The connection we established between RM designs and block designs can
be used to conclude the optimality of RM designs by converting the optimal
block designs into corresponding RM designs. For this we need to extend
optimal properties of some block designs in the class of proper designs to the
class of all block designs based on ¢ treatments with an arbitrary number of
blocks and block sizes with a fixed number of experimental units.
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The following result related to combining blocks in block designs is useful in
our study.

THEOREM 3.2. Let d, be an arbitrary block design based on b blocks and t
treatments. Let d, be obtained from d, by combining the blocks of d, into a
single block (i.e., assuming that there are no block effects). Then C; < C,,,
and the equality holds if and only if the frequency of treatment i in block j is
proportional to the size of block j, i = 1,2,...,¢t, j=1,2,...,b.

The proof follows by observing that the condition of proportional frequen-
cies is equivalent to the condition of orthogonality between blocks and treat-
ments.

We can conclude immediately that a block design that is uniform within
each block is universally optimal within the class of all block designs based on
t treatments with arbitrary number of blocks and block sizes having a fixed
number of observations. Specially, it is true for a randomized complete block
design.

4. Optimal designs for direct and residual effects. In this section,
we will first state and prove our main results of optimal designs for the direct
effects by using the relationship for RM designs and block designs established
in the previous section. Specifications of optimal designs for residual effects are
presented at the end of the section. The following theorem provides a method
for constructing a family of universally optimal RM designs.

THEOREM 4.1. A design d* in RMD(¢, n,2) with n = 0 (mod ¢) is univer-
sally optimal if and only if

® fd*i = O(mOdt), i = 1,2,...,¢
(11) Ad*ij =fd*i/t7 _] = 1,2,...,t.

Note that f;.; = 0 is allowed in condition (i), as long as L%f;., = n. Recall
that b is the number of distinct treatments applied in period 1.

Proor. We observe that the d* corresponds to a block design which is
uniform within each block and thus, by Theorems (3.1) and (3.2), we can
conclude the result. We can also prove this result using a tool due to Kiefer
(1975) which says that d* is universally optimal if C,. is completely symmet-
ric and its trace is maximum among all designs in RMD(¢, n,2). O

_ Theorem 4.1 includes the results of Laska, Meisner and Kushner (1983) and
Kunert (1984) if we restrict the number of treatments to two. This theorem
provides a tool for constructing a family of universally optimal designs in
RMD(¢,n,2) with n =0 (mod ¢). All these optimal designs have identical
information matrices for the direct effects.
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ExampLE 4.1. Using Theorem 4.1, we can conclude that the following four
designs are universally optimal in RMD(3, 12, 2):

d¥» 11 1 1 1 1 1 1 1 1 1 1
2 312 312 31 2 38

d¥ 11 1 1 1 1 11 2 2 2
1 2 312 312 312 38
d¥* 1 1 11 112 2 2 2 2 2
2 312 312 312 38

d¥: 111112 2 2 3 3 3
1 2 312 312 31 2 3

Note that b =1in df, b =2 in dj and dj and b = 3 in dj. Apart from
renaming treatments or units, no other universally optimal design exists, by
Theorem 4.1. In Example 3.3 we showed that design d, is universally optimal
within a subclass of designs in RMD(3, 12, 2). Actually, d, is not universally
optimal in the entire RMD(3, 12, 2). Indeed,

(4.1) Cop=2(I3—3J) > (I3 —3J)=C,y, 1=1,2,3,4.

Which optimal design specified by Theorem 4.1 should we recommend to the
practitioners? The optimal design with one treatment being used in the first
period yields the largest degrees of freedom for estimating o2 since the least
squares estimator of o2 has 2n — r degrees of freedom, where r =n + ¢ +
b — 2 is the rank of X,. Clearly, the more degrees of freedom, the better any
confidence interval or test of hypothesis concerning the direct effects. In
addition, it is easier and perhaps economical to recommend the optimal design
which uses a single treatment in the first period. Therefore, if the residual
effects are nuisance parameters, we should recommend the optimal design
where we apply a single treatment in the first period. If the contrasts among
the residual effects have to be estimated as well, then we have no choice but to
recommend the optimal design where all ¢ treatments have been used in the
first period. An RM design with a single treatment in the first period can also
serve as a design for comparative study with a baseline reading. We refer the
reader to Matthews (1988) for related references.

We do not know whether universally optimal designs can be constructed if
n is not a multiple of ¢. However, we can construct A-optimal designs for such
families of repeated measurement designs as the following theorem shows.

THEOREM 4.2. Letn = At + 1,0 <l < t. Let d* have only one treatment in
the first period and sz, =A+1 for i=1,2,...,1 and sg;=A for i =
L+ 1,...,t. Then d* is the unique A-optimal design.
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The proof follows directly from Theorems 3.1 and 3.3, and the fact that d*
corresponds to an A-optimal block design consisting of a single block whose
information matrix can not be obtained by any block design having more than

one block.
How does an optimal design look if our main interest is the comparison
among residual effects? In this context, we present the following result.

THEOREM 4.3. Within the class of RMD(¢,n,2), let d* be a design with
first and second period identical and f;.,’s as equal as possible. Then d* is an
A-optimal design for residual effects. In particular, d* becomes universally
optimal if n = At.

Proor. The information matrix for the residual effects for an arbitrary d
in RMD(¢, , 2) can be expressed from (2.3) as

Cy = Cazp = Cy2Ci11Coss-
If the distributions of treatments in the first period and the second period in d
are not identical, then by replacing the second period with the first one, the
resulting design, say d’, has

Cd' = Cd'22 = Cd22 > Cd'

Thus, we need only to show that d* is A-optimal in the subclass where the
distributions for the first and the second period are identical. But this is
obvious. O

5. RM designs for comparing test treatments with a control. In
this section, we shall find optimal RM designs for comparing test treatments
with a control under the criteria of A-optimality and MV-optimality. These
two criteria have natural statistical interpretations and have been considerably
used in the case of optimal designs for comparing test treatments with a
control. In such a design problem, we are interested in comparing ¢ test
treatments with a control. See Majumdar (1988) for background material on
this topic and Hedayat, Jacroux and Majumdar (1988) for details and a
comprehensive review.

In comparing ¢ test treatments with a control we shall denote the test
treatments by 1,2,...,¢ and the control by 0.

DerFINITION 5.1. d* € RMD(¢ + 1,n,2) is A-optimal for the direct treat-
ment effects for comparing test treatments with a control if, among all
d € RMD(¢ + 1, n,2), it minimizes

2
(5.1) Z Val‘(‘)\'d*i - :)\'d*o).
i=1

DEFINITION 5.2. d* € RMD(¢ + 1, n,2) is MV-optimal for the direct treat-
ment effects for comparing test treatments with a control if, among all
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d € RMD(¢ + 1, n, 2), it minimizes

(5.2) max Val‘(‘)\'d*i - :)\'d*o).
l<ixt

Similarly, we can define the A-optimality and MV-optimality for the resid-
ual effects for comparing test treatments with a control. We can now state our
results as a consequence of available results for block designs, Theorem 4.3
and the connection we have established between certain block designs and RM
designs.

THEOREM 5.1. Let n = At, t = w? + w and d* be a universally optimal
design for direct (residual) effects in RMD(¢, n, 2) constructed by Theorem 4.1
(Theorem 4.3), where w is a positive integer. Let d, be obtained from d* by
replacing each of the treatment symbols w? + 1, w? + 2,...,w? + w by the
control, while keeping everything else unchanged. Then d is A-optimal and
MV-optimal for direct (residual) treatment effects for comparing w? treatments
with a control in RMD(w? + 1, n, 2) based on model 2.1.

ExampLE 5.1. Let n = 18, ¢ = 5 and p = 2. The following design is A-opti-
mal for comparing test treatments with the control in RMD(5, 18, 2):

1111112 2 2 2 2 2 3 3 3 3 3 3
0 01 23 40 01 2 3 4001 2 3 4

THEOREM 5.2. When t does not divide n, let d* be constructed by assigning
only one treatment (control or test treatment) to the first period, while in the
second period, all test treatments appear as equal as possible and the control
appears r,, times, where ry, is a positive integer which minimizes

B t—n+rg+ tp(ry)
rao tH(rao + (n =1y — 1p(r40))/(P(ra0) + 1))

with p(ryy) = [(n — ryo)/t], and [x] denotes the integral part of the decimal
expansion for x > 0. Then d, is A-optimal for direct effects for comparing test
treatments with a control.

(5.3)

ExampLE 5.2. The following design is A-optimal for comparing test treat-
ments with the control in RMD(5, 14, 2):

1111111

1 11 1 1 11
0O 00 00 01 2 3 41 2 3 4°
We like to point out that from Theorem 3.1, many optimal block designs for
comparing test treatments with a control can be converted to RMD(¢, n, 2) over

a subclass of RMD which are uniform on the first period.

6. Closing remarks. We characterized optimal repeated measurements
designs based on two periods. The next interesting case is when we have three



TWO-PERIOD REPEATED MEASUREMENTS 1815

or more periods and p < ¢. We believe that designs constructed by Constantine
and Hedayat (1982) have some desirable optimality properties under both
correlated and uncorrelated errors. This is an ongoing research project.

Acknowledgments. We are indebted to Dibyen Majumdar, John Stufken,
the Associate Editor and the referees for their critical readings of earlier
versions of this article and their comments.

REFERENCES

AFSARINEJAD, K. (1985). Optimal repeated measurements designs. Statistics 16 563-568.

ARMITAGE, P. and HiLLs, M. (1982). The two-period crossover trial. The Statistician 31 119-131.

Baraam, L. (1968). A two-period design with ¢2? experimental units. Biometrics 24 61-73.

BARKER, N., HEws, R., HuiTsoN, A. and PoLoniEcki, J. (1982). The two perlod crossover trial.
Bull Appl. Statist. 9 67-116.

Brown, B. W. (1980). The crossover experiment for clinical trials. Biometrics 36 69-79.

CHENG, C. S. and Wy, C. F. (1980). Balanced repeated measurements designs. Ann. Statist. 8
1272-1283.

CONSTANTINE, G. M. and HEDAYAT, A. (1982). A construction of repeated measurements designs
with balance for residual effects. J. Statist. Plann. Inference 6 153-164.

DEy, A., Gupta, V. K. and SINGH, M. (1983). Optimal change over designs. Sankhya Ser. B 45
233-239.

GRIZZLE, L. E. (1965). The two-period change-over design and its use in clinical trials. Biometrics
21 467-480. [Correction note (1974) 30 727.]

HEDAYAT, A. (1981). Repeated measurements designs, IV: Recent advances. Bull. Internat. Statist.
Inst. 49 591-610.

HEepavaT, A. and AFSARINEJAD, K. (1975). Repeated measurements designs. I. In A Survey of
Statistical Designs and Linear Models (J. N. Srivastava, ed.) 229-242. North-Holland,
Amsterdam.

HEepAYAT, A. and AFSARINEJAD, K. (1978). Repeated measurements designs. II. Ann. Statist. 6
619-628.

HEepaYAT, A., JACROUX, M. and MAJUMDAR, D. (1988). Optimal designs for comparing test treat-
ments with controls (with discussion). Statist. Sci. 8 462-491.

Hiris, M. and ARMITAGE, P. (1979). The two-period cross-over clinical trial. British J. Clin.
Pharmac. 8 7-20.

KIEFER, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of
Statistical Designs and Linear Models (J. N. Srivastava, ed.) 333-353. North-Holland,
Amsterdam.

KuUNERT, J. (1983). Optimal design and refinement of the linear model with applications to
repeated measurements designs. Ann. Statist. 11 247-257.

KUNERT, J. (1984). Optimality of balanced uniform repeated measurements designs. Ann. Statist.
12 1006-1017.

Laska, E., MEISNER, M. and KusHNER, H. (1983). Optimal crossover designs in the presence of
carryover effects. Biometrics 39 1087-1091.

Magpa, C. (1980). Circular balanced repeated measurements designs. Comm. Statist. A—Theory
Methods 9 1901-1918.

MaJUMDAR, D. (1988). Optimal repeated measurements designs for comparing test treatments
with a control. Comm. Statist. A—Theory Methods 17 3687-3703.

MATTHEWS, dJ. (1988). Recent developments in crossover designs. Internat. Statist. Rev. 56
117-1217.

O’NEILL, R. (1977). A report on the two-period crossover design and its applicability in trials of
clinical effectiveness. Report of Biostatistics and Epidemiology Methodology Advisory
Committee of the U.S. Food and Drug Administration.



1816 A. HEDAYAT AND W. ZHAO

STUFKEN, J. (1990). Some families of optimal and efficient repeated measurements designs. J.
Statist. Plann. Inference. To appear.
WILLAN, A. and PATER, J. (1986). Carryover and the two-period crossover clinical trial. Biometrics

42 593-599.
CENTER FOR DRUG EVALUATION BrosrATISTICS
AND RESEARCH SCHERING-PLOUGH RESEARCH
U.S. Foop AND DRUG ADMINISTRATION KENILWORTH, NEW JERSEY 07033

ROCKVILLE, MARYLAND 20910



