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A SURVEY OF PRODUCT-INTEGRATION WITH A VIEW
TOWARD APPLICATION IN SURVIVAL ANALYSIS
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The correspondence between a survival function and its hazard or
failure-rate is a central idea in survival analysis and in the theory of
counting processes. This correspondence is shown to be a special case of a
more general correspondence between multiplicative and additive matrix-
valued measures on the real line. Additive integration of the survival
function produces the hazard, while the multiplicative integral, or so-called
product-integral, of the hazard yields the survival .function. The easy
generalization to the matrix case (noncommutative multiplication) allows
an elegant and completely parallel treatment of intensity measures of
Markov processes, with many possible applications in multistate survival
models. However, the difficulties and multiplicity of theories of product-
integration in multivariate time explain why so many different multivariate
product-limit estimators exist. We give a complete and elementary treat-
ment of the basic theory of the product-integral 77 (1 + dX) together with
a discussion of some of its applications. New results are given on the
compact differentiability of the product-integral, to be used along with the
functional 8-method for getting large-sample results for product-limit esti-
mators.

1. History. Product-integration has a long history in pure and applied
mathematics. At the same time it has many applications in statistics and
probability. However, the product-integral (also known as the multiplicative
integral) is almost unknown among statisticians and probabilists, and its
properties are continually being rediscovered. We shall try to remedy this
situation by collecting together the key facts on matrix product-integration
over intervals of the real line, giving self-contained and elementary proofs. We
discuss the connection with the not so trivial theory of exponential semi-
martingales. We include new results, in particular, on functional differentia-
bility of the product-integral. We give applications of product-integration in
survival analysis (in a wide sense): to the product-limit estimator, in the
probabilistic and statistical theory of Markov processes (the correspondence
between transition probabilities and cumulative intensities, and their estima-
tion), in the estimation of branching process models, and in likelihood expres-
sions for counting process experiments. We also discuss product-integration
with multidimensional time, with applications to multivariate product-limit
estimators. The differentiability of the product-integral allows a rigorous
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1502 R. D. GILL AND S. JOHANSEN

derivation of the large sample properties of product-limit estimators under
varied sampling schemes by the functional version of the 6-method. Efficiency
and bootstrap results also follow immediately with this approach.

The present paper does not cover all possible applications of product-
integration in statistics, by any means. An important omission is the use of
product-integration in the prediction theory of multivariate time series; see
Masani (1966, 1979) for introductions to this area. Indeed the kind of applica-
tion which motivates us has also strongly coloured our own approach to the
theory of product-integration.

We propose here the new notation 77 (1 + dX) for the product-integral.
This seems to be a natural way to complete the two-by-two table

r II
[ T

though many other notations have been used in the past.

The product-integral was introduced by Volterra (1887) as the solution of a
certain basic integral equation. The notation | 71 + dX) is due to Schlesinger;
Volterra confusingly just wrote [dx. The notion was further exploited and
developed, especially by Schlesinger (1931, 1932), Rasch (1930, 1934), Birkhoff
(1938) and Masani (1947). In particular, Rasch (1930) introduced the notation
[1(1 + dX) for the product-integral that is now favoured by many authors,
though Arley’s (1 + dX) [Arley (1943)] is also nice. All these papers are
concerned with the (absolutely) continuous case. More recently, starting with a
paper by Wall (1953), a highly abstract theory of product-integration was
established by Mac Nerney (1963), B. W. Helton (1966) and J. C. Helton
(1975a, 1975b) among others (here we have just indicated the contributions of
those authors which are most relevant for our purposes). Especially important
for us is the fact that this theory allows discrete as well as continuous
integrating measures. However, most statisticians will find the setting and
notation in these papers very unfamiliar.

The major textbook on product-integration, by Dollard and Friedman (1979),
is a mine of information but has for our purposes a serious defect. The
last-mentioned school of product-integration theory is only summarily covered
(though extensive references are given), while instead the late and only chapter
on Stieltjes product-integration—that is, with respect to possibly discrete
measures—treats a completely different and, as far as our statistical applica-
tions are concerned, completely inappropriate product-lntegral T e?X. More-
over, the theory of this “‘exponential integral” contains in the discrete case
many unpleasant complications which simply do not arise with 77 (1 + dX).
As we shall see, the theory of the ordinary product-integral which we present
here allows an effortless unification of the continuous and discrete, in both the
scalar and matrix cases. This is vital for statistical applications in which
underlying measures may be continuous, but natural estimators are discrete.

Product-integration makes a very natural appearance in the theory of
Markov processes, as was already pointed out in the book of Volterra and
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Hostinsky (1938). A notable early work building on this is by Arley (1943); see
also Arley and Borschenius (1945). From here it found its way into survival
analysis in an informal way via Cox (1972) and Kalbfleisch and Prentice
(1980).

A very important early paper on Markov processes is by Dobrushin (1953),
who earlier than Wall’s followers established the correspondence between
certain sum- and product-integrals and removed the continuity restriction in
the right way for our purposes. This paper has never appeared in English
translation and very few authors have followed up his results. Another connec-
tion in probability and statistics is that Doléans-Dade’s exponential semi-
martingale [Doléans-Dade (1970)], which plays such an important role in
stochastic analysis, is in a sense just a product-integral, as we shall see later.
The same holds for Jacod’s formula [Jacod (1975)] for the likelihood ratio
(Radon-Nikodym derivative) for a counting process experiment. Less surpris-
ingly, so is the product-limit estimator from survival analysis of Kaplan and
Meier (1958).

A further confusing factor in the history of product-integration is the fact
that the theory can be built up from some very different starting points. We
therefore conclude this first part of the paper by summarizing three equivalent
definitions of the same product-integral, and stating its most important prop-
erty of multiplicativity. We also give a fourth equivalent definition for the
scalar (commutative) case. In Section 2 we start with a version of the first of
these definitions (the product-limit definition) and prove its equivalence with
the others and derive other basic properties of product-integrals. In Section 3
further properties of continuity and differentiability are derived and we discuss
the stochastic product-integral of Doléans-Dade and product-integration over
general spaces (multivariate time). Finally, in Section 4 we sketch a number of
statistical applications.

We define the product-integral for finite real matrix-valued measures de-
fined on the Borel subsets & of the interval ]0, ], say. Let X be such a
measure. Thus each component X; jof X, 1 <1i,j<p,is a finite real (signed)
measure on |0, 7]. We can represent X by its distribution function, which we
shall denote by the same symbol; thus X(¢) = X(J0, ¢]) is a p X p matrix. Let 1
be the identity matrix and 0 the matrix of zeros. The product-integral of X,
written Y = 77 (1 + dX), will initially be defined as a matrix-valued function
on ]0, 7]. Both X and Y are cadlag (right continuous with left-hand limits). We
will show in the next section that Y can also be considered as a multiplicative
interval function, just as we can consider X as a measure, thus as an additive
interval function.

DEFINITION 1 (The product-limit).

Y(¢) = T (1+X(ds)) = lim I +X(1¢-1,80),

s€]o,t] max|t;—¢;_| >0

where 0 = ¢, <t, -+ <¢, =t is a partition of ]0, ¢].

The terms in the product here are to be taken in their natural order.
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DEFINITION 2 (The Volterra integral equation [Volterra (1887)]). Y is the
unique solution of the equation

Y(¢) =1 +j ] t]Y(s—)X(ds).

se]0

DEFINITION 3 (The Péano series [Péano (1888))).

Y(t) =1+ f | [ X(dt)--- X(dt,).

n=10<¢< - <t,st

Each of these definitions has its own merits and, when starting from each
there is an existence problem to be solved first. The product-limit definition,
which we shall take as primary [following Wall (1953) and especially
Mac Nerney (1963)], motivates the notation for the product-integral and
suggests many of its properties (we will show that one actually has uniform
convergence over points of the partitions). The Volterra integral equation is
the historical definition and provides also a vital property of the product-
integral;. moreover, it seems to be the best starting point when defining the
product-integral for semimartingales. It turns out to be equivalent to the
Kolmogorov forward equation from Markov processes. Finally, the Péano
series, while perhaps intuitively unappealing, is a useful technical tool and
helps one to derive efficiently the required results. In particular, its existence
problem is very easily solved. This starting point was taken by Johansen
(1986) and (for T e%X) by Schmidt (1971). By the way, the discrete approxi-
mation to the product-integral given in the product-limit definition is simply
the result of applying the first-order Euler scheme for the approximate numer-
ical solution of the integral equation. (Numerical mathematics contains a large
literature under the name of product integration, meaning, however, the
integration of the product of two functions.)

In the case p = 1, when the matrix-valued measure X becomes an ordinary
signed measure, a fourth definition is possible. Denote by X°¢ the continuous
part of X, thus X°(¢) = X(¢) — L, _,X({¢}). This is more generally available in
the commutative case, that is, when the matrices X(B), B € 4, all commute.

DErFINITION 4 (Commutative case only).

Y(t) = I1 (1+X({s}))exp(X(2)).

s€]0,t]

In particular, when X(s) =sA for all s and for a fixed matrix A,

7T]0yt](l + dX) = exp(tA).

So far we have only defined the product-integral of X over Borel sets of the
form 0, ¢] for some ¢. We can define it over any B € & in the following way.
Letting xp denote the indicator function of the set B, denote by Xz the
measure dXz = x5 dX. Let Yz be the product-integral of Xp. Finally, we
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define
Y(B) =TT (1 + X(ds)) = Yg(1).

seB
(We can similarly define the product-integral of a measurable matrix-valued
function H with respect to X via the product-integral of X, defined by
dX; = HdX provided H is integrable with respect to X in the ordinary way.)
We now formulate the most important multiplicative property of the product-
integral:

PropERTY 1 (Multiplicativity). For any s < u < ¢t we have

Y(Is,t]) = Y(Is, u) Y(Ju,t]).

In the commutative case the multiplicativity property extends to the prod-
uct-integral over any two disjoint sets.

As we shall see in Section 2, one can construct a one-to-one correspondence
between additive and multiplicative interval functions. Thus, we shall take
Definition 1 and Property 1 as the basis of our treatment of product-integra-
tion. The integrals in Definitions 2 and 3 are Lebesgue—Stieltjes integrals.
However, Definition 1 represents the product-integral by means of Riemann—
Stieltjes approximating finite products and correspondingly an abstract theory
is possible [Mac Nerny (1963)] in which all of the ordinary integrals are also of
Riemann-Stieltjes type.

The reader familiar with semimartingale theory will be aware that the
equivalence between Definitions 1-4 is well known to hold for (matrix-valued)
semimartingales, where the notation £(X) instead of 77 (1 + dX) is usual;
see the beautiful papers of Doléans-Dade (1970) and Emery (1978) in particu-
lar. (The integrals are now stochastic integrals and the product-limit result
holds “in probability.”” Definition 4 needs to be modified.) The results are
proved using sophisticated functional analysis and appropriate topologies on
the space of semimartingales. As far as we know, it is not possible to derive
these results in the matrix semimartingale case by a similar elementary
approach to the one we shall use. However, in the commutative case one can
get some of the way, as we shall see in Section 3.3. Further references are also
given there.

2. Basic theory. This section develops the basic theory of the product-
integral from the point of view of the duality between multiplicative integra-
tion of (real matrix-valued) additive interval functions and additive integration
of multiplicative interval functions: Definition 1 (the product-limit) and Prop-
erty 1 (multiplicativity) are taken as primary. To emphasize this point of view,
we change from the notation of Section 1 and use a for an additive and u for a
multiplicative interval function; they play the role of X and Y in the previous
part, respectively, via the equivalences a(s, ) = X(Js, ¢]) and u(s, t) = Y(Js, ¢].
(We also work on the whole line ]0, «] instead of just a subinterval ]0, 71.)
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We start in Section 2.1 by stating some simple but important algebraic
identities for matrices and by defining additive and multiplicative interval
functions and their Riemann approximating products and sums over a parti-
tion of an interval of the real line. The aim is to show that these approxima-
tions converge to limits (called the product-integral and the sum-integral,
respectively) when the mesh of the partition (i.e., the length of the largest
subinterval) goes to zero. Also, we want to show that these operations are one
another’s inverses. We shall treat the nonnegative scalar case (p =1,
a = ay > 0) in Section 2.2 and show in Section 2.3 that the general matrix case
(including the signed scalar case!) follows directly from this using the matrix
identities. The treatment closely follows Mac Nerney (1963) except for one
point. He proves that the integrals are limits of Riemann sums and products
where the limit is taken along refinements of the corrésponding partitions. We
shall also first obtain this result but, following Dobrushin (1953), start with
right-continuous functions and thereby connect up with the usual interpreta-
tion of additive interval functions as measures and establish the stronger
result that the Riemann sums and products converge (uniformly over bounded
intervals) if just the mesh of the partition converges to zero. This connection
also gives a measure-theoretic interpretation to the further results of Section
2.4, where we treat the equivalence with the alternative definitions of
Section 1.

2.1. The key identities. The identities presented in the following lemma
will reappear in different guises throughout the paper. In fact, (1) and (2) are
discrete versions of Kolmogorov’s forward and backward equation, respec-
tively, and are special cases of (4), a version of Duhamel’s equation, the basis
of our differentiability result for the product-integral.

LEmMMA 1. LetA,, ..., A, and B,,..., B, be p X p matrices. Then

(1) [T A+4A)-1= Y (1+A) - (1+A4,_)A,
l<i<n l<i<n
(2) I[1 A+4A)-1= %Y A(1+A,) - (1+4,),
1<i<n l<i<n
(3) l<i<n 1<i<n
= Y AQQ+A,)---( +A;_)A;,
l<i<j<n
[T (1+4)- II (1+B)
(4) 1<i<n l<i<n
= Y (1+A)--(1+A,_))(A,-B)(1+B,;,,) - (1+B,).
l<i<n

Proor. The relations (1), (2) and (4) can be written as telescoping sums.
To prove (3), note that from (1) we get

(5) IT a+4)-1= % [l (1 +Ai)Aja

i<i<n 1<j<n 1<i<j
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but (2) implies that
IT 1+A)=1+ Y A(1+A4,) - (1+4, ).

1<i<j 1<i<j

Inserting this into (5) gives (3). O

We next define an additive interval function a(s,t), 0 <s <t < o, with
values in the p X p matrices. Such a function has the properties

(6) a(s,t) =a(s,u) +a(u,t) foralls<u<t,
@) a(s,s) =0 forall s,

(8) a(s,t) >0 ast]sforall s.

Similarly, a multiplicative interval function u(s,t) is defined by
(9) w(s,t) =u(s,u)u(u,t) foralls<u<t,
(10) w(s,s) =1 foralls,

(11) u(s,t) > 1 ast|sforalls.

Now let o ={¢;,, i =0,...,n} be a partition of Is,¢], that is, s =, <?; <

- <t,=t We define D,=l,_,,t]), i=1,...,n, D=]s,t] and |T|=
max(¢;, — ¢;,_;), the mesh of the partition. We shall use the notation u(D;) =
w(t,_,,t;) and a(D;) = a(t;_,,t;). Define the Riemann sum,

(12) Y Ar-1) = ) Y (u(Dy)-1),
g <i<n

and the Riemann product,

(13) 1;[(1+Aa) = 1<r[< (1 + a(Dy))).

We shall study the limits of these quantities as | 7| — 0 and define thereby
additive and multiplicative integrals and show that these are inverse opera-
tions. Note that it follows from (6) to (8) that a(s,?) is right continuous in ¢
for fixed s and in s for fixed ¢. The same is true for u(s, t).

2.2. The nonnegative scalar case. In this section we take p =1 and
assume throughout that a(s,#) is an additive and nonnegative interval
function and that u,(s, ?) is a multiplicative interval function which is greater
than or equal to 1. The reason for this approach is that the existence and
properties of the product-integral are very easy to establish in this case, while
the general matrix case, including the signed scalar case, then follows by
building on the nonnegative scalar case via a concept of domination. We
temporarily define the product-integral of «, by

(14) Tr (1 +day) =sup [](1 + Aay)

Is, ¢] g T
and the additive integral of u, by

(15) [] duo=1) = inf ¥ Alpo ~ 1),
s,t T T
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where 7 is an arbitrary partition of Js, ¢]. The next proposition shows that
these are also (unique) limits under refinements.

PROPOSITION 1. If g is an additive nonnegative interval function, then
(s,t) — (1 + da,) is a multiplicative function bounded below by 1 + a,
and above by exp(a,), and if p, is a multiplicative function greater than or
equal to 1, then (s,t) = [, ,d(u, — 1) is an additive function bounded above
by ug— 1 and below by log(u,). Furthermore,

(16) Tr (1 +day) =1lim [](1 + Aep)
Is, ] g T

and .

(17 [, (o =1 =lim E Aluo - 1),
Is, t] g T

where the limits are taken over refinements of .

Proor. From the inequalities
(18) 14+a+b<(l1+a)(l+b)<exp(a+bd), a=0,b=0,
it follows that IT,(1 + Aa,) is increasing over refinements of 7~ and bounded
above by exp(a,). Hence the product-integral 'TT (1 + da,) is also bounded
above by exp(a,). Now for any £ > 0 we can ﬁnd J_ such that

TT(1+Aey) =TT (1 +day) —«.

T Is,t]

Slnce a refinement of 7, increases the left-hand side, but remains below

(1 + da,), we have proved that '7T J(l + day) is a limit along refine-
ments of [T (1 + Aao) Since any two partltlons have a common refinement,
this limit must be unique. It also follows that I'1(1 + da,) is multiplicative.
Since the Riemann products are bounded between 1 + (s, ¢) and exp(a,(s, t)),
it follows that the product-integral is bounded between the same quantities
and hence satisfies (11).

In just the same way, from

(19) 0<log(ab) <a-1+b-1<ab-1, a>1,b>1,

it is seen that T ,A(u, — 1) is decreasing in 7, that (17) holds and that
(s,8) = [;,7d(no — 1) is a nonnegative additive interval function bounded
above by w,(s,#) — 1 and below by log(u (s, t)). O

From (1), (3), (16) and the inequalities

. n—1 xk xxn
e’ — — < e —
Py TR T

1
—E(x—l)zslogx—xle, x>1,
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one deduces immediately that the product and additive integrals satisfy the
following inequalities [we already have (20) and (23) from Proposition 1]:

(20) ao(s,t) + 1 < TT (1 + dag) < exp(ay(s,t));

(21) ao(s,t) < TT (1 +]Z;0) — 1 < ay(s, t)exp(ag(s, t));
(22) 0< ]77:](1 + d:;]— 1 — ag(s,t) < 2(ao(s,t))” exp(ao(s, t));
(23) log(uo(s,t)) = | dlmo=1) = mo(s,t) = 1;

(24) —Lpo(s,t) —1)° < j]’s,t]d(uo -1) - p,o‘(s,t) +1<0.

ProposiTION 2. If

(25) Ko(s,t) = ;77-](1 + day),

then Y

(26) ap(s,) = [ d(pg—1)
Is, t]

and vice versa. Moreover, we then have for any partition 7,

0< ) A(po—1) —ay(s,t)
g
(27) < po(s,t) — g[(l + Aay)

< M(s,t)(; Ao = 1) = ao(s, 1))

Proor. Let a, be additive and nonnegative and define u, by (25). Then
evaluate, by relation (45) of Lemma 1 and the left-hand side of (22),

0< Y A(po—1) —ay(s,?)
g

= Z (#-o(Di) -1- aO(Di))

l1<i<n

Y (I+ay(Dy)) - (1 +ag(D;_1))(ko(D;) — 1 —ag(D;))

1<i<n

IA

Xpo(D;y1) =+ ro(Dy)
IT wo(D;) - H (1 + ao(Dy))

l<i<n l<i<n

mo(s,t) — l;[(l + Aay).
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This gives the first part of (27) and taking limits over refinements of 7 gives
(26). The converse and the rest of (27) is proved similarly: let u, be multiplica-
tive and greater than or equal to 1, and define a, by (26). Then we evaluate, by
(4) and (23),

0 < po(s,t) — [T(1+ Aay)
g

IT wo(D) — T1 (1+a(Dy))

1<izn l1<i<n
= . Z (1 + ao(Dl)) T (1 + aO(Di—l))(IJ'O(Di) -1- aO(Di))

Xwo(D;y1) * wo(Dy) .
Z po(Dy) -+ #-o(Di—l)(#-o(Di) -1- ao(Di))l-Lo(Diﬂ) o mo(Dy)

l<i<n

< uo(s,n(; Ao = 1) — ao(5,8)).

IA

Hence, letting .7~ converge through refinements, we obtain (25). O

We proved in Proposition 1 that the product-integral and the additive
integral were limits under refinements. We shall now show that we have an
even stronger approximation result, namely, that (16) and (17) hold with lim ;-
replaced by lim s _, o, and moreover, that this holds uniformly in bounded s
and ¢.

First note that an additive nonnegative interval function, thanks to the
continuity assumption (8), determines by the identification ay(ls, t]) = a(s,?)
a o-additive measure which is finite on bounded intervals. In the following we
shall think of @, as a measure. The next lemma has been adapted from
Dobrushin [(1953), Lemma 1]. :

LEMMA 2. Let 0 be a positive measure on R, which is finite on bounded
intervals, and let I be a partition of 1s,t]. If s, denotes the position of the
largest atom in D;, then

lim max 6(D;\{s;}) =0
| T >0 1<i<n

uniformly in s,t < u for each fixed u < .

PrROOF. Let a; > a, > - be the sizes of the atoms of the measure 6 in
the interval 10, u], and let b,, b,, ... be the positions of these atoms. For any
e > 0 we take n(e) such that T, . @, < ¢/2. Now decompose 6 into the
continuous part 6° and the discrete part 6¢. Then 6°(0,v]) is uniformly
continuous on the interval [0, z], and we can hence choose a §,(¢) such that
any interval of length less than or equal to §,(¢) has 6° measure less than or
equal to £ /2. If the interval is also chosen of length less than §,(¢) = min|b; —
b,| for i and j > n(e), then the interval can contain at most one of the large
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atoms ay,. .., a,) Since s; is the position of the largest atom in D, the total
mass of the remaining atoms in D; must be less than or equal to ¢/2, by the
choice of n(e). Thus, for any partition 7~ of any s, t] ]0, u] with |7 less
than min(8,(¢), 8,(¢)), we have that max,_,_, 6(D; \ {s;}) <&, which com-
pletes the proof. O

LemMMA 3. Let 0 be a nonnegative additive interval function and let
D =]s, t]. Then for any u € D we have

AT (1 +d6) — 1 — 6(D) < (D {u})8(D)exp(6(D)).
D

ProOF. Let ’7TD\M(1 + df) = 7T]s u](l + d0)’7T]u t](l + d#@). Then

0<TT(1+d6) —1-6(D)
D

=(1+06({x})) TT (1 +d6) — 1 - 6(D\{u}) - 6({u}))

D\{u}
— AT (1 +d8) — 1 - 6(D{u}) + 0({u})( AT (1 +d6) — 1)
D\{u} D\{u}
< 30(D N {u})* exp(8( D\ {u})) + 0({u})6( D\ {u})exp(6( D\ {u}))
<0(D\{u})o(D)exp(8(D)). O

ProposITiON 3. If a, is an additive nonnegative interval function, then
(uniformly over bounded intervals)

(28) T (1 +dag) = lim [T(1+ Aay).
Is, t] |T1-0 T

If uy is a multiplicative interval function and u, > 1, then (uniformly over
bounded intervals)

(29) [ dpo—1)= lim ¥ A(uo—1).
Is, t] | T =0 o

Proor. Let M; =TI (1+dag) and N; =1+ ay(D,), then M; and N,
are bounded by exp(ay(D;)) and by Lemma 3, |IM; — N;| < ay(D; \
{s;Day(D,)exp(ay(D,)). We then get from (4) that

0<TT (1 +day) — TT(1+ Aay)

Is, ] T
(30) =1H Mi_ln N; = Z M, - M;_(M;-N)N;, - N,
<i<n <i<n l<i<n
< ITi<na0(Di\{Si})ao(D)(eXP(ao(D)))z’

where s; is the position of the largest atom in D,. Now, as | 77| = 0, this
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converges by Lemma 2 uniformly to zero, which proves (28). It follows from
(27) that (29) holds. O

2.3. The general matrix case. Here we show that the results of the previ-
ous section carry over directly from the real, nonnegative case to the general
case (including the signed scalar case) by using a concept of domination.
Theorem 1 establishes the existence of the product-integral as formulated in
Definition 1 of Section 1 and its multiplicative property.

For a p X p matrix A, we define the norm |A| = max; Zjlaijl. Note that
|AB| < |A| |B| and that |A + B| < |A| + |B|. We say that an interval function
B with values in the p X p matrices has bounded variation on ]Js, ¢] if

Bi(s,t) =sup T 1B(D)| sc <.
I 1<izn
We shall say that B has bounded variation if |B|(0,¢) < « for each finite 2.
[Even if the interval function 8 has bounded variation, the function ¢ — B(s, ¢)
need not be of bounded variation in the usual sense; it will be if 8 is additive.]
We say that B is dominated by a real interval function B, if |B(s, t)| < B(s,t)
for all s and ¢.

LeMMA 4. An additive interval function « is of bounded variation if and
only if it is dominated by an additive nonnegative real interval function a,. A
multiplicative interval function p is such that u — 1 is of bounded variation if
and only if there is a real multiplicative interval function puy > 1 such that
u — 1 is dominated by p, — 1.

Proor. The ““if”’ parts of the lemma are easy. For the “only if,” let « be
additive and of bounded variation. We then define

ao(s,t) = lal(s,t) = sup 3. le(D))l
I 1s<izn

and we are done.
If u is multiplicative then the function

(s,t) = lu = 1l(s,£) =sup )} |u(D;) — 1
I 1l<ixzn
is not additive, but only super additive [see (19)], that is,
lu — 1|(8>t) > |u - 1|(31u) + lu - ll(u’t)'
But we can define ay(u,?) = |u — 11(0,¢) — |u — 1|(0, ) > |u — 1|(u, ) and
wols, t) =TT ]s’t](l + da,), and then we have, as required,

(s, ) — 1] < ln — 1I(s, 1) < ag(s,2) < po(s,t) — 1. O

THEOREM 1. Let a be additive and dominated by the additive function a;
let wo = T(1 + day). Then u defined by

w(s,t) =Tr (1 +da) = lim [](1+ Aa)

Is, 2] |71-0 T
exists and the limit is uniform in 0 <s <t <u for any fixed u < . The
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interval function w is multiplicative, u — 1 is dominated by u,— 1 and
p — 1 — a is dominated by puy — 1 — a,.

Proor. From (8) of Lemma 1 we find
IT(1+ Aa) —1 - a(D)
T

= Z a(Di)(l + “(Di+1)) T (1 + a(Dj—l))a(Dj)'

1<i<j<n

Hence,
(31) l—[(1+Aa)—1—a(D)‘s IT(1+ Aay) — 1 — ay(D)
g s

since the same identity holds for a,. Now let . be any refinement of .7~ and
let 9, be the corresponding partition of D;. Then
[T +80) - [T +4a) = TT (TT(+8a)) - I (1+a(D)).
7 T 7,

l<i<n A l<i<n

Now apply (4) of Lemma 1 and the inequality (31). We find
(32) rn1+A@—1]a+A¢ﬂsrn1+A%)—ru1+A%y
7 T iz T

But the product-integral u, of «, exists and equals the limit as || — 0 of
the Riemann products; hence, the same result holds for a. Taking the limit as
|77| - 0 of (81) shows that u — 1 — @ is dominated by puy — 1 — . In the
same way, by using (1) of Lemma 1 it is proved that 4 — 1 is dominated by
o — 1. Combining (30) and (32), we get

0<|TT (1 +da) - [I(1+ Ae)
Is, t] g
<Tr (1+day) - TT1(1 + Aey)
1s, t] g

IA

max ag( D; \ {s;}) ao( D) (exp(ao( D)))".

Thus, by Lemma 2, [T(1 + Aa) - 7.

o t](l + da) as | 7| — 0 uniformly in
0 <s <t <u for any fixed u. O ’

We continue by proving in Theorem 2 the converse result for the additive
integral of a multiplicative function (minus 1) and, finally, by showing in
Theorem 3 that the two operations are inverses.

THEOREM 2. Let p and p, be multiplicative and n — 1 be dominated by
o — 1; let ag = [d(ug — 1). Then « defined by

a&n=j dp—1)= lim ¥ A(p-1)
1s,t] | T1-0 o

exists and the limit is uniform in 0 <s <t <u for any fixed u < ». The
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interval function « is additive, a is dominated by a, and p — 1 —a is
dominated by gy — 1 — a,.

Proor. Let us evaluate

#(D)_I_EA(#_1)= l_[ M(Di)_l_ Z (M(Di)_l)-

l<i<n l<i<n
By Lemma 1 we get for A; = u(D;) — 1 that this equals
) (w(D;) = Du(Dyyy) -+ M(Dj—l)(M(Dj) - 1)
l<i<j<n

= Y (u(D)-1u(D,,u--U Dj—l)(M(Dj) - 1),
l<i<j<n
which is bounded in norm by the same expression with u replaced by wu,.
Hence,

(33) |w(D)-1- % A(u- 1)\ <uo(D) —1— X A(po - 1).
a M

Now let .# be a refinement of 7" and let 9, be the corresponding partition of
D;. Then

YAr-1)-YAp-1)= Y |u(D)-1-Y A(u-1)|,
g i

15;’9( 9,

hence
Y A(-1) - ZA(u—l){s Y Ao —1) = ¥ A(po — 1).
2 S g S

Now ay = [d(u, — 1) exists and, moreover, equals the limit as | 77| — 0 of the
Riemann sums, which shows that the same results hold for x. The domination
of a by a, now follows trivially from the definitions. Taking the limit as
|Z1— 0 in (33) gives the domination of u — 1 —a by uy— 1 — a, The
“uniformity follows from (27) and Theorem 1. O

THEOREM 3. If a is additive and of bounded variation and u is defined by

(34) u(s,t) = ]77:](1 +da),
then ’
(35) a(s,t) = [] t]d(p, -1).

Similarly, if p is multiplicative and u — 1 of bounded variation, and if a is
defined by (35), then (34) holds.

Proor. Assume a to be additive and of bounded variation and define u by
(34). Let a, dominate a and define u, to be the product integral of a,. Then
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by Theorem 1, |u — 1| < u,— 1, which shows that u — 1 is of bounded
variation, and that [d(u — 1) exists. We must show that it coincides with «.
Now evaluate

;. Alp = 1) —a(s,t) = X (D) —1-a(Dy)),

l<i<n
which by Theorem 1 is dominated by
Z (ﬂ-o(D) - 1-ay(Dy)) = Z A(po — 1) — ag(s,?),
l<i<n
which goes to zero by Proposition 2.
Similarly, if u is multiplicative and u — 1 dominated by w, — 1, then by
Theorem 2, @ = [d(u — 1) is dominated by ay, = [d(u, — 1) and hence

u(D)—l;I(HAa)— IT (w(Dy)) - H (1 +a(D,))

= . Z I-L(Dl) IJ'(Di—l)(IJ'(Di) -1- a(Di))

X(1+a(D;yy) - (1 +a(D,)),
which by Theorem 2 is dominated by
Z po(Dy) -+ IJ’O(Di—l)(:u'O(Di) -1- aO(Di))

l<i<n

><(1 + ao(Di+1)) e (1 + aO(Dn))
= I1 (ko(Dy)) — l—[ (1+a0(Di))

l<i<n l<i<n

=po(D) — ];I (1+ Aay),
which tends to zero by Proposition 2. O

We conclude this section with some comments on product-integration over
general spaces. We shall return to this subject again in Sections 3.3 and 4.3. In
the scalar (commutative) case, if @, is a finite signed measure on an arbitrary
measurable space, one can still define its product integral by (16)—that is, as a
limit over refinements—with the interval s, ¢] replaced by an arbitrary mea-
surable set and a partition .7~ being a finite collection of disjoint measurable
subsets. The proofs of all the previous results (excepting Lemmas 2 and 3 and
Proposition 3, and elsewhere replacing limits as the mesh of a partition goes to
zero by limits under refinements) go through without any changes; we derive
the signed measure case from the nonnegative case just as was done previously
for the matrix case. The product-integral over any two disjoint sets is multi-
plicative.

One can also generalize the results concerning limits as the mesh of a
partition goes to zero when «, is a signed measure on the Borel sets of a
separable metric space, finite on compacts. The interval s, ] is replaced by an
arbitrary measurable subset of a compact set. A partition is again a finite
collection of disjoint subsets. Its mesh is the maximum of the diameters of its
components, where the diameter of a set is the supremum of the distance
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between any two of its points. The proof of Lemma 2 has to be only slightly
modified to deal with this situation and Lemma 3 not at all (in fact, it already
used commutativity). In Lemma 2, working with balls instead of with inter-
vals, we use the fact that by compactness the supremum over x in a compact
set of the 6° measure of an e-ball around x tends to zero with &.

We leave it to the reader to derive the commutative case result (Definition 4
of Section 1),

Tr (1 +dag) = [I (1+ag({u})))exp(aj(s,t)),

Is, t] uels,tl
where af is the continuous part of «,. This can be proved by writing the
product-integral of a, over s, ¢] (with respect to limits over all measurable
partitions) as the product of the product-integrals over the set of atoms of «,
in Js,¢] and over its complement, respectively, and by then doing some easy
analysis. One can show that in R* the various definitions coincide—-thus, that
in our preliminary definition (14), the supremum on the right-hand side does
not increase when taken over a wider class of partitions [and similarly for (15)].
The main element in the simple proof of this is the exponential inequality (20).

Another possibility is to let the mesh of a partition be the maximum «,

measure of an element of the partition less its «,-largest atom. Again, the
product-limit as the mesh of the partition goes to zero exists and equals our
product-integral.

2.4. The Péano series and the Volterra integral equation. In this section
we finally derive the equivalence of Definition 1 in Section 1 with Definitions 2
and 3 (Theorems 4 and 5). Also, we prove a central result (Theorem 6) on the
difference of two product-integrals, called the Duhamel equation. Let a be an
additive interval function on ]0, «[ with dominating measure a,. Then each of
the entries «,; is a finite measure on the Borel subsets of bounded subsets of
R,, and we can define a product matrix measure on bounded subsets of R"
starting from

a™(D; x -+ xD,)=a(D,) - a(D,).
Note that ,
IT le(D)l < T1 ao(D))

l<i<n l<i<n
=ay (D, X --- X D,).
Thus, «™ is dominated by a{*, the usual product measure. For an interval D
let U(D; n) denote the subset of R”
UD;n) ={(uy,...,u,) €ED™:u; < -++ <u,}.
Then the Péano series is defined by

|a™(D, % - x D,)|

IA

P(D;a) =1+ f a™(U(D;n))

n=1

=1+ f [[ Da(dul)-~' a(du,).

n=lu,<-"

(36)
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Note that the series is dominated by
P(D;ay) =1+ ) ag”(U(D;n))

n=1
<1+ Y (ao(D))"/n!=exp(ay(D)),
n=1
which shows the convergence of the series as well as the inequalities
(37) |P(D;a)l < P(D;a,) < exp(ay(D)),
(38) |P(D;a) — 1| < P(D;a,) — 1 < ay(D)exp(ay(D)),

IP(D;a) = 1 —a(D)l < P(D;ay) — 1 - ay(D)

39
(39) < %(CVO(D))2 exp(ao(D)).

1517

We write U(s,¢;n) for the set U(ls,t];n) and P(s,t;a) for the interval

function P(ls, t]; o).
PRrOPOSITION 4. The interval function P(s,t; a) is multiplicative.

Proor. Define the set in R%,

U(s,u,t;i;n) ={s<u; <+ <u;<u<u; ;< - <u, <t}
i=0,.

with the obvious modifications for i = 0 and { = n. Then
U(s,t;n) ={s<u; < - <u,<t}= U U(s,u,t;i;n).
0<i<n
Hence,

a™(U(s,t;n)) = Y a™(U(s,u,t;i;n))

0<i<n

= X a®(U(s,u;n))a™ " (U(u,t;n)).

0<i<n

..,n,

Summing over n gives the desired result. The exponential inequality (38)

shows that P(s, t; ) is right continuous in s and ¢. O

THEOREM 4. The Péano series is equal to the product-integral

P(s,t;a) =TT (1 +da).

Is, ]
Proor. First note that
P(s,t;a) — [](1 + Aa)
T
= 1<zr[<nP(Di;a) - 1<Llj<n(1 + a(D;))
= Y (1+a(Dy) (1 +a(D;_y)

l<i<n

X(P(D;;a) = a(D;) = 1)P(D;,150) -+ P(D,; ),
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which is dominated by the same sum with « replaced by a,. Now the proof of
Lemma 38 goes through with 77T (1 + d6) replaced by P(-;a,), since only
multiplicativity and the exponential inequalities are used; note that
P({s}; ay) = 1 + ay({s). Thus, we find that

P(s,t;a) — [T(1 + Aa)| < max ao(D;\ {si})ao(s,t)(exp(ao(s,t)))2,
T l1<i<n

where we take s; to be the largest atom of a, in the interval D;. Now by
Lemma 2 the right-hand side tends to zero with | 77| and hence the result is
proved. O

PROPOSITION 5.

(40) T (1+da) -1 f AT (1 + da)a(du) (the forward equation)

Is, ] Is, ¢ 1s, ul

f a(du)TT (1 + da) (the backward equation),

Is, t Ju,t]

(41)

where the integrals are Lebesgue—Stieltjes integrals.

Proor. Using Fubini’s theorem on the (n + 1)th term of the Péano series,
we get

a™tY(U(s,t;n + 1))
= [ a™({(uy- s tp): (gse.. un,u) € U(s,t;n + 1)} )a(du)

Is, 2]

= a™(U(s,u — ;n))a(du).

Is, ]

Summing over n gives the forward equation. The backward equation is proved
in just the same way. O

TueoREM 5 (The forward and backward equations). Let B(s,t) be any

interval function which is right continuous with left limits in both variables
and which satisfies either of the two equations

B(S,t) -1= '/;s t]B(s’u _)a(du)1

B(s,t) = 1= [ a(du)B(u,?).
Is, ]
Then B(s,t) = ’7T]s t](l + da) (and the converse is also true).
ProorF. We have already proved the converse in Proposition 5. Suppose S

satisfies the forward equation (for fixed s, for all ¢>s). By the cadlag
property, 8 is then bounded for ¢ in a bounded interval. Let P")(s,¢;a) =
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1+ X, <,a®(UC(s, t; k). Then
P™(s,t;a) =1+ f]s’t]P("'l)(s,u - a)a(du)
and hence
B(s,t) —P™(s,t;a) = fls,”(ﬁ(s,u =) = P""V(s,u — ;a))a(du).

From the first equation for 8 we find
IB(s,¢) — 1| < sup IB(s,u —)lay(s,t).

s<u<t
It is not difficult from this to show by induction over n that
|B(s,t) — P™(s,t;a)| < sup |B(s,u N(ay(s,2))".

s<u<t

For n — » we get that
B(s,t) = lim P"™(s,t;a) = P(s,t;a) =TT (1 +da).

The result on the uniqueness of the solution of the backward equation (for
fixed ¢, for all s < #) is proved in just the same way. O

Note that the forward equation generalizes the fundamental identity (1),
whereas the backward equation is a generalization of (2). In a similar way we
can generalize (4).

THEOREM 6 (Duhamel’s equation). Let a, and a, be additive. Then

TT (1+da) —TT (1 +da,)

Is, 2] Is, t]

= TT (1 +da;)(a; —ay)(du) TT (1 + day).

Is, t11s, ul u,t]

(42)

Proor. Consider the measure a{";™ on R}*™ defined by
al{"s"™(A; X -+ XA, XB; X -+ XB,)
=ay(Ay) - ay(A,)ay(B,) -+ ay(B,,).
By applying Fubini’s theorem we obtain that
a{"s™(U(s,t;n +m))

= /]s t]ag"-l)(v(s,u —;n = 1)) ay(du)ad(U(u,t;m))

= | af(U(s,u = ;n))ay(du)ef™ P(U(u,t;m - 1)).

Is, ]
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Summing over n > 1 and m > 1, we get

T (14 dal)al(du)(ﬂ' (1+day) — 1)

Is, ¢ Is, ul lu,t]

i ( T (1 + day) - 1)a2(du) T (1 + day),

]S,t[ ]s,u[ ]uyt]

which is the desired relation by application of (40) and (41). O

One may derive Theorem 4 from Theorem 3 by showing that the additive
integral of P(-,-;a) — 1 equals a. Also, Theorems 5 and 6 can be derived
directly from Lemma 1 and the limit results of Theorems 1 and 2 by domi-
nated convergence arguments. )

3. Further properties of the product-integral.

3.1. Continuity and differentiability. From the Duhamel equation (42) and
the exponential inequality (20) it is clear that the product-integral is a continu-
ous functional from additive to multiplicative interval functions, where conti-
nuity is with respect to the variation norm on bounded intervals. It is rather
less clear that the functional is also continuous and even differentiable with
respect to the supremum norm, provided the variation is uniformly bounded.
By differentiability we mean here Hadamard or compact differentiability,
which is intermediate between the more familiar Gateaux (directional) and
Fréchet (bounded) differentiability and exactly atuned to the functional ver-
sion of the 86-method, a basic and, in principle, elementary tool of large-sample
statistical theory [see Reeds (1976) and Gill (1989)]. This will be illustrated in
several parts of Section 4.

To begin with we give definitions of the two norms. We work on a fixed
bounded interval 10, 7]. As in Section 2, « is an additive and x a multiplicative
matrix-valued interval function. The variation norm of an interval function g
is simply its variation over this interval (see Section 2.3),

I8ll, = 1810, 7),

while the supremum norm is given by
Bl = sup IB(s,?)l.
O<s<t<r

We also recall the integration by parts formula for cadlag (right continuous
with left-hand limits) bounded variation matrix functions H and K,

(HK)(]s,t]) = H(t)K(t) — H(s)K(s) = [] t]H_(dK) + [] t](dH)K.

If one of H or K does not have bounded variation, we use this formula to
define the integral with respect to it in terms of the other integral. Considering
H also as an interval function via H(s, t) = H(¢) — H(s), the formula can be
applied to prove the following lemma.
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LEMMA 5. Let H, K and U be cadlag matrix-valued functions such that K
and U are of bounded variation, whereas H may have unbounded variation.
Then

(43) H J(mK| <20HILIKI,
(44) “ [utam)| <z2iHILIUI,
and hence

(45) “ [UH)K| < 4IHLIUILIK],.

Proor. The integrals with respect to H are defined by partial integration.
So

”/(dH)K

since || K|l. < ||K|l,. The relations (44) and (45) are proved similarly. O

< |HKlw + | H =l Klly < 2/ H lll K |l,,5

We shall now establish an expansion of the product integral as a function of
the integrand.

ProPOSITION 6. Let a and B be additive interval functions of bounded
variation. Then

TT (L+d(a+B) - TT (1+da)

Is, Is,

=X T (1+da)
m=1s<u;< +* <U,<Up =t uql
< T1(p(du) TT (1+do)]
i=1 Juj u;pql
+ [ T (1+d(a+p))
s<ug< *t <uU,<up,qi=tIs,uol
< T1(p(du) TT (1+da)).
i=0 Jug u;ql

In particular, we get for n = 0 the Duhamel equation,

T (1+d(a+B) - T7T (1 +da)

Is, ¢ Is,d

= [ AT +d(a+p))Bdu) TT (1+da),

s<u<tls,ul Ju,

(46)
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and for n = 1 we get the first-order expansion with a remainder term,

AT (1 +d(a+B)) — '7T(1+da)

Is, ¢ Is, ¢
- T (1 + da)p(du) TT (1 +da)
- ff ]'n' (1+d(a +ﬂ))ﬂ(du)]’7T[ (1+da)/3(dv)]’ﬂt:(l+da)

Proor. The relations follow by repeated application of the Duhamel equa-
tion. O

Continuity and differentiability of any order of the product-integral in the
variation norm follow easily from (46) and (47) but we shall prove much
stronger results in the supremum norm.

THEOREM 7 (Continuity of the product-integral in supremum norm). Let
a™, n=1,2,... be a sequence of additive interval functions on 10, 7] such
that

la™ —alle >0 asn — o,
lim suplla‘™||, < o,

for some interval function a which is consequently also additive and of
bounded variation. Then, defining u™ =TT (1 + da™), u =TT (1 + da), we
have

lu™ — plle > 0 asn — .

Proor. For B = a™ — a we get from (46), using the inequality (45), that

™ — plle < 4llu™lLlplllla®™ — all.

Now the Kolmogorov equation (40) and the exponential inequality (20) imply
that

1™l < Iu™lella™ll, < exp(lla®™ll)lla™Il,,

which are bounded by assumption. This shows that [|u™ — ull. = 0 as n — =,
and hence that the product-integral is continuous in the supremum norm. O

We further refine this result to a differentiability result as follows: Let (™,
a, © and p be as in Theorem 7 and suppose, moreover, that a‘™ =a + ¢,k ,
where ¢, is a sequence of real positive numbers, ¢, — 0 as n — », and where
h, is a sequence of additive interval functions converging in supremum norm
to an interval function # which must also be additive but may not be of
bounded variation. So we have

limsup la™|, <~ and ¢,Y(a"™ —a)=h, - h insupremum norm.
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The mapping Z: a — u = T (1 + da), restricted to a set of & with uniformly
bounded variation norm, is then supremum norm Hadamard differentiable if
we correspondingly have

(48) t;Y(P(a™) - #(a)) > dP(a) -k in supremum norm,

where d #(a), the derivative of & at the point «, is some continuous linear
mapping from the space of additive matrix-valued interval functions on ]0, 7]
to the space of interval functions, both endowed with the supremum norm.
[See Gill (1989), Lemma 1, for the propriety of making this restriction on the
domain of £.] To find out what the derivative will be [its form is actually
already given for special ~ as the last term on the left-hand side of (47)], we
evaluate the left-hand side of (48) with the Duhamel equation and obtain

(49) (61(2(@™) = P(@))(5,8) = [ pPs,u =), (du)u(u,0),

We expect (49) to converge to [, 4u(s,u — )h(du Ju(u, t), where the integral
with respect to & will have to be defined by application (twice) of the integra-
tion-by-parts formula; recall that 4 itself may not be of bounded variation.
This supposed limit then does define, at the given point «, a continuous linear
function of h, which we denote, in anticipation of the desired result, by
(dP(a) - h)s,t); thus, (d #(a) - h) is again an additive interval function.

TueoreM 8 (Compact differentiability of the product-integral with respect to
the supremum norm). Consider the product-integral as a mapping & from
the set of additive interval functions on 10, 7] with variation bounded by the
constant c to the space of interval functions on 10, 7], both domain and range
endowed with the supremum norm. Let a be given and define p = P(a) =
T (1 + da). Then & is compactly differentiable at a with derivative d #(a)

given by
(dP(a) - h)(s,t) = []s s u =) h(du)u(u,0),

where the integral with respect to h is defined by the integration-by-parts
formula.

Proor. We just need to prove the convergence of (49) to the limit previ-
ously described. The inequality (45) and the relation (47) show that

Iu™ - — fu d(a™ - a)ull

(50)
[ B(du)u(u,v ~)B(dv)

s<u<v<t

< 4™l Ml

where B = a'™ — a. In order to continue the evaluation we need the following
expression for the term u(u,v —), which is found by application of the
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forward and the backward Kolmogorov equations,
(51)  pw(u,v-)=1+ da+ [ a(d)p(x,y—)a(dy).
Ju, ol u<x<y<v
Now we insert (51) into the last integral of (50) and find
| B(du)u(u,v —)p(dv)

s<u<v<t

= J[ Bawp(a) + [f[  B(du)a(dx)p(dv)

s<u<v<t s<u<x<v<t
+ Jlf]  B(dw)a(dx)n(x,y —)a(dy)B(y.t -).
s<u<x<y<v<t

This shows that the following bound holds:

(52) ” [[dBragp ’ s” JIEL dB‘ + 1811Zlelly + 1812 llleel?.
Finally,
(53) [[dBdp =B(s,t-)" - L (aB)".

Now apply the representation B = a™ — a = ¢, h,. By combining
(50), (52) and (53) we find Iz, *(u™ — u) — fudh,pull. can be bounded by
¢t (L(AR,)? + c,) for some constants ¢, and c,. The second term tends to
zero since ¢, — 0. If h, has uniformly bounded variation, then the first term
also can be bounded by ¢,2[|A,|lll~,|l,, which also tends to zero. But, more
importantly, we have to consider the situation where the variation of 4, tends
to infinity but still ¢,z |, is bounded. In this case we write

tanhndhn = fhnda(") - fhnda - [h,,_ da™ + fh,,_ da.
For the first two terms on the right-hand side, we have
f(h,, —h,)d(e™ —a)| + ”jhm d(a™ — a)

<k, = bylllle™ = all, + 2lIA,,ll,lla™ - all.

Now let first n —» » and then m — =, and let these terms converge to zero.
Precisely the same argument shows that the remaining terms & ,_ d(a™ — a)
also converge to zero in supremum norm. O

[had(a™ - a)

<

©

o

The last lines of the proof actually form a version of the proof of the
Helly-Bray lemma; see Gill [(1989), Lemma 3] for a complete and simple proof
in a similar context.

The theorem also applies directly to the mapping X - Y =TT (1 + dX)
from the usual Skorohod space D(0, 7)?*? to itself under the supremum norm
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when we represent a by the cadlag function X(¢) = a(0, ), since we have [for
X with X(0) = 0]

1 Xl < llall < 2/ X |l
and similarly for u and Y provided Y is bounded away from zero.

3.2. Gronwall inequalities, inhomogeneous equations, anticipating inte-
grands. In this section we briefly summarize some further useful results on
product-integrals, starting with a version of Gronwall’s inequality [Gronwall
(1919)]. [See Beesack (1975) for a general survey of the topic of Gronwall
inequalities, especially Sections 11 and 12, and see B. W. Helton (1969) and
J. C. Helton (1977) for results in the context of product-integration.] Consider
the nonnegative scalar case and recall that uy(¢) =7 (1 + da,) satisfies

. . 10,t]
the Volterra integral equation

mo(t) =1+ [ po(s —)ao(ds).
10,¢]
The basic Gronwall inequality is now the following.

THEOREM 9. Suppose a, is a nonnegative scalar additive interval function
on 10, 7] with uy(t) =TT 0 t](l + da,); suppose u is a cadlag nonnegative real
function such that ’

(54) w(t) <1+ f w(s —)ay(ds) forallt <.
10,¢]
Then u(t) < po(t) forallt <.

Proor. On repeatedly substituting the inequality for u in the right-hand
side of (54) we see the Péano series for u, appearing together with a remainder
which converges to zero by the implicit boundedness of u. O

There are also inequality versions of inhomogeneous Volterra integral
equations. The proof of the following very useful theorem is left to the reader.

THEOREM 10 (The inhomogeneous equation). Let a be an additive interval
function of bounded variation and ¢ a cadlag matrix-valued function on 10, «[.
Then ¢ satisfies

(55) (2) = y(t) + []0 t]d)(s —)a(ds) forallt

ifF ’

(56) (1) = w(t) + [ ¥(s —)a(ds)TT (1 + da) forallt.
10,¢] Is, £]

The related Gronwall inequality is of course that in the nonnegative scalar
case, (55) with “ = " replaced by ‘ < ”’ implies the same modification of (56).
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Finally, we mention a slight variant of the Volterra integral equation.
Suppose that ¢ and « are as before and that ¢ satisfies the equation

o(t) =1+ []0 t}(b(s)a(ds) for all ¢,

that is, the integrand is the ‘““anticipating” ¢(s) instead of the nonanticipating
¢(s — ), which would have led to the product-integral of a as the solution. It
turns out that this equation has as unique solution,

-1

8(5) =T (1+da) ™ = (T (1-da))
1o,¢] [¢0[

provided that the inverse on the right-hand side exists. We refer to J. C.

Helton (1977, 1978) for a complete collection of results combining all these

kinds of integral equations and corresponding Gronwall inequalities.

3.3. Product-integration of semimartingales. A semimartingale X is a
real-valued cadlag stochastic process which can be written as the sum of a
process A with paths locally of bounded variation and a local square-integrable
martingale M. The latter process may have infinite variation on compacts, but
it does have finite quadratic variation: Taking a sequence of partitions
I, of 10, such that 7,, N ]0,7] is finite for each 7 < © and with mesh

m

|7, N10,7]l > 0 as m — «, we have

(57) L (AM)* ~>p[M](2)
I,N10,t¢]

for a nondecreasing finite process [ M ]. Because finite variation implies finite
quadratic variation, we also have

(58) Y (aX)’ ~p[X1(2)

I,N10,t]

for a nondecreasing finite process [ X], called the (optional) quadratic variation
of X.

The limits in (57) and (58) are actually uniform in ¢ in ]0, 7] for each finite
7, in probability. Note that [A] = X(AA)? that is [AX¢) is the sum of the
squares of the jumps of A in [0, ¢]. If M is continuous, then [M] = (M), the
predictable variation process of M, and [X]=[M] + [A]. (A semimartingale
allowing such a decomposition is called special.)

For two semimartingales X, and X, one can define the optional covariation
process [ X;, X,] by replacing (A X)? by (A X;XA X,) in (58); thus the notation
[X] is really just shorthand for [ X, X]. If X is now a vector of semimartin-
gales, then [ X] becomes the matrix of optional covariation processes of the
components of X. If X is p X p matrix-valued, then [X]is a p? X p? matrix.

The solution of the Volterra (stochastic) integral equation (the forward
equation) for X was first described by Doléans-Dade (1970) and is usually
referred to as her exponential semimartingale. More generally it turns out that
both 77 (1 + dX) and 77T (e?¥) can be defined by (suitable modifications of)
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any of the Definitions 1-4 as we mentioned already in Section 1—see
Karandikar (1983) and Hakim-Dowek and Lépingle (1986) for the most recent
results of this type. [In fact, McKean (1960) already implicitly used 77T (e¢%X) to
construct Brownian motion on a Lie group.] Now, even when Definition 4 (the
commutative case) is applicable, 7T (1 + dX) and 7T (e?X) are generally dif-
ferent. As we stated in Section 1, the equivalence between the definitions has
been established [Emery (1978)] by the very clever construction of appropriate
topologies on the space of semimartingales and then modifying the abstract
approach to the theory of integral equations (based on the fixed-point theorem
for contractive mappings on a Banach space).

Now it turns out that the finite quadratic variation property (58) alone is
sufficient for establishing one of the central results in stochastic analysis: It6’s
celebrated formula,

(59) F(X,) = f(X,) + fo‘f'(xs_) dX, + fotf”(Xs_) d[x1,,

for a twice continuously differentiable function f, with the obvious vector and
matrix analogues. This is done by Follmer (1981) using a quite straightforward
pathwise (deterministic) analysis, establishing (59) by looking at sequences of
partitions for which (58) holds almost surely. [This is based on a result due to
Doléans-Dade (1969); more precisely, sequences are considered in which there
is weak convergence of the discrete measures ,, = L, c »- 8,(X, — X, )? to
the measure with distribution function [X],.] Since the Itd formula involves
the stochastic integral [f'(X_)dX with respect to the possibly infinite varia-
tion process X, part of the proof is dedicated to establishing a meaning for this
integral as a limit of Riemann sums; again, just the finite quadratic variation
property is needed to do this.

It is well known that the stochastic integral of a predictable process with
respect to a semimartingale is an in-probability limit of Riemann sums, though
the proof of this, as well as that of (58), is based on a delicate stochastic
analysis. In fact, if the partitions are chosen appropriately—in fact randomly,
using stopping times—one can get almost-sure convergence. However [see,
e.g., Bichteler (1981)], the partitions are now chosen dependently on the
integrand while in Féllmer’s construction they are fixed in advance and work
for all C? functions f simultaneously. [Alternatively, one can make the
existence of Riemann-approximating sums the starting point for the theory of
stochastic integration, and only at the end show that the class of natural
integrating processes is the class of semimartingales; see Protter (1989).]

All these results lead one to hope that the stochastic aspects of the product-
limit definition of 77T (1 + dX) for a semimartingale X can be completely
ignored: One should simply try to define 77 (1 + dX) for deterministic p X p
matrix functions of finite quadratic covariation, that is, functions such that a
sequence of partitions 7,, exists satisfying

X (AXij AK,) - [Xij’ sz](t)
I,N10,t]
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for a finite p2? X p? matrix function [ X]. Such a theory, if we want to include
the equivalent Definitions 2 and 3 (the forward equation and the Péano series)
would have to include a ‘‘deterministic’’ theory of integration of the left-con-
tinuous version of such a function with respect to another.

Unfortunately, the latter seems to be very hard in general and we have not
even succeeded in showing the existence as a product-limit (Definition 1) of
T (1 + dX). The programme seems to fail because of the asymmetry of
fX,_ dX,, which makes its definition rather delicate. Even if we restrict
attention to the product-limit, we still seem implicitly to need this integral.
However, we can easily define [X_ dX ‘“symmetrically’’ for real-valued X by
the trick [X_ dX = 3;(X? — [X, X]). This explains why we can get much of the
way in the scalar case, as we now explain.

Let X,, ¢t €[0, 1], be a cadlag real function with j Jumps strictly less than 1
in absolute value. We consider partitions .7~ of [0, 7] and corresponding finite
products IT (1 + AX). Taking logarithms and expanding, we find

log[T(1+AX) = Y AX - LY AX2+ 1Y AX3+
X, -1V AX2+ 1Y AX®+
g T

Consider a sequence of partitions with mesh converging to zero and
Y +AX? > [X] . Note that [T, AX*| < (max,|AX)*"2Y ,AX? and that
rsAX* > T (AX)" for k > 2, and [T (A X)) < (max,|AX,)*X],, where
A X, = X({t}). By absolute convergence of the series for log(1 + x) in x| < 1
this gives convergence of logI'T (1 + AX) to

1 (_ )k+1

X, - 5IX)+ ST (ax)"

2 hes ok

We now simply define 77" 0r (1 + dX) as the exponential of this expression.
One also has the Péano ‘series representatlon for 7T (1 + dX), including

the existence of each of its terms as im X --- X, .. _;, A X -+ A, X, where
A; X denotes the increment of X over the ith element of the partltion. This is
proved as pointed out to us by Atma Mandrekar, by noting that

(61) ]_I(1+AX)—1+Z Yy - ZAX A X
k=1 i< - <i

and ¥ -+ X; <.y, 4;X -+ A, X is a polynomial of degree k in ¥ ,AX,
YsAX% . L AX % each of which converges as | 7| — 0. These polynomi-
als are called Newton’s polynomials [see Avram and Taqqu (1986), Appendix].
So.each term of the Péano series does exist as a limit of iterated Riemann
sums and we just need to bound the tail of the series (61) (summing over
k > k,, say) by something arbitrarily small, uniformly in 7, for sufficiently
large k,. This can be done quite easily by taking the power series for the
exponential of the right-hand side of (60) and rearranging terms.
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It is not at all clear what can be said about a version of the forward equation
characterisation of this product-integral (Definition 2), since it is very hard to
give a meaning to the integrals with respect to X in this definition, and more
precisely to describe the class of possible integrands (which must depend on
X). This may be possible, as pointed out to us by Hans Follmer, by means of
the characterization of [Y_dX — [X_ dY as twice the area enclosed by the
curve obtained by plotting Y, against X, and joining its endpoints with
a straight line (counting the area enclosed by closed loops as many times—
positive or minus—as the curve goes clockwise or anticlockwise, respectively,
round the loop). Since we already can define [X_ dY + [Y_dX by the sym-
metrization trick as XY — [X, Y], this yields a definition of [Y_ dX whenever
the area just described is well defined; see Lévy [(1948), Section VII.55] for the
case when X and Y are independently Brownian motions.

Possibly all this could lead to a general theory for the matrix case too;
however, this brings us rather far afield from our primary interests and it is
therefore not pursued here.

A different topic is the question as to whether it is possible to derive a
Duhamel equation for semimartingales; as we saw, all our other major prod-
uct-integral results are valid for semimartingales. The answer to this question
is that a Duhamel-like equation can be obtained for semimartingales by
applying the It6 formula to f(X,,Y,) = X,Y;!, and then by multiplying
throughout by Y,. Since the stochastic integral is only defined for predictable
integrands, arriving at the Duhamel equation depends on making an appropri-
ate definition of the integrals involved. We leave the details to the interested
reader.

3.4. Product-integration over R*. As we mentioned in Section 2.3, the
product-integral of a real signed measure over bounded subsets of R* can be
defined as a limit over partitions, where partitions are now chosen more freely.
One can ask how much of the ‘“equivalent definitions’ and “further proper-
ties” of Sections 2.4, 3.1 and 3.2 are preserved under this extension. Note that
the Kolmogorov forward and backward equations, the Péano series and the
Duhamel equation, all make strong use of the total ordering of the real
numbers in Rl. Two sets of results now follow, depending on whether we
introduce a total or only a partial ordering on R%.

A total ordering gives stronger and more results, but always formulated in
terms of the somewhat arbitrary choice of ‘linearization’ of space. For
instance, one is free to define

x<y e forsomej=1,...,k x;<y;,%=y;,1i>J,
x<y e x<yorx=y.

Now any two x,y satisfy just one of the three possibilities x <y, x =y or
x > y. This total ordering corresponds when k& = 2 to scanning row-wise (from
bottom to top and, within rows, from left to right) as on a video screen.
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Now, defining
10,s] = {u:0 <u <s},
10,s[ ={u:0 <u <s},
Is,t] = {u:s <u <t} =]0,¢] \]O, 5]

and so on, we find, by simply inspecting the proofs in Section 2.4, that for any
bounded B the following hold:

AT (1 +da) =1+ [ T (1 +da)a(ds)
B

s€B BNJo, sl
=1+ f a(ds) T (1 +da) ‘(Kolmogorov);
s€B BnNl]s,of
77'(1 +da) =1+ z IE [ a(ds,) -+ a(ds,) (Péano);
n=1s< - <s,;s,€B

T (1+da) - TT (1 +dB)
B B
- [ T (1 +da)(a(ds) - B(ds)) TT (1+dB) (Duhamel).

sEB B0, ol BAls, |

Hence, we can also derive continuity and differentiability results, where the
proof goes just as in Section 3.1 but using now the integration-by-parts
formula,

U(B)V(B) [ Uds)v(a)

s€B teB

U(ds)V(dt) + [j U(ds)V(dt)

s,teB, s<t s,t€B, s>t

=[ BU(]O,t[nB)V(dt) +[ BV(]O,s]nB)U(ds),

for measures U and V on R*. Suppose we restrict attention to sets B which
are rectangles aligned with the axes (not intervals now!) and define the
variation norm as usual but let the supremum norm of a measure be the
supremum over the absolute value of the measure assigned to rectangles
(equivalent to the supremum norm of the corresponding distribution function).
Then the set 10,s] N B appearing at the end of the integration-by-parts
formula is a union of up to k rectangles, and consequently we can bound
|/, gUQ0, t{ " B)V(dt)| by a constant (2 + 1) times the product of the variation
norm of U with the supremum norm of V. In the differentiability proof this
constant will appear repeatedly, but the result is that the product-integral of a
real measure over R* is compactly differentiable with exactly the same deriva-
tive as in Theorem 8 provided we interpret norms, intervals, 1ntegrat10n by
parts, and so on, in the appropriate way.
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What about partial orders? An alternative theory, not of the product-
integral but of the Péano series P(B;a), follows by defining for an arbitrary
partial order < on R* and arbitrary bounded B

P(B;a)=1+ Y [ [ elduy) - a(du,).
n=1ly <« - <u,,u;€B

For instance, one could take the partial order
r<xy e x,<y;Vi.

Define also x <y < x; <y; V i. One can again verify that the proofs of the
Kolmogorov and Duhamel equations go through without change for the Péano
series with respect to any given partial order, just defining

10,s] = {u: 0 < u < s},
10,s[ = {u: 0 < u < s},
Is,t] = {u:s <u <t} #]0,¢] \]O, s],

we get

P(B;a) =1 +f BP(B NnJo, s[; a)a(ds)

=1+ f da(s)P(BnNls,»[;a) (Kolmogorov),
s€B

P(B;a) - P(B;B)

= [ _ P(B]0,s[;a)(a(ds) - B(ds)) P(B Ns,[;B) (Duhamel).
s€B
The key to continuity and differentiability is the Duhamel equation plus

integration by parts, which looks almost the same:
U(B)V(B) = [ [ U(ds)V(dt)
seB’teB

~ é[ U(ds)V(dt) +  [[  U(ds)V(dt)

s, t€B, s,t€B, s<t
=f BU(]O,t[ N B)V(dt) + [ BV(B\]s,w[)U(ds).

Still, if B is a rectangle and << is the just described partial order, B \ Is, o[ is
just the difference of two rectangles. So again this leads to identical-looking
continuity and differentiability results; only the interpretation of interval and
order are different.

" We do not have a product-limit interpretation of the Péano series. Though
one might define a partition of B along points 0 =¢,<¢, < -+ <¢, = as
the collection of sets B N (J0,¢,1\10,¢,_,D, two partitions do not generally
have a common refinement when working with partially ordered time (parti-
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tions are only partially ordered too). Thus many different product-limits along
refinements can and will exist, one of them sometimes being the product-
integral, though none being the Péano series with respect to the partial order.
In fact, for the usual partial order, all product-limits of a real measure a are
the same and are the ordinary product integral if and only if whenever positive
mass is assigned to an affine subspace parallel to the coordinate axes, it all lies
on one atom.

These results have applications in multivariate censored data and explain
why there are actually so many different generalizations of the Kaplan—Meier
estimator of the univariate case. Two of these generalizations are briefly
discussed in Section 4.3.

4. Applications.

4.1. The application of product-integrals to survival and hazard functions.
Let T be a positive random variable, the survival time of a cancer patient, say.
We define the survival function S(¢) = 1 — F(¢) = Pr(T > ¢}. If S is positive
and differentiable, then we can define the hazard rate

dlog(S(t 1
————g-(—~—(—)—)—=limh~Pr{Tst+h|T>t}

(62) AE) = — 7 lim

and we have the well-known relation
(63) S(t) =exp[—f /\(u)du].
10,¢]

The measure A defined by A(l0,¢]) = [, 4A(z) du is called the intensity or
hazard measure. We shall generalize the relations (62) and (63) to an arbitrary
survival function S and a correspondingly more general hazard measure A.
The following theorem characterizes those intensity measures A which can
arise and shows that the generalized relation between —A and S is simply
that between a measure and its product-integral or between the additive
interval function —A(s, t) = —A(ls, ¢]) and the multiplicative interval function
S(s,t) = Pr(T = ¢|T = s) = S(¢)/S(s). This relationship can of course be ex-
ploited and also further generalized as we shall see in later sections. We let
T < » be the upper endpoint of the support of T. The two cases (a) and (b) in
the theorem correspond to the cases that 7 itself has positive or zero probabil-
ity, respectively.

THEOREM 11. Let A be a nonnegative measure on 10, 7] which is finite on
10, s] and such that A({s}) < 1 for all s < r and which satisfies either

(a) A0, 7[) <»,  A({r}) =1
(b) A(J0,7[) ==,  A({r}) = 0.
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Then, defining
(64) S(t) =7 (1 —dA),

10,¢]
S is the survival function of a random variable T with upper support endpoint
7. Conversely, if T is a positive random variable with survival function S and
upper support endpoint T satisfying either

(a) S(r=)>0
or
(b)) S(r-)=0,
then A, defined by
(65) A(Jo,¢]) = - RGO
’ 10,618 (u —)
(65) =-/ d(§-1),

10,¢]

has the properties just described, where in (65") S is interpreted as the
multiplicative interval function S(s,t) = S(&)/S(s).

Equation (65') states that A(¢) = lim oo X, Pr{T < ¢,IT > ¢;,_,}, where I~
denotes a partition of ]0, ¢]. The probabilistic interpretation of the atoms of A
is A({t}) = Pr{T = ¢|T > t}. Strictly speaking, in the case (b) we first need to
define the product-integral of an unbounded measure, that is, by the usual
definition of an indefinite Riemann integral. Before we prove the theorem we
need a technical lemma.

LEMMA 6. Let A satisfy the assumptions in Theorem 11 and let S be
defined by (64). Then S(¢) > 0 for all t < 7 and also, in case (a), fort = .

ProoF. Let 1 — 27 be the size of the largest atom of A in ]0, ¢] and choose

a partition of ]0, ¢] such that A(J;, ¢, ;D < n for all i. Then

1= A(Jtt0]) =1 — A(E, ¢000) — A({%41)

21-n-(1-2n)=n

and hence by the inequality 1 — x > exp(—c(n)x) for all 0 < x < 1 — 7, where
c(n) = =log(n)/(1 — n) < o,

log(1 = A(Jt,844]) = —c()A(Jt;, t544])-
Summing over i and letting || —> » gives S(¢) = 7T]0 t](l —dA) >
exp(—c(mA(0,¢]) > 0. O ’

ProoF oF THEOREM 11. Here we show the equivalence of (64), (65) and
(65"); the fine details are left to the reader. Suppose first A is given and S is
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defined by (64). Then by the forward equation (40) (Theorem 5) we have
S#) =1~ [, 4S(u —)A(du). Since, by Lemma 6, S(u — ) > 0 we get (65). If
on the other hand A satisfies (65), then S solves the forward equation and
hence by the uniqueness of its solution (Theorem 6) it is given by the
product-integral (64). The equivalence between (64) and (65") follows simply
from Theorem 3 by considering the multiplicative interval function S(s,t) =
Pr(T > ¢IT > s) =St)/S(s). O

Because we are in the commutative case we can rewrite (64) in the far less
intuitive but very well known form,

S(6) = TT(1 = A((s)) Jexp( - A(1)).

See, for instance, Cox [(1972), page 172], where the term product-integral is
used [following Arley and Borschenius (1945), as David Cox has informed us].
Beran [(1981), Theorem 2.1] gives a sketch of a nice direct proof. Wellner
(1985) points out the connection with Doléans-Dade’s exponential semimartin-
gale [Doléans-Dade (1970)].

In the next section we will use the Duhamel equation in order to discuss
functional differentiation of the mapping from hazard measures to survival
functions. Since the mapping is one-to-one, the inverse mapping must have a
derivative which is also the inverse, in the appropriate sense, of the forward
derivative. Efron and Johnstone (1990) and Ritov and Wellner (1988) discuss
the intimately related derivatives of the mappings between hazard rate A and
probability density f, whose special isometric properties turn out to be con-
nected with the information identity (mentioned again briefly at the end of
Section 4.6)

dlog f(T;6)\* dlog A(T;6) \?
B =) s )
a0 a0

4.2, The product-limit estimator. We saw in the Section 4.1 that a survival
function is the product-integral of its intensity or hazard measure. Given
censored observations from a life distribution, the natural estimator of the
survival function is the product-limit or Kaplan-Meier estimator [Kaplan and
Meier (1958)], and it turns out to be the product-integral of the equally well
known empirical cumulative hazard function, or Nelson-Aalen estimator
[Nelson (1969), Aalen (1975) and Johansen (1978)]. This puts the machinery of
product-integration at our disposal in order to derive various properties of
these estimators, as we shall now sketch. The key ingredient is the Duhamel
equation (42), which expresses the difference between survival function esti-
mator and estimand in terms of the difference between the corresponding
empirical and true hazard measures.

For the sake of definiteness we first work in the classical random censorship
model. Let T,,...,T, be ii.d. positive lifetimes from the distribution F' with
survival function S and let, independently thereof, C,,...,C, bei.i.d. positive
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censoring variables from a distribution with survival function H. Both S and
H may have a discrete component and may put positive mass on ¢ = +o. Let
T.=T,AC;and D, = |{T; < C;}, i = 1,...,n, be the data actually observed.
Define

dN,
A (t) = fM -
S,.(¢) =TT (1 - dA,).

10,¢]
So S, is the Kaplan-Meier estimator of S and A, is the Nelson-Aalen
estimator of A. One finds easily

EN,(t) = /]0 H(s =) F(ds),

At d(EN.) ided EY,(¢) > 0
( ) - '/]‘O,t] EYn I prOV]' e n( ) > I

S(¢) = T (1 - dA).

10,¢]
The Duhamel equation applied to »§n — S gives

N S(¢t)
Sn(t) - S(t) = j;O,tlsn(s _)(A )(dS) S(S)
or
S, (¢ S.(s-), .,
(66) S((t)) -1=- o t]—s((ss) ) (A, — A)(ds).

This key equality was first established in the more general context of inhomo-
geneous Markov processes by Aalen and Johansen (1978) and later exploited
by Gill (1980a, 1983) to derive small-sample results (unbiasedness, variance)
and large-sample results (consistency, weak convergence) for the Kaplan-Meier
estimator using martingale methods: Namely, one has in (66) (if one replaces ¢
by t A max; T,) that the integrating function A — A, stopped at the largest
observation, is a square-integrable martingale wh11e the integrand is a pre-
dictable process, so the left-hand side of the equation is a square-integrable
martingale too. These martingale techniques are available in a wider class of
censoring models than just the random censoring described previously; for
instance, under models for random truncation [Keiding and Gill (1990)].

All the same, many important models do not have this martingale structure
(a few are mentioned later) and a less delicate approach is needed. Here we
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take an approach restricted to i.i.d. models (but not requiring martingale
structure) and use Theorems 7 and 8 (continuity and differentiability of the
product-integral) to derive strong consistency and weak convergence of the
Kaplan-Meier estimator. Note that we proved these two theorems using
the Duhamel equation so this approach is also based on (66) but in a disguised
form. A law of the iterated logarithm can also be derived in this way.

We work on a fixed interval [0, 7], where 7 satisfies EY, (7) =
S(r —)H(r — ) > 0. Note that N, and Y, and their expectations EN and EY
(since these do not depend on n we have dropped the subscript) are bounded
monotone functions in D[0, 7] or D_[0, 7], the cadlag and ‘‘caglad’” functions,
respectively, on [0,7]. By monotony and boundedness they actually have
uniformly bounded variation. The variation of f\n is not uniformly bounded
but there exists a constant which it only exceeds with probability tending to 0
as n tends to infinity. We endow these spaces with the supremum norm and
their product with the max supremum norm, both to be denoted by || - |l.. We
can now consider §n as the result of applying three mappings one after the
other:

1 A
(Nern) - (Nn’_) - An - Sn’

Y,

that is, going through the spaces
D[o,7] x D_[0,7] - D[0,7] x D_[0,7] = D[0,7] - D[0, ],

and corresponding to inversion of one component, then integrating one with
respect to the other and finally product-integrating. Now, we have already
showed that the last mapping is continuous and even compactly differentiable
when we restrict its domain to a set of elements of D[0,7] of uniformly
bounded variation. The same is true for the central mapping (integration) by
Gill [(1989)], Lemma 3]; this is essentially the Helly-Bray lemma. The first
mapping is trivially continuous and differentiable when we restrict it to
elements of D_[0,7] bounded uniformly away from zero. Now, by the
Glivenko-Cantelli theorem we have [(N,, — EN, Y, — EY)|l. > Oa.s.as n — .
This gives us consistency of the Kaplan—Meier estimator,

IS, — Sll. > 0 a.s.asn — .

Weak convergence of n'/2(§, — S) follows directly from weak convergence
of n'/2(N, — EN,Y, — EY) and the compact differentiability of the three
mappings and hence of their composition. Here we use the weak convergence
theory of Dudley (1966) as nicely described in Pollard (1984), which allows us
to work in D[0, 7] X D_[0, 7] with the uniform topology (associated with the
max supremum norm). This is accomplished by endowing this space with a
smaller o-field than the Borel o-field (generated by all open sets), namely, the
o-field generated by the coordinate projections or the open balls, which in fact
turns out [Billingsley (1968), Theorem 14.5] to be just the usual Skorohod
o-algebra. Since not every continuous function is now measurable, the classical
definition of weak convergence needs slight modification. However, it turns out
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that all the classical theory still goes through. Whenever the limit process is
continuous, weak convergence in the new sense is equivalent to the more
familiar notion of weak convergence with respect to the Skorohod topology, as
described in Billingsley (1968); otherwise the result is slightly stronger.

The other side of this story, the use of compact differentiability, is simply
the functional version of the §-method. This approach is described in Gill
(1989), following Reeds (1976). The new weak convergence theory fits beauti-
fully with the differentiability theory and allows more natural extension to
multivariate time indexed processes. The even further generalized weak con-
vergence theory due to Hoffman-Jgrgensen fits just as nicely [see van der Vaart
and Wellner (1990) and Sheehy and Wellner (1990a, 1990b)].

Again, we fix 7 such that EY(7) > 0. It is clear that

n/?(N, — EN,Y, — EY) »,(Zy,Zy) in(D[0,7] X D_[0,7],1l* ll)
asn — o,

where (Zy, Zy) is a bivariate Gaussian process with zero mean and the same
covariance structure as the process on the left-hand side (the same for all n).
Now, the three mappings

1
o: (,y) = (x,u) = (x ;),

U:(x,u) »v= udx,
[0, -1

&v-oz="TT (1-dv),
[o, -1
are all compactly differentiable at the relevant point x = EN, y = EY, u =
1/EY, v = A, z = S with derivatives

k
dd)(x’y) : (h’k) = (h7 - 3’—2) = (h7.])’
dy(x,u) - (h,j) = [[0 .]jdx + fm ']udh =1,

de(v) 1=~z i
v)‘l= -z —dl.

[o,1 2
By composition of these derivative mappings (the chain rule), evaluated at the
point x =EN, y=EY, u=1/EY, v=A, z=S and acting on (k,k) =
(Zy, Zy), we obtain the required weak convergence result,

A 1 z 1
n2(8, - 8) -, S ( Y__dEN + 77 92w

0,1(1 - AA) | (EY)?

- ~Sj;0,.]ﬁ_._—m n (D[O’ 7],” : ”oo) asn — o,
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Direct calculation of the covariance structure of Zy — [y .,1Zy d A (the same as
its counterpart for n = 1) shows that this zero mean Gaussian process has
independent increments with variance function

f EY(1 - AA) dA.
[0, -]
Thus,

A dA
n?(8, - 8S) -, SW([{O’.]———(l — AA)EY)’

where W is a standard Wiener process.

Though this result also follows perhaps more easily from the martingale
approach mentioned previously, it has great significance as being essentially
the same proof as the first proof of weak convergence of the Kaplan-Meier
estimator ever given, due to Breslow and Crowley (1974). That proof seemed
very long, complicated and ad hoc at the time [Burke, Csorgé and Horvath
(1981) even claimed it was incorrect], but one can now recognize in it a
standard 8-method argument. Our contribution is to isolate and name the
components of the proof simply as checks of the differentiability of the various
functionals involved. This modularization allows us to use the same compo-
nents in many different settings and for other purposes, a few of which are
mentioned later.

We note that continuity of survival distribution or of censoring distribution
has not been required, nor have any martingale properties been used, just the
weak convergence of the underlying empiricals. The proof also gives a weak
Bahadur representation or asymptotic linearity for n'/ 2(§, - S) (a linear
representation in terms of the underlying empirical distribution functions),
and it shows that the bootstrap works for the Kaplan—Meier estimator [see Gill
(1989) and Sheehy and Wellner (1990a, 1990b)]. Asymptotic efficiency proper-
ties of the Kaplan-Meier estimator follow directly from asymptotic efficiency
of the empirical distribution functions in the random censorship model and
compact differentiability [see van der Vaart (1988); see also Keiding and Gill
(1990) for similar arguments in the model of random truncation]. One can go
on and use compact differentiability of the relevant functionals in order to
show that a large number of statistics derived from the Kaplan—-Meier estima-
tor also converge weakly; for instance, its quantile function, the quantile
residual lifetime function, the total time on test plot, and so on.

The differentiability-based proof of weak convergence is available in any
iid. situation as long as EN and EY are related via dEN = YdA. The
previously mentioned martingale property need not be available; an example of
this is when the observations come from censored observation of a renewal
process [see Gill (1980b, 1981). An amusing application is the estimation of the
length distribution of the line segments of a Poisson line-segment process
observed through a finite window [Laslett (1982) and Denby and Vardi (1985)].
The lengths of line segments which extend outside the window are censored by
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the boundary of the observational window. The Kaplan—Meier estimator can-
not be used in the naive way, but it can be used if one only includes line
segments of which at least one endpoint is inside the window, with uncensored
line segments (both endpoints visible) duplicated (i.e., counted as two observa-
tions). To put it another way, each observed endpoint provides one observa-
tion, censored at the first crossing of the boundary of the window (which need
not even be convex). Asymptotics are as the intensity of the Poisson process
converges to infinity, keeping the window fixed. The relation dEN = YdA
holds because it is true when one restricts attention to the two (overlapping)
subsamples: the line segments of which the “northern endpoint” is visible and
those of which the ‘“southern endpoint’ is visible. For these subsamples,
conditioning on the visibility of the endpoint and using standard properties of
the Poisson line-segment process, the distance from the relevant endpoint to
the boundary of the window in the direction of the line-segment is independent
of the length of the line, and therefore we have a classical random censoring
model for each subsample apart.

4.3. Multivariate Kaplan—Meier estimators. The problem of multivariate
censored data has resisted attack for a long time. The NPMLE is not unique
and is computationally intractable; the pathwise product-limit estimator based
on writing the multivariate survival function as a product of univariate
marginal and conditional survival functions depends on the arbitrary choice of
first, second, and so forth, coordinates and, moreover, usually assigns negative
mass somewhere; estimators based on multivariate density estimation are very
complicated and are based on many more arbitrary choices [Mufioz (1980),
Campbell (1981), Campbell and Féldes (1982) and Tsai, Leurgans and Crowley
(1986)].

An important recent proposal is Dabrowska’s multivariate product-limit
estimator [Dabrowska (1988, 1989)], based on a beautiful representation of a
multivariate survival function in terms of its conditional multivariate hazard
measures. In fact, ordinary product-integrals (over rectangles) of fairly simple

- functionals of these are all that are involved, and indeed consistency, asymp-
totic normality and correctness of the bootstrap (both nonparametric, resam-
pling from the data, and semiparametric, resampling from the estimated
model) all hold by routine applications of our continuity and differentiability
results (as extended in Section 3.4) and the functional §-method.

For vectors, > denotes coordinatewise > and > denotes coordinatewise
> . Let F(t) = Pr(T > ¢t), t € R*, be the survival function of a k-variate
survival time T'. Dabrowska’s estimator is based on the representation

(—Die~a

FO - T |11+ T (-D"AWsdse)] |
CcS s <t \ BEC FcAcB

Here, for given subsets JcAcBcCcS=(1,...,k we denote by

A(ds,lsc) the conditional multivariate hazard measure A(ds,lse) =

Pr(T, <s, + ds,|To = s¢), and for s € R%, s, is the vector (s;: i € C).
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Estimation is done by replacing the conditional hazard measures by their
natural empirical analogues, setting A(ds,ls) equal to the point mass: num-
ber of observations with T, known to equal s,, divided by the number of
observations with T, known to exceed or equal s;. The formula can be
understood by approximating the product-integrals by finite products with
respect to partitions of 0, ¢] into small rectangles, replacing (1 +
Yoc acg(—DAA(ds,ls)) by the ratio Pr{Tp > sp + dsp}/Pr{T; > s}, fol-
lowed by massive cancellations. For given C, the product-integral is equal to
the multiplicative interval function

= —1)Bl
Sc(sc,te) = 11 FC((tC\B,SB))( Y
gcBcC

generalizing Theorem 11 of Section 4.1.

A completely different proposal due to Peter Bickel and using marginal
multivariate hazards is also briefly mentioned in Dabrowska’s (1988) paper.
This is based on the fact that the survival function is the solution of the
following inhomogeneous Volterra integral equation involving the multivariate
hazard A(dt) = A(dtgltg), with boundary conditions involving the marginal
distribution functions in strictly lower dimensions:

F(ty=- L () Fe(te) + (=)' F(s —)A(ds).
gcCcS s<t
The last integral reduces to F(¢) and a simple application of the inclusion-
exclusion principle yields the required equality (taking F, = 1).

We therefore get, by Theorem 10, a recursive expression for the survival
function in terms of the (lower-dimensional) marginal multivariate survival
functions and the Péano series for the multivariate hazard, with respect to the
given partial order. The marginal multivariate survival functions depend in
exactly the same way on the corresponding marginal multivariate hazards
A(dt;) = A(dt,lts) together with even lower dimensional marginals. The
marginal hazards (a subset of the set of conditional hazards) can be estimated
as before, and the basic asymptotic properties of the corresponding Volterra
estimator are derivable form the second set of continuity and differentiability
results of Section 3.4.

Both of these estimators are symmetric in the coordinates {1, .. ., k}, though
unfortunately neither is usually, strictly speaking, a survival function: They
will assign negative mass to some regions. Nor is either asymptotically efficient
—the first estimator seems to use more of the information in the data, but
does not combine it optimally—though each could be used as the starting
point of a one-step Newton—-Raphson iteration on the log-likelihood for an
appropriately finely discretized model, leading presumably to an asymptotically
efficient estimator [cf. Bickel, Ritov and Wellner (1991) for this approach in a
somewhat simpler setting]. Aad van der Vaart (private communication) conjec-
tures that no efficient estimator is a differentiable functional of the empirical
data; if this is true, one must choose between using one of several different
smoothly behaved but inefficient estimators and an essentially unique but
unstable efficient one.
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More on the derivation of these estimators and their large sample properties
will be given in Bickel, Gill and Wellner (1990). It appears that the Dabrowska
estimator is usually rather good and the Volterra estimator surprisingly rather
poor, especially at large ¢. The pathwise estimator is of intermediate quality.
At independence of all survival times and censoring times the Dabrowska
estimator is amazingly but quite coincidentally asymptotically efficient.

4.4. Markov processes. In this section we generalize the results of Sections
4.1 and 4.2 in another direction: to multiple states, rather than to multidimen-
sional time. The survival analysis model described by a single (censored)
survival time can also be considered as a very simple Markov process model,
with just two states—alive and dead—and a transition between them at the
survival time T'. On top of this process, censoring is superimposed as a kind of
nuisance factor; alternatively, considering the censoring on an equal footing (a
competing risk), the process can be described as a three-state Markov process:
alive, censored and dead. It also turns out [Keiding and Gill (1990)] that
another important model from survival analysis, the random truncation or
delayed entry model, can also be considered as a three-state Markov model, the
three states being preentry, entered but not yet failed, and dead.

More complex Markov models are also frequently used in survival analysis,
for instance, to model progression between various stages of a disease: the
three-state illness—death-recovery model; four-state models for studying the
interaction between two life history events, and so on. On top of these models
delayed entry (‘‘immigration’’) and censoring (‘‘emigration’’) can be imposed.
The book of Andersen, Borgan, Gill and Keiding (1990) will contain a very
thorough study of practical and theoretical aspects of such statistical models.

It turns out that the analysis of such models can be completely identified
with the product-integral-based treatment of Sections 4.1 and 4.2 by simply
taking the step from the scalar case to the p X p matrix case, where p is the
number of states in the model. The statistical aspects of this were first worked
on by Aalen and Johansen (1978), building on the probabilistic work of
Dobrushin (1953) and his predecessors. Here we shall give some of the details
behind all this work as well as sketching some further results. Consider a
time-inhomogeneous Markov process X,, ¢t € [0, on a finite state space E,
with transition probabilities

p;j(s,t) = Pr{X, =jlX, = i}.

It is well known that the transition probabilities satisfy the Chapman-—
Kolmogorov equations; that is, if we define P(s,t) = {p,(s,?): i, j € E}, then

(67) P(s,t) =P(s,u)P(u,t), 0<s<u<t<o,

(68) P(s,s) =1, 0<s <o,

If P(-, - ) is differentiable in both arguments, one can prove that
dP(s,t) dP(s,t)

(69) QW =——| ==




1542 R. D. GILL AND S. JOHANSEN

and that P(-, - ) satisfies the forward and backward Kolmogorov equations,

dP(s,t)
(70) Y = P(s,t)Q(t),
dP(s,t)
(71) S~ —Q(s)P(s,0),
s
with initial conditions P(s, s) = 1. The solution of either of these equations is
unique.

It is clear that in this case P(s,?) is a multiplicative matrix-valued interval
function, and the differential equations for P (with the uniqueness of their
solution) are special cases of the forward and backward equations of Theorem
5. The solution is given by the product-integral of the matrix-valued additive
interval function, or measure,

(72) a(s,t) = /] t]Q(u)du.

With this formulation one can say that the problem of determining the
transition probabilities from the intensities is just the problem of product-
integrating the intensity measure. Similarly, the problem of determining the
intensities or intensity measure is solved by the additive integration of the
interval function P(s,¢) — 1. In other words, the differentiation (70) followed
by the integration (72) can be replaced by the single process of integrating an
interval function. ,

These relations have very simple difference-equation analogues for a dis-
crete time Markov chain. If X, is a time-inhomogeneous Markov pro-
cess which only jumps at integer times (s, ¢, etc.), then one can let
Q(s) =P(s — 1,s) — 1 and recover P from the discrete intensity measure
a(s,t) = L, ., .,Q(u) by the difference equation [cf. (70)] P(s,t) —P(s,t — 1) =
P(s,t — 1)Q(t) with initial condition (68).

Thus the well-known relations (67)-(72) are special cases of the general
concepts of product-integrals and sum-integrals. This is especially important
for statistical applications because we then often meet product-limit estimators
as solutions of equations like (70) or (71), in which the intensity measure « is
now a discrete empirical measure. The general concepts treated in the previous
sections show that one can construct the solution to the equation for given @
or rather a in just the same way whether one is working with absolutely
continuous or with discrete a, so that the statistical calculations become
identical to the probabilistic calculations.

One can also use product-integral theory to derive properties of the estima-
tors. In particular, the Duhamel equation gives a stochastic differential equa-
tion for the estimators [the matrix generalization of (66) of Section 4.2] that
allows the theory of martingales to be applied and hence one can easily find the
asymptotic distribution of the estimators (one could also, in fact, use the
8-method). Such a programme is carried out by Aalen and Johansen (1978).
Here we mainly discuss the probabilistic part of the problem, that is, the
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existence of an intensity measure for an arbitrarily given Markov process and
vice-versa. We also pay some attention to the martingale connection: The
intensity measure provides the deterministic part of the stochastic intensity of
the counting processes counting direct moves or jumps between states.

First, we define an intensity measure as a matrix-valued measure or addi-
tive interval function a on the Borel sets of ]0, <[ such that a(s, t) = a(]s, t]) is
finite on bounded sets and such that

(73) aii(s,t) SO, aij(s,t) 20, l#—'j,
(74) Z aij(s, t) = 0.

jeE
It is also necessary to assume that
(75) a;({t})) = -1 forall z.
Note that « is dominated by the real measure
ay(s,t) = —2trace a(s,t),

which is of bounded variation on finite intervals. We then define

(76) P(s,t) = T (1 + da)

Is,t]
and obtain the following result.

THEOREM 12. The function P defined by (76) satisfies

(77) P(s,t) is a stochastic matrix

(78) P(s,t) =P(s,u)P(u,t), O<s<u<t<om,
(79) P(s,s) =1, 0<s <o,

(80) P(s,t) » 1 astls.

ProorF. The assumptions (73)-(75) about « imply that P(s,t) is stochas-
tic, being a limit of products of stochastic matrices, and (78), (79) and (80)
follow from the properties of the product-integral. O

Note that if « has an atom at the point ¢, then P will have a discontinuity
at ¢t and P(s,t) > 1 + a({t}) as s 1 ¢£.

THEOREM 13. The function P defined by (76) satisfies the Kolmogorov
equations

)

(81) ———(¢t) =P(s,t —) (t) for ay-almost all t €]s, [,

t)

dP(s,
da,
o ECD

d
(s) = —a—i(s)P(s,t) for ag-almost all s € [0, ¢[.
&9
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Proor. From the forward equation of Theorem 5 we have
P(s,t) =1+ / P(s,u —)a(du),
Is,t]

and hence the function ¢ — P(s, t) is absolutely continuous with respect to «,.
Taking Radon-Nikodym derivatives, we get (72). Relation (73) follows simi-
larly from the backward equation. O

We finally note the following.
THEOREM 14. The interval function P — 1 is of bounded variation.
Proor. This is just Theorem 1. O

We shall now discuss the inverse problem. Let Markov transition probabili-
ties P be given.

THEOREM 15. If the transition probabilities P(s,t) are right continuous
and if P — 1 is of bounded variation, then P is the product-integral of the
intensity measure given by

a(s,t) = f] t]d(P— 1).

Proor. This is Theorems 2 and 3. O

Note that the Péano series representation (Theorem 4) is not the series
representation of the minimal solution as given by Feller (1940). This is most
easily seen by comparing the first term which for the Péano series is just 1
whereas the minimal solution starts with the matrix (P with elements

oPi;(8,t) = Sij;n-](l —da;;).
s,t

The terms of the Péano series need not even be positive whereas the nth term
of the series for the minimal solution has an interpretation as the probability
of jumping from i to j in exactly n steps. Informally, the meaning of the
bounded variation assumption is that if any particular state is kept artificially
occupied by introducing a new particle into it whenever another one leaves,
then the expected number of jumps out of the state during any finite interval
is finite.

We now briefly discuss the construction of the underlying process X,. Under
the equivalent assumptions of Theorem 12 or 15 there exists a Markov process
(with the given transition matrices) with piecewise-constant sample paths
which are right continuous and have finitely many jumps on finite intervals.
The process is well defined, starting from any given state at any given time
point. The crucial assumption that makes the construction of these processes
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possible is the assumption of bounded variation. The idea of the construction
is that from the time ¢, of entering state i, the intensity measure of the
random time at which the process leaves the state is given by —a;; restricted
to ¢y, [, and given that a jump from i occurs at time ¢, then the probability
that the new state is j is —(da,;/da;;X?). The process is started at time zero
in an arbitrary given state. So one simply constructs the process from a
sequence of alternating jump times and jump states, each having the just-
specified conditional distribution given its predecessors. In fact, this sequence
of pairs of random variables is itself a discrete time Markov process.

The mathematical task is to show that this construction actually defines X,
for all ¢; in other words, that almost surely only a finite number of jumps
occur in any finite time interval. Also one must show that the process X is
indeed Markov, with the same transition probabilities and intensities as one
started with. Most of these ingredients can be found in Jacobsen (1972) and
Johansen (1986). Actually Jacobsen (1972) does not allow atoms of size —1 in
the diagonal elements of @, meaning a certain jump out of the relevant state or
states at that time. However, it is quite easy to put together the pieces of his
construction from one atom to the next—the finiteness of @ means there are
only finitely many pieces to be considered in finite time intervals.

One can now go on to show, by a straightforward use of the theory of
marked point processes of Jacod (1975) or Jacobsen (1982), that the counting
process

s<t

has a predictable compensator given by

83 Alt = 1X3_=iai'ds.
(83) A0 =[ U Ja;;(ds)
(Full details of all this are given in an earlier version of this paper, available
from the authors.)

Since jumps of the processes N,; do not occur simultaneously, {M;; =
N;; — A;;} is a collection of orthogonal square-integrable martingales. In other
words,

is the Doob-Meyer decomposition of Nj;. Note that EN;;(¢) = EA,;(¢) <
@;(0,2) < oo forall ¢ < .

We close this section with some remarks on statistical applications of these
ideas. We have already mentioned the paper of Aalen and Johansen (1978) on
nonparametric estimation of the transition probabilities of an inhomogeneous
Markov process, based on, say, n censored observations from the process. The
idea is to estimate the intensity measure «;; as the discrete measure, with
atoms at each time ¢ of observed jumps from i to j, equal in size to the
number of processes observed to make this jump at time ¢, divided by
the number of processes observed to be in state i at time ¢ — . Using the
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Doob-Meyer decomposition of the counting processes N;; just described and
the Duhamel equation leads to a derivation of the large sample properties of
the corresponding estimator of P, completely parallel to (and containing as a
special case) that of the Kaplan—Meier estimator. Many applications of these
estimators together with further results are given by Andersen, Borgan, Gill
and Keiding (1990). We also mention Hjort (1984), who gives a Bayesian
treatment of the nonparametric estimation of the intensity measure of a
Markov process while Hjort, Natvig and Funnemark (1985) give a reliability
application, using the product-limit approximation to the transition matrix in
order to derive results on the association between states in time.

One can also use product-integral methods to derive the asymptotic distri-
bution of the processes N counting jumps between pairs of states aggre-
gated over n (uncensored) realizations of the process X. This can be needed in
statistical situations with incomplete data; see Borgan and Ramlau-Hansen
(1985) and Gill (1986) for two very different applications. Here is a sketch of
the idea, due to Odd Aalen. Let Y;")(¢) be the number of processes in state i at
time ¢ — . Note that

Y(2) = Y(0) + X NiP(¢ -) = X NG(t -);
J#* J#*l
counting net entries to and exits from state i up to time ¢ gives us the number
there at ¢. For simplicity, suppose all the processes start at time zero in the

same fixed state.

Collect the elements NV, i # j, into a row vector N. Adding 7 copies of

(83) and (84), these two equations can be rewritten in the form
dN™ = N™dA + ndB + dM™,

where A and B are 3p(p — 1) X 3p(p — 1) matrices containing +a;; and 0 as
elements in appropriate places.
Subtracting expectations and multiplying by n~1/2 gives the equation

(85) dZ™ = ZM dA + dW™,

where Z™W = n~V2(N™ — EN®™) and W™ = n~2M™ jis a row vector of
martingales which can be shown by the martingale central limit theorem [see,
e.g., the version for stochastic integrals of counting processes with possibly
discrete compensators of Gill (1980a)] to converge in distribution for each
7 < o in ((D[0, 7)?/PPP=D || - |,.) to a row vector of Gaussian martingales Z,
with variance functions

var W,;(¢) = []0 ”Elc(s)(l — a;;({s}))a;;(ds),

independent over i, and if the intensity measures are continuous also over j,
but otherwise with covariance functions

cov(Wi;, Wyy) = = [ BYi(s)ay;({s})ai;(ds).
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Equation (85), an inhomogeneous equation as in Theorem 10 of Section 3.2
(the matrices ¢ and ¢ there need not be square and are now in fact taken to
be row vectors), has the explicit solution

Z(t) = W () + [ W™(s =) A(ds) TT (1 + dA)
10, ¢] Is, ]

=W™(t) + [ WDdTT (1 + dA)
10, ¢] 1-,t]

[ dW™TT (1 + dA).
10,¢1 1-,1]

Thus we see that since the intensity measure is assumed finite on finite
intervals, Z™ is a (supremum norm) continuous (indeed, a linear) function of
W® on such intervals, and therefore weak convergence of W is carried
over to Z™. Moreover, and especially useful in statistical applications, the
covariance structure of the process Z™ can be very easily numerically calcu-
lated for given intensities by iterating the natural approximate difference
equations derived from a discrete approximation to (85); see Gill and Keilman
(1990) for an example. (Earlier formulas involved very complicated multiple
integrals but now only single integrals are involved thanks to the nice covari-
ance structure of W.)

This result could have been derived directly from the central limit theorem
for semimartingales of Jacod and Shiryaev [(1978), Theorem I1X.3.39, cf. also
IX.4.31]. '

4.5. Markov branching processes. Arley (1943), with a view to applications
in Markov models for cosmic ray showers, investigated the product-integral
(with respect to Lebesgue measure) of continuous matrix functions A(#) with
countably many rows and columns and satisfying the condition that

exp( sup Aij(t))
a<t<b
is finite. We shall not discuss the theory in this generality but consider the
special case of an inhomogeneous-time Markov branching process, that is, a
countable state space Markov chain, with the extra structure that the nth row
of the transition matrix is the n-fold convolution of the first row. Such a
process represents the growth of a population by simple independent splitting
of individuals at their random death times in a time-varying environment. For
such processes it turns out that the product-integral defined in the previous
sections can be applied to study the moments of the process, and this has
useful consequences for the statistical estimation of the parameters of the
process—the integrated death rates and the time-dependent probability of the
family size produced on death.

Consider therefore a Markovian population of individuals developing inde-
pendently of each other and who at death produce offspring. We assume that
initially, that is, ¢ = 0, we have X(0) individuals, and denote by G(s,?) the
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probability that an individual, alive at time s, will survive time ¢. An individual
dying at time ¢ will produce j offspring with probability p;(¢), j =0, 1,.
We write G(¢) = G(0, ¢), the survival function of an individual born at tlme
zero, which is right continuous and nonincreasing. We shall assume that
G() > 0for all ¢t < 7 < @ and G(7) = 0, so that all surviving individuals die at
time ¢ = 7 and, by the Markov property, G(s,t) = G(0,¢)/G(0,s) for s < t < 7.
The process can most easily be described by the counting processes N;(?),
which counts the number of j-births before or at time ¢. Then N = £ N; is the
number of deaths before or at time ¢, and X(¢) = X(0) + £(j — D N;(#) is the
number of individuals alive at time ¢.
We shall discuss the functions (assumed finite for all ¢ < 7)

m(s,t) = E(X(¢)X(s) = 1),
v(s,t) = Var( X(¢)IX(s) = 1)

and show how the relationships between G, p;, m and v can be nicely
described in product-integral notation. This allows one to derive maximum
likelihood estimators for these functions and to apply the Duhamel equation to
find the properties of the estimators, as is done in more detail by Johansen

(1981).
It is not difficult to show, using the Markov property, that m is multiplica-

tive,
m(s,t) =m(s,u)m(u,t),
and the corresponding additive interval function is

wlst) = [ Z(J—l)p,(u)G(( ))

so that
(86) m(s,t) = T (1 +du,).

Is, 2]
The statistical model we get by considering the infinite-dimensional parame-
ters G(s,¢) and p;(¢), j=0,1,..., is a semiparametric model since the
transition probabilities P;;(s, ) can no longer vary freely as in the previous
section. It is shown in Johansen (1981) that the nonparametric maximum
likelihood estimators of p and G are given by

By(w) = 2o ()
and

G(s,t) = 77'(1 - %JX)

Is, 2]
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It follows that
dN;
i.(s,t) = i—1)—2<
as,t)= [ TU-Dg
and
. X(¢)
m(s,t) = E(_s)—

In order to find an expression for the variance, we introduce the generating
function

. G(d
#st2)=[ T (- z)p,v(u);%“_—)).

Then u(s,?) = ¢'(s, ¢;1), and we also define u,(s,?) = ¢"(s, ;1) and

uals.t) = [ t]((l ¥ —(u)G({u})) - 1)G({u})‘lG(du),

where the integrand is interpreted by continuity if G({u}) = 0. Finally, u, =
g + g — pg. Then one can show that for

M=(rg ,:2) and #=(M1 /~L4)

we have
M(s,t) — 1= 7T (1 +dp).
Is,t]
The upper left-hand corner of this relation is just (86), and m? has a similar
representation in terms of . If we insert

. . dN;
$s,t2) = [ T () =2) %~

one can find 4 and finally . It turns out that

X _ X(t)? dN; X))\  X(2)
(s, = %5 [1 ]ZJ(J_ (X_+j-17° (X(s)) X(s)’

which expresses 0 as a stochastic integral. Applying the product-integral
representation for M, one can find a Duhamel equation that expresses M as a
stochastic integral with respect to the “innovations” 2 — u. In fact, this latter
process, stopped at the time of death of the last living individual, is a sum over
j of stochastic integrals with respect to the counting process martingales
N(®) = [10,qp;(8)X(s — )G(ds)/G(s — ). (One could alternatively apply the
differentiability results of Section 3.1 to derive the properties of §.) Full details

can be found in Johansen (1981).
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4.6. Counting process likelihoods. In this section we give Jacod’s (1975)
formula for the Radon-Nikodym derivative of two probability measures on the
filtered space generated by a multivariate counting process. Following
Johansen (1983), we show that this extremely important but intuitively unap-
pealing formula can be given a natural probabilistic interpretation by recasting
it in terms of product-integrals. Let N = (N,,..., N,) be a multivariate
counting process with compensator A = (A,,..., A,) with respect to a proba-
bility measure P and a filtration of the special form

I, =% Va{N(s):s<t}, teIT=[0,r]

[As explained in Jacod and Shiryaev (1987), the usual assumption of complete-
ness of the filtration is superfluous.] Let P’ be another probability measure,
dominated by P. Under P’, N is still a multivariate counting process with
respect to this filtration but its compensator is generally different; let us take
it to be A’ then. Recall that A can be interpreted as an integrated conditional
intensity by the heuristic

(87) dA,(t) = P{dN(¢) = 1|.7;_}.

So, given P on #,, one should be able to reconstruct P on % by multiplica-
tion of conditional probabilities. The next theorem makes this idea rigorous.
Indeed, the distribution of N (given %) is determined by its compensator,
though in the first instance not so obviously in the way just indicated.

THEOREM 16 [Jacod (1975)]. Let L, = (dP'/dP)|s. Almost surely-(P),
A; < A, for each i and

L, =L T
! 0n IT1<t dAJ ( )
o A'(s)
1 - AA(s _ 3
X ———exp(—A“(¢) + A(¢)).
saeql,:[sst T ad(s) SP(-A(E) + &)
Here 0 < T, < T, < --- are the jump times of N and Jy, J,,... are the

corresponding jump types, that is, AN,;(T,) = 1. Furthermore, N=%,N,
A =Y ,A;, AN denotes the jumps of N, A° is the continuous part of A, and so

on.
To better understand the theorem, we rewrite (88) using product-integral

notation: _
T ((1 - dK’(s))l’m(S)l‘[‘(dAc(s))ANim) .
((1 - dA( ))1 AN(S)I’I (dA( ))AN(S)) :

(89) L= LO

Thls expression should be evaluated by writing the product integrals as the
products of an ordinary product over the finite set of jump times and a
product-integral over the interval [0, ] less the jump times, together with the
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convention
dA ( S) dAli
dA,(s) dA 8)-

Note the probabilistic interpretation of numerator and denominator of equa-
tion (89), corresponding exactly to (87): The likelihood function is formed by
multiplying together conditional likelihoods (given .%,_) for infinitesimal ex-
periments in which dN(#) is generated by letting component i equal 1 and all
other components equal 0 with conditional probability dA,(¢), and letting all
components be 0, so 1 — dN(s) = 1, with the complementary probability
1 — dA(s). Expressions such as the numerator and denominator of (89) are
common in heuristic calculations in survival ‘analysis [see, for instance,
Kalbfleisch and Prentice (1980)]. The fact that they also have an exact mathe-
matical interpretation allows one [see Andersen, Borgan, Gill and Keiding
(1990)] to construct a rigorous but at the same time transparent derivation of
partial likelihood functions and the notions of noninformative and indepen-
dent censoring. In particular, the important results of Arjas and Haara (1984)
can be clarified in this way. The result can be immediately generalized to
marked point processes.

Rewriting the ratio in (89) as a single product-integral allows one to make
use of the Volterra equation characterization of the product-integral. This
yields nothing more than the fact, well-known in the counting process litera-
ture, that the likelihood ratio process is the Doléans-Dade exponential of the
P-martingale Z with

!

dz A o 1784 A4 dm
_gﬁ Y S

where M, is the counting process martingale N; — A;.

One can also consider (89) exactly as it is written, that is, as the ratio of two
product-integrals. Subtracting 1 from each side of the equation allows us to
rewrite the right-hand side as a Duhamel equation. Replacing P and P’ with
P, .49 and P, and taking a limit produces finally a (well-known) stochastic
1ntegral equatlon for the score function in a parametric counting process
model, in fact, as an integral over the infinitesimal experiments described
previously of the conditional score for each experiment given the preceding
ones. Since the expected conditional score given the past is zero, this stochastic
integral is also a martingale. Further relationships can be obtained relating
the integral of the expected conditional Fisher information in each small
experiment and the total information. See Andersen, Borgan, Gill and Keiding
(1990) for consequences of these results for partial-likelihood-based statistical

- analysis, and see Efron and Johnstone (1990) for the same result in the
context of the simple survival analysis model, that is, a univariate counting
process which can make at most one jump. Our main point here is simply that
many of these originally algebraically involved results can be simply under-
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stood and written using product-integral notation in intuitively very appealing
and fruitful ways.
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