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ON PROBABILITIES OF EXCESSIVE DEVIATIONS FOR
KOLMOGOROV-SMIRNOV, CRAMER-VON MISES
AND CHI-SQUARE STATISTICS'

By TabEuUSz INGLOT AND TERESA LEDWINA

Technical University of Wroctaw

Let a, be the classical empirical process and T': D[0,1] - R. Assume
T satisfies the Lipschitz condition. Using the Komlés—Major—Tusnady
inequality, bounds for P(T(a,) > x,V/n) are obtained for every n and
x, > 0. Hence expansions for large deviations, as well as some moderate
and Cramér-type large-deviations results for T'(a,,), are derived.

1. Introduction. Let «, be the classical empirical process and B be a
Brownian bridge on [0, 1]. Let T, = T(a,,), where T: D[0, 1] —» R is such that
P(T(B) > y)>0forall y > 0.

AssuMPTION 1. There exists a constant ¢, 0 < ¢ < «, such that

|T(x) — T(y)| <c sup |[x(¢) —y(¢)] forall x,y € D[0,1].

0<t<l

In Section 2 we give explicit bounds for P(T, > x,Vn ) valid for every n and
x, > 0. The main idea in getting bounds for P(T, > x,V/n) is to replace this
exact probability by the easier-to-calculate probability P(T(B) > x,Vn), ie.,
by the tail of the asymptotic distribution of T,. To show that these two
excessive probabilities are close enough, the Kémlos-Major-Tusnady (KMT)
(1975) inequality is applied. Note that if x,/n — o, then P(T, > x,Vn) are
called probabilities of excessive deviations and in particular cases x, = x,
x, =0o(n"13) and x, = O(n~'*(log n)'/?) are known as large, Cramér-type
and moderate deviations, respectively.

AssuMPTION 2. There exists a constant ¢, 0 < a < «, such that

log P(T(B) 2y) = —(a/2)y*(1 +0o(1)) asy — o.

We show that from our bounds many earlier results on probabilities of
excessive deviations obtained separately by special methods for each case can
be easily derived. New applications for some quadratic statistics are also
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indicated (cf. Section 3). In Section 2 it is also shown that
(1) limx~2 lim n"'log P(T, > xvn ) = —a/2,

x—0 n—o

provided the limiting large deviations exist for x in a neighbourhood of 0 and

(2) lim (nxz)_llog P(T,>x,/n) = —a/2,
provided x, » 0 and x,/n — © as n — . Obviously, Assumption 2 can be
rewritten in the form
(3) ' limy~2 lim log P(T, > y) = —a/2.

yoo n—oo
This shows that under Assumptions 1 and 2, the order in which the above
limits are taken does not matter. This is a crucial point in showing local
coincidence of different notions of efficiency. Precise statement of remaining
conditions needed to ensure the coincidence can be found in Bahadur (1971),
Kallenberg (1983) and Wieand (1976). For some other statistics (e.g., linear
rank statistics, L estimates and some U statistics), the equality of the limits
(1)-(3) has been observed before, but until now there is no general theory
treating the three limits simultaneously. Note that the limit (3) can be
calculated using Kallianpur and Oodaira (1978), e.g., while the first general
result of the type (1) has been obtained by Kallenberg and Ledwina (1987).

2. Results. For the sake of completeness we recall here the KMT (1975)
inequality which is the main technical tool used in this paper. Let U, U,, ...
be i.i.d. random variables uniformly distributed on (0, 1) and let F, (¢) be the
empirical distribution function for U, ..., U,. Define

a,(t) =Vn(F,(t) —t), te[o0,1].

KMT (1975) have shown that there exist a probability space, sequence of
processes {a¥(¢)} and Brownian bridges { B, (¢)} defined on it such that {a,} =,
{a*} and for all n and x,

(4) P( sup |a¥(t) — B,(¢)| >n"12(Clogn + x)) < Le™!*,

0<t<1

where C, L and [ are positive absolute constants. For example, the constants
can be chosen as C =12, L =2, and [ = } [cf. Bretagnolle and Massart
(1989)].

Define the function g via log P(T(B) > y) = —(a/2)y%(1 + g(y)), y € R.

THEOREM 1. Suppose T: D[0,1] - R satisfies Assumption 1. Then for
K = ac/2l, arbitrary d > 1, arbitrary 1 <p < 2 and all n and x,, > 0, it holds

P(T(a,) 2 x,/n) < {1 + exp(—(a/2)nx?R )}

(5) 2
xexp(~(a/2)nx}(1 - Kxp~Y) (1 +1,)},
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and
P(T(a,) 2 x,/n) = {1 - exp(—(a/2)nxfL,)}
6
) Xexp{—(a/Z)nx,zl(l + de,’L’_l)z(l + ln)},
where
R,=1-x27(1- Kx,f_l)z(l +r,) —2(IClogn + log L) /anx?
while

L,=d-x27(1+dKe?~1)’(1 +1,) — 2(IC log n + log L) /anxZ,
where r, = g(x, (1 — Kx?~)Wn), while 1, = g(x,(1 + dKx?~YVn).

Proor. Put H, = sup,.,.;la¥() — B,(¢)|. Since {a}} =p {a,} and
T(B,) =, T(B), it follows by (4) and Assumption 1 that

P(T(a,) = x,Vn) < P(T(B,) = x,(1 — Kx2~')Vn) + P(H, > ¢ 'Kx[Vn )
< exp{—(a/2)x2(1 - Kx2~)’n(1+r,))
+ Lexp{—1(c™'Kx?n — Clog n)}.
Hence, by the definition of K and R, (5) follows. Analogously,
P(T(a,) = x,Vn) = P(T(B,) = x,(1 + dKx2~)Vn')
~ P(H, > ¢c"'dKx}Vn)
yields (6). O

ReMARK 1. Using some bounds for g, one can get from Theorem 1 explicit
bounds for P(T(«,) > x,Vn) (cf. Section 3).

REMARK 2. Suppose the inner limits in (1) exist for small x > 0 and
Assumption 2 holds. Applying Theorem ‘1 for arbitrary d > 1, p = 2 and fixed
x, = x satisfying 0 < x < (V/d — 1)/dK, one gets

—(a/2)x%(1 + dKx)® < lim n~'log P(T(a,) = xvVn)
< —(a/2)x*(1 - Kx)?,
and consequently

lim lim (nxz)_llog P(T(a,) =x/n) = —a/2.

x>0 n—ooo
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REMARK 3. Suppose Assumption 2 holds. If x, - 0 and x,V/n — » as
n — o, then applying Theorem 1 for arbitrary d > 1 and 1 < p < 2 one gets
lim (nxf)_llog P(T(a,) = x,Vn) = —a/2.

n—o

REMARK 4. Let T be a measurable and finite seminorm on D[0, 1]. Then by
Kallianpur and Oodaira (1978), e.g., Assumption 2 is satisfied. In particular,
Assumption 2 holds in all examples that follow.

3. Examples. By Remark 4, Theorem 1 is applicable for
Txs(x) = sup |x(¢)w(t),

0<t<l1

where w is a nonnegative and bounded weight,

L 1/r
Tom(x) = { [l dt} ,

where w is a nonnegative, integrable weight and r > 1 and for
& 1/2
TX(x) = { P (x(a;) - x(ai—l))z/(ai - ai—l)} )
i=1

where 0 = a, < -+ <a, = 1. Note that the limit (1) for Txg and T, for
some weight functions have been calculated earlier; among others, by Bahadur
(1971), Mogul’skii (1977) and Nikitin (1979, 1980). Moderate deviations for
Tc,m and some excessive deviations for Txg have been derived by Rubin and
Sethuraman (1965) and Borovkov and Sycheva (1968). Recently, some exces-
sive deviations for T, have been extensively studied in Kallenberg (1985). In
particular, he derived some bounds for P(T, > x Vn). Let us very briefly
discuss an application of our result in this case. Slnce T 2(B) has the chi-square
distribution with 2 — 1 degrees of freedom, then for y > £ + 1, it holds that

2A(k)y*=9/%7/2 < P(TX(B) = y) < A(k)y*~ /2772,

where A(k) = {2¢~V/2((k — 1)/2)} . Hence, for p, = a; — a,_, satisfying,
eg, p;=PB/k, i=1,...,k, for some B >0, by Remark 1 one gets some
explicit lower and upper bounds for P(TX(a,) > nx2), valid for nx? >k + 1,
all £ =2,3,... and all n [ef. Theorem 2. 3 of Kallenberg (1985)].

Flnally, cons1der a class of quadratic goodness-of-fit statistics introduced by
Neuhaus (1988) and defined as

(7) > A @),
k=1

where ,(¢) = V2 cos wkt, t € (0, 1), are eigenfunctions and A , are eigenvalues
of a kernel on L,(0,1) while (-,- ) denotes the scalar product in L0, 1)
Neuhaus recommended for practlcal use the statistic (7) with A, =
[(0.17k) " 'sin(0.17k)]Y, & > 1. Generally, suppose that A,’s in (7) satisfy
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c2 = max{m?k2\,, k > 1} < . Since }(t) = —mwkV2 sin wkt, by the Bessel
inequality, the functional
1/2

T(x) = {élAk(w,;,x)z} ,

satisfies Assumption 1 with ¢ = ¢,. On the other hand, the smooth test of fit
statistic introduced by Neyman (1937) can be represented also in the form (7)
with ¢, replaced by transformed Legendre polynomials on (0,1) and A, = 1
for k =1,...,k, and A, = 0, otherwise. So, this statistic satisfies Assumption
1 also.
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