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THE 1985 WALD MEMORIAL LECTURES

AN ANCILLARITY PARADOX WHICH APPEARS
IN MULTIPLE LINEAR REGRESSION'

By LAWRENCE D. BROWN

Cornell University

Consider a multiple linear regression in which Y;, i =1,...,n, are
independent normal variables with variance o2 and E(Y)=a+ VB,
where V; € R” and B € R". Let & denote the usual least squares estimator
of a. Suppose that V; are themselves observations of independent multi-
variate normal random variables with mean 0 and known, nonsingular
covariance matrix 6. Then & is inadmissible under squared error loss if
r=2.

Several estimators dominating & when r > 3 are presented. Analogous
results are presented for the case where o2 or 6 are unknown and some
other generalizations are also considered. It is noted that some of these
results for r > 3 appear in earlier papers of Baranchik and of Takada.

{V,} are ancillary statistics in the above setting. Hence admissibility of &
depends on the distribution of the ancillary statistics, since if {V;} is fixed
instead of random, then & is admissible. This fact contradicts a widely held
notion about ancillary statistics; some interpretations and consequences of
this paradox are briefly discussed.

1. Introduction. This paper introduces a general variety of admissibility
paradox. It then continues with a more detailed study of this paradox as it
operates in multiple linear regression. The paper concludes with some remarks
about ancillary statistics. It is noted that the admissibility results of this paper
contradict the widely held notion that statistical inference in the presence of
ancillary statistics should be independent of the distribution of those ancillary
statistics.

The general form of the paradox is presented in Section 2. The application
to multiple linear regression is presented in Section 3 and some extensions of
these results are presented in Section 4. Remarks about ancillary statistics are
in Section 5.

Multiple linear regression. In multiple linear regression the dependent
variables are assumed to be independent normal with mean a linear function
of the vector V of predictor variables. The principal problem to be discussed is
that of estimating the y-intercept value a, i.e., the population mean of the
dependent variables when the predictor variables are all zero.

If the predictor variables take on any prespecified constant values (assuming
only that o is estimable), then the least squares estimator & is admissible
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472 : L. D. BROWN

under squared error loss. However, if the predictor variables are independent
normal vectors with mean 0 and known nonsingular covariance matrix, then &
is not admissible. Admissibility of & thus depends on whether the ancillary
statistic V has a degenerate distribution or a nondegenerate normal distribu-
tion.

Precursors: Stein’s paradox. Probably the best known paradox in estima-
tion theory was discovered by Charles Stein. It involves the simultaneous
estimation of at least three normal means or other location parameters. [See
Stein (1956) and James and Stein (1961), or see Berger (1985) for a contempo-
rary survey.] The current paradox also involves at least three normal means or
other location parameters. But in other respects the two paradoxes are struc-
turally quite different. It is essential for Stein’s paradox that one be interested
in simultaneously estimating three (or more) parameters, whereas the current
results involve estimation of just one. Also, ancillary statistics play no role in
Stein’s results, whereas here their presence is essential; and as has already
been noted, the presence of the paradox depends on a certain feature of their
distribution.

While the current paradox is structurally very distinct from Stein’s, it is
mathematically very closely related. From the mathematical perspective the
current results are merely a slight variant of Stein’s. Some of the current
results, such as Theorem 2.1.2 and Lemma 3.3.3, are direct adaptations of the
theory of Stein estimation to the current context. Other principal results of
the paper, such as Theorem 2.2.1, Theorem 3.2.1, Lemma 3.3.4 and Lemma
3.3.5, etc., while not direct adaptations, are based on techniques of proof
familiar in the theory of Stein estimation. The general theory in Section 2 and
the organization of Section 3.3 have been planned so as to emphasize this close
mathematical relation.

Two other remarks are relevant concerning the relation to Stein estimation:

On the structural side: Some of the improved estimators constructed in this
paper are unbiased, whereas improved estimators of multivariate normal
means must be biased. [Construction of unbiased dominating estimators for
our problem requires that there be at least four (instead of three) unknown
means. See Section 3.3 for some unbiased dominating estimators in the
multiple regression problem.]

On the mathematical side: Stein (1960) considers the problem of prediction
in multiple linear regression. The principal results there can be viewed as an
adaptation of his earlier results in the multiple normal means problem. Most
of the results in our Section 3.3 can then be viewed as a further adaptation of
his results in prediction. Remark 2.1.3 discusses this mathematical connection.
There does not appear to be a similar direct mathematical connection with
respect to our results in Sections 2.2 and 3.2.

Priority: Baranchik’s prediction results. Baranchik (1964, 1973) further
develops the prediction formulation presented in Stein (1960). Several of the
results in our paper are already present in Baranchik’s papers. Our key
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Lemma 3.3.1 appears as part of the proof of Theorem 2 of Baranchik (1973).
His Theorem 2 involves only simultaneous estimation of both « and B, rather
than estimation of « alone. However a referee has pointed out that Section 3.4
of the technical report [Baranchik (1964)] upon which the later paper was
based, does present an inadmissibility result for a alone which is much like
our Lemmas 3.3.1 and 3.3.5 combined. (Apparently Baranchik failed to realize
the significance of this result and so omitted it from his later paper.)

Other precursors. There are some earlier, rather pathological, results in
which admissibility of an estimator depends on the distribution of the ancillary
statistic.

There is, first of all, a rather trivial observation concerning a one parameter
location problem with ancillary statistic. (It holds in other problems as well.)
The customary procedure can have everywhere finite risk conditional on the
value of the ancillary statistic and yet have identically infinite risk uncondi-
tionally. Whether this occurs obviously depends in part on the distribution of
the ancillary statistic. When this occurs the customary estimator is inadmissi-
ble.

Even when the unconditional risk is finite, the customary estimator can be
inadmissible in the unusual situation that certain mild moment conditions are
violated. This moment paradox was first observed by Brown (1966, page 1113)
and Perng (1970). See also Fox (1981).

2. General theory.

2.1. A simple paradigm. Let X ~ N(u,2), 3 known. Let w € R?, with
T P_,w? > 0 and define

b
(2.1.1) 0=Y wp,=wny.
i=1

Consider the problem of estimating § under ordinary squared error loss
(2.1.2) L(p,d) =(d—-0)°, deR.

The customary estimator for this problem is defined by §,(x) = w'x. As a
preliminary result we note:

ProposITION 2.1.1. In the problem formulated above, §, is minimax and
admissible.

Proor. This fact implicitly appears in Stein (1959) and explicitly appears
in Cohen (1965), and was perhaps known as early as Blyth (1951)-or Hodges
and Lehmann (1951). O

Now assume that the values of (w,...,w,) appearing in (2.1.1) are ob-
served coordinate values of a random variable W € R?. The simplest case



474 L. D. BROWN

occurs when the distribution of W is known and W is independent of X. This
is the case treated in Theorem 2.1.2. More complex situations are discussed in
the next subsection.

The customary estimator of 8 in this problem remains §,(x, w) = w'x. Let

(2.1.3) Q=E(WW).
(Assume () exists.)

THEOREM 2.1.2. Let X, W be independent. Suppose the p X p matrix () is
nonsingular and p > 3. Then §, is not admissible for loss (2.1.2). A better
estimate is given by 6*(x, w) = w'd*(x), where

p

(2.1.4) d*(x) =x - 251013 1

Q715
with 0 <p < 2(p — 2).

Proor. Observe that for any estimator of the form 8(x,w) = w'd(x),
d € R?,

R(n,8) = E(Wd(X) - W)
= E{(d(X) - p)WW(d(X) — p)}
= E{(d(X) —p)Q(d(X) — u)}.

since W and X are independent. This is the same as the risk of d(:) € R?
under the loss L(u,d) = (d — u)Q(d — w). It is known that for this loss the
estimator d* is minimax and dominates d(x) = x. See Stein (1960) for the
case () = ¢l and Berger (1976) or Hudson (1974) for the more general case. O

If Q is singular but of rank greater than or equal to 3 a similar inadmissibil-
ity result is valid: Just use a generalized inverse of ) in (2.1.4) and substitute
the rank of ) in place of p in that formula. If Q has rank 1 or 2, then §, is
admissible by an extension of the reasoning in Proposition 2.1.1. [When the
rank is 2 one also needs the two dimensional admissibility result in James and
Stein (1961) or Brown (1971).]

REMARK 2.1.3. A situation somewhat analogous to the above has already
been observed in the literature, first in Stein (1960). Consider a normal linear
model (e.g., a multiple linear regression) of the form

(2.1.5) Y ~ N,(Du, o).

Here ¢ > p, D is a (known) design matrix of full rank, o2 is known and
u € RP is the (unknown) parameter vector. Let X = i = (D'D)"'D'Y. Then
X ~ N,(u,3) with 3 = c*(D'D)"".

Now suppose W € R? and Z € R! are future random variables independent
of the vector Y and, given W = w, Z ~ N(w'u, 02). Suppose it is desired to
predict the value of Z after having observed X and W. Consider a prediction

2
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of the form 7(x, w) = w'd(x) and note that
E(m(X,W) - 2)?) = E(Wd(X) — Wy)*) + o?
=L(u,Wd(X)) +o0?

with L as defined in (2.1.2). When p > 3 inadmissibility of the usual predic-
tion 7, = w'x under quadratic loss therefore follows from a result like Theo-
rem 2.1.2. This result in prediction theory has more recently been noted and
exploited in, e.g., Baranchik (1973), Copas (1983) and Oman (1984).

Lemma 3.31 can be viewed as an application of Theorem 2.1.2 which
involves a multiple regression setup like that in (2.1.5); however, Theorem
2.1.2 is applied there in a quite different fashion than in the above example. In
particular, throughout Section 3 there are no future observations W, Z under
consideration and the problem is thus one of estimation rather than predic-
tion.

(2.1.6)

REMARK 2.1.4. The form of d* in (2.1.4) is analytically convenient. How-
ever somewhat better estimates can be defined by substituting other forms for
d*. For example, one could use

P
T o 2
x'z—ln—lz—lx} 2=
Sections 4.7.7, 4.7.10 and 5.4.3 of Berger (1985) contain a useful discussion of

alternate estimators including many which, while not minimax, have other
appealing properties.

(2.1.7) di(x)=x— min{maxeig(EQ),

2.2. A more complex result. In the simple setting of the previous subsec-
tion the covariance matrix 3, of X was assumed fixed and known. An inadmis-
sibility result is also valid when 3 is random with W either random or fixed.
This result is less satisfactory than the previous one in that we are unable here
to provide a useful formula for an estimator which dominates §,. This defect is
discussed below in more detail and also, indirectly, in the application of the
next section.

For the following theorem let @ and 3 be observable (p X p) positive
semidefinite matrix valued random variables. Assume 3 is positive definite.
Let the joint distribution of (@, %) be known and define
(2.2.1) Q=E(3Q3).

‘

(Assume it exists.) Suppose X ~ N( &, %) and it is desired to estimate u under
the (random) loss
(2.2.2) L(p,d) =(d - un)Q(d — p).
The customary estimator here is 5,(x) = x.

To connect this formulation with that of the previous section aésume 3 is
ﬁxefi and let @ = WW'. Estimation of x by d € R? under loss (2.2.2) is
obviously equivalent to estimation of 9 = W'u by W'd under loss (2.1.2) since

(d = p)Q(d —u) = (d - w)WW(d - p) = (Wd — W) = (Wd — ).
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THEOREM 2.2.1. Let p > 3. Suppose Q) defined by (2.2.1) is nonsingular.
Then §, is inadmissible under loss (2.2.2).

Proor. If 3 =(o;;) let ||3|| = max{|o;;: 1 <i,j<p} Given B < let
Qp = EGQI| 2] < B, ||Q] < B). If Q = (), is nonsingular, as hypothesized,
there must be a B < « such that Qj is nonsingular. 3 and @ are ancillary
statistics; so it suffices to show that conditionally, given ||| < B and ||Q|| < B,
8o(x) = x is inadmissible. Accordingly we can now assume with no loss of
generality that ||2|| < B and ||@| < B with probability 1. We will do so and
omit explicit mention of B in the sequel.

Let d > 0 and

P

- - -1 —
(22.3) 8(x,Q,3) = (1 ——— 30 )x 0<p<2(p-2).
Applying Berger (1985, page 362) gives
A= R(/'La 80) - R(/-", 8)
QO 13Q3 p\ QTIXX'Q7ISQ3
E#[tr d+ XX _( _) @rxax)” |0

2
Write X =pu + Z, where Z ~ N(0,3). Expanding the error term as in
Brown (1966, pages 1122-1124) yields

= 2pE

Bl Q13Q3 s
Wiy xaix |
. 071303 220" + Z07Z
B rd +uwQ d+uQ
(2.2.4)

(220 % + 2072)
T@ T wT)(d 1 (Z + 0 NZ + )

o z]
Q7 13Q3 1
d+uQ (d +wQ u)d
The O(-) term above is uniform in 3,Q since ||| < B and ‘[|Q|| < B by
assumption. [One basic inequality used in verifying (2.2.4) is

(2Q W + 2’9‘12)2 d+uwQ
<
d+(z+p)Q Y z+pw) d

This can be verified by examining the simple expression s2/(d + (s + t)?)
which is maximized for fixed, d,¢ by the choice s = —(d + t?)/t.] Similar
reasoning yields

Q-1IXX'015Q3,
I
(d + X'Q71X)*

1

B Q lup3Qs
(d+wQ 'u)d

2 =tr—————— =
(d +wQ ')

E, |t

©w
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Taking expectations over @, 3, now yields

2p p W
A=— —|p-(2+|tr———|+0
d+uQ (p ( 2) rd + W Q

2p p
> [p-2-2|+
>d+#«'9‘1u(p 2) 0

1
(d+ u'ﬂ‘lﬂ)d)

1
(d+wQ 'u)d )
For any 0 < p < 2(p — 2) it is thus possible to choose sufficiently large d so
that A > O forall u. O

Note that although 8 does dominate §,, it is not shown above to be a
practically useful competitor since d may need to be chosen to be quite large,
in which case A is a quite small positive amount. The above proof does
however suggest one should be able to find a dominating estimator satisfying

p
(2.25) 5(x,Q,3) - (1— ot
0 < p < 2(p — 2). It may often be that an estimator such as
p—2
x'Q
dominates §,; however, results in Section 3.3 show that dominance of (2.2.6)

can depend on the joint distribution of @, 3. (2.2.6) is, of course, the obvious,
direct analog of d* as defined in (2.1.7) with p = p — 2.

EQ_I)x +o(llx[7!) as Jlxl| - o,

(2.26) 8(x,Q,2) =x-— min{mineig(QE_l), }EQ_lx

3. The multiple regression problem.

3.1. Setting for fixed regression constants. Consider the usual normal
multiple linear regression. Denote the (» + 1) unknown parameters by a € R,
B=(By,...,B8,) R Let Y=(Y,,...,Y,) denote the observable random
vector. Let o2 > 0 be a fixed, known constant. (See Section 4.1 for the case of
unknown o2) Let V, = (V,y,..., V), i = 1,...,n, denote the observed Gi.e.,
known) regression constants. The coordinates Y,,...,Y, are assumed to be
independent normal random variables with

(31.1) E(Y)=a+V/B, Var(Y) =02 i=1,...,n.

One may alternately write Y ~ N(1a + VB,0o?I) with V=(y;;) and 1=
(1,...,1Y € R*. Assume V is of full rank. It is desired to estimate the
y-intercept parameter a under ordinary quadratic loss:

(3.1.2) L((a,B),d) =(d —a)?, deR.

Some additional notation is needed in order to adequately describe the usual
estimator. Let Y=n"11Y, V=n"1Vand S=V-1V)Y(V-1V). [V is a
scalar, V is a (1 X r) row vector, and S is (r X r) and positive definite with
probability 1.] The usual estimator of « (as well as the usual estimator of B) is
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the BLUE which is of course also the MVUE and MLE. It is given by
B=8"v(y-Y1.

(Section 4.2 discusses estimation of linear contrasts other than «.)

Note that
[3)~((3)- =)

(V) = O_z(n—l +VS- W —Vs—l)_

(3.1.3)

(3.1.4)

-8~ St
Furthermore, Y is independent of .
Admissibility of & is immediate from Proposition 2.1.1, as follows.

ProposSITION 3.1.1. In the preceding problem & is an admissible estimator

of a.

Proor. Let X = (g), u= (;) and X =3(V) as in (3.14). Let w =

(1,0,...,0). Then apply Proposition 2.1.1. O
3.2. Random regression constants: Inadmissibility of & for r > 2.

Setting. In the preceding subsection the design variables v;; were assumed
to be fixed, known constants. This is realistic for applications where the v;; are
preset by the experimenter, perhaps in such a way that the experiment will
satisfy some classical optimality criterion. [For example, one can choose the v;;
subject to |v;;| < B to minimize tr(%(V)).] However, there are many other
situations where the v;; cannot be so closely controlled. Thus, in one broad
class of situations the vectors V, = (v, ..., v;,) are independent vector valued
random variables.

The remainder of this paper (except for parts of Section 4) concerns the
situation where the V, are observations of independent random variables in R”
with a known distribution. Here, we take this known distribution to be normal
with mean zero and covariance identity. (See Remark 3.2.1). Thus

(3.2.1) V=1 -1, V, ~N(0,I) (indep.), i=1,...,n,
\A
for given V,Y ~ N(1a + VB, d%I), 0% known. (See Section 4.1 for the case

where o2 is unknown and estimable.)

ReEMARK 3.2.1. The distributional assumptions on V can be somewhat
relaxed. Suppose that the V, are independent with V, ~ N(0,0), i =1,...,n
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(with ® a known positive definite matrix), but otherwise (3.2.1) holds. Let
V.* = (@) 2V, and B* = ©'/?8. Then (3.2.1) holds with V* g* in place of
V,B. Thus the results to follow apply after a simple transformation to this
case. Various of the other distributional assumptions can also be relaxed
without qualitatively changing the results to follow. Section 4 discusses fur-
ther modifications of (3.2.1).

Inadmissibility. The usual estimator of @ under quadratic loss (3.1.2) is
still 8, = & as defined by (3.1.3). However, when r > 2 this estimator is now
inadmissible, as the following theorem shows.

THEOREM 3.2.2. Let V,Y be as in (3.2.1). Let r > 2. Then 8, =& is an
inadmissible estimator of a under ordinary quadratic loss (3.1.2).

ProorF. Let u = (Z) and ¥ = 3(V) as in (3.1.4) and the proof of Proposi-
tion 3.1.1. Here u € R? with p =r + 1 > 3. Note that now V,2(V) are
random variables with joint distribution specified via (3.2.1). Let W =
(1,0,...,0Y and @ = WW'. As explained by (2.2.3), estimation of a under loss
(8.1.2) is equivalent to estimation of u under loss (2.1.2).

Suppose first that n — r > 5. Note that V and S are independent, V ~
N, 1/n), E(V,V)=1 and S ~ Wis(n — 1,1). Also, E(S~2) = kI with k =
n-r-2"(n-r-49"'1+@-00n-r—-1""1 by Theorem 3.2(ii) of
Haff (1979). Thus

Q= E(2(V)Qx(V))

_geg| (RTIAVSTY (a4 VSTW)TST
(3.2.2) S~WV'(n '+ VS~V S-wvs-!
L 2r r(r+2) 0
Y Jrnz(n—r—3)Jrnz(n—r—3)(n—r—5) >
01y n el

since (n(n — r — 1)/r)VS~V' ~ F. and

(R~ 1+ VS W)US 1= —[(n" 1+ (-V)S"U-7))(-V)S7Y].

Actually, the details of (3.2.2) are not important here; all that matters is that
) is diagonal and hence nonsingular. It now follows from Theorem 2.2.1 that
8, is inadmissible.

If n —r <5, then , as defined above, does not exist. One must thus
reason slightly differently. Let S™! = (s%/) and ||S|| = max{|s"/|: 1 <i,j < p}
and define ||V|| = £7_,V? in the usual way. Let B < «. Consider the problem
conditional on ||S~!|| < B, |V|| < B. Consider Q = EC(V)Q2(V)|||IS7Y|| < B,
V|| < B). From (3.2.2) and symmetry considerations it is easy to see that Qp
is a nonsingular diagonal matrix. Hence, from Theorem 2.2.1 it follows that §,,
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is inadmissible given ||S™!|| < B, ||V|| < B. Let &' dominate §, given this set;
ie.,

E((8 - a)*|IS "I < B, |Vl < B) < E((8, — )*|IS7 "l < B, [V|| < B)
with strict inequality for some parameter values. Define
5= [0 ifISTH<B,IVI<B,
8y, otherwise.

Then & dominates §,; hence §, is inadmissible. O

Theorems 3.2.2 and 2.2.1 do not provide a useful formula for an estimator
which dominates 8, = & The discussion following Theorem 2.2.1 does, how-
ever, suggest the conjecture that & is dominated by an estimator such as

P T
(3.2.3) Sd=a& e[mm{mlnelg(ﬂz ), T }EQ (B)],
where e’ =(1,0,...,00 € R™™! and 3 = 3(V) [see (3.1.4)], with 0 <p <
2(p - 2).

3.3. Some minimax estimators for r > 3. Throughout this section assume
that the dependent and independent variables Y and V are both random with
distribution given by (3.2.1).

A class of estimators. The preceding has shown that &, while minimax, is
not admissible when r > 2. However the proof of that inadmissibility result is
virtually nonconstructive—no useful alternative to & is proven to dominate &.
In this section we investigate a particular class of estimators to be defined by
(3.3.1).

As of now the best of these estimators appears on the basis of partial
evidence to be that given through formula (3.3.5). (See Section 3.4.) However,
future research may alter this temporary conclusion in favor of an estimator
qualitatively like that given through (3.3.6).

The reader interested only in the basic theory of the ancillarity paradox may
skip directly to the general discussion in Section 5. (Perhaps Remark 3.4.3 and
Section 4.6 would also be of interest in these general terms.)

The general class. Recall that & = Y — V3. This expression motivates
consideration of estimators of the form

(3.3.1) §=Y-VB(B,S)=a+V(B-B(B,S)),
where f is a specified function of 8 and S only. A

Use of (3.3.1) can also be motivated from invariance considerations under
the transformations (a, 8) > (a + a, MB) and V> M'V with ¢ € R and M
an (r X r) orthogonal matrix.

There is another kind of motivational argument for (3.3.1) worth mention-
ing here. If it were known that 8 = 0, then Y would be the ordinary estimator
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of a and would be minimax and admissible. The estimator (3.3.1) with 8
shrinking B toward 0 can thus the thought of as a smoothed pretest estimator.
(An ordinary pretest estimator would be a discontinuous shrinker such as
B = 0if 'SR < C and B = B otherwise.) The estimators involving B, and ,l§3
to be introduced later in this section can be given roughly such an interpreta-
tion; they can be written in the form aY + (1 — @)& with a = a(B, S), where
a(+) is decreasing as the data makes the null hypothesis 8 = 0 in some sense
less likely. See Section 3.4 for further discussion of this. See Section 4.6 for a
further motivation of (3.3.1) based on an empirical Bayes argument.

A basic lemma. The risk of the estimator in (3.3.1) compared to that of &
has a very simple form, as follows:

LEmMMA 3.3.1. Let & be as in (3.8.1). Then
A =R((a,p),a&) — R((a,B),5)
=n"YE(I8 - BI?) — E(IIB - BI?)}.

(3.3.2)

Proor. Let 6 =a + VB = E(Y|V) Note that Y is conditionally indepen-
dent of B, S given V and that V is independent of 3, S. Hence

R((a,B),8) =E(IY - VB — 0+ VB|?)
—E((Y-06)"-2Y-0)V(-8)+ (B-B)VV(B-B))
= o%/n + E((B - BY(I/n)(B - B))

since E(Y — 0|V, 8) = E(Y — 6|V, S) = 0 and E(V’VIB) = EWVV|B,8)=1/n.
The analogous expression is obviously valid for 3. Taking the difference yields
(3.3.2). O

To summarize the significance of this result:

COROLLARY 3.3.2. Admissibility of & within the class of estimators of the
form (3.3.1) is equivalent to admissibility of B as an estimator of B under
ordinary quadratic loss (L = B — BII®) within the class of estimators of the
form B = B(B, S).

Four varieties of minimax estimators of B. In view of Corollary 3.3.2, we
now consider the problem of estimating B by B(B,S) under loss L =
n~Y|8 — B||%. Three special types of minimax estimators suggest themselves.

First, note that conditional on S the situation is exactly the classical one
discussed in Section 2.1, with 3 = ¢2S~! and @ = n~!I. An estimator which,
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given S, conditionally dominates 3 also dominates B unconditionally. Conse-
quently:

LEmma 3.3.3. The estimator

a’p N
5s% P

dominates B when 0 < p < 2(r — 2) and when n >r + 3.

(3.3.3) B.(B,8) = B — min{mineig(S™?),

Proor. The condition n >r + 3 is needed so that E(||B||2) < . [See
(3.4.1).] It also guarantees that S is nonsingular with probability 1. Note that
the estimator (3.3.3) is just d* of (2.1.7) so the lemma follows as in the proof
of Theorem 2.1.2. (The customary choice for p would be p =r — 2.) O

The preceding estimator dominates f conditionally on S. Since S is
random with known distribution (i.e., an ancillary statistic) it is plausible that
even better estimators can be found whlch dominate 3 in expectation although
they do not dominate conditionally given S. It is particularly tempting to
consider estimators which do not depend on S. Here is such an estimator.

LEMMA 3.3.4. Assume n > r + 3. The estimator

-~ . T p 3
(3.3.4) By = (1 - mm{ (TW})B

dominates B when 0 < p < 2(r — 2).

Proor. Since B2 is a function of B only, its risk depends only on the
margmal distribution of 8. That marginal distribution is a multivariate ¢. This
is of the form of Example 3 in Berger (1975), and the lemma follows immedi-
ately from Theorem 1 of that paper. O

There is another estimator which has been studied in connection with the
prediction problem that is mathematically equivalent to the problem at hand.
This estimator was first suggested by Stein (1960). This estimator is particu-
larly natural in the variant of the current setting where V, ~ N(0, ®) and O is
unknown; see Remark 3.2.1 and Section 4.4. The estimator is

. o ).
(3.3.5) Bs = (l—mln( B,SB))B

LEMMA 3.3.5. Assumen > r + 3. The estimator /33 dominates B when 0 <
p < 2(r - 2).

Proor. This result is proved in Takada (1979) building on earlier results of
Baranchik (1973). The proof there is explicitly for the unknown o2 case (as in
Section 4.1) but is easily adapted to the known o2 case. O
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In summary, the estimators &, constructed from J; via the recipe (3.3.1),
i=1,2,3, all dominate @ when r >3, n>r—-3and 0 <p < 2(r — 2).

ReEMARK 3.3.6. It can be shown that all admissible estimators of 8 in the
setting of Corollary 3.3.2 must be generalized Bayes with respect to a prior
over {8 € R"}. Hence it would seem desirable to use an estimator 8 which is
generalized Bayes or at least closely mimics the behavior of a generalized
Bayes estimator. This is discussed in Brown (1987). In a sense made precise
there it is shown that none of B;, B8, or ﬁ3 has this desirable property. The
desire to mimic the behavior of a generalized Bayes estimator suggests use of
an estimator such as

- g 2 a
(3.3.6) Bs = [I— min{mineig(S), ﬂé—”p;}s_l]ﬂ
which is just (2.2.6) rewritten for this special case. [Formula (4.6.3) presents
another possibility.] We have not been able to analytically manage the risk of
this estimator. However we have been able to verify that

o281 5
IAII?

dominates 8 when r > 3 and n is sufficiently large. [See Brown (1987) for a

precise statement.] However n needs to be moderately large before this

domination occurs, and it does not appear that (3.3.7) provides a good solution
to the problem of estimating .

(3.3.7) B, = [I -

3.4. Improvement of § over 8y- The positive part James—Stein estimator
8, for the classical problem of Section 2.1 with @ = I = 3, can produce quite
dramatic improvement in risk. For that problem R(u, 8, =p and
inf, pr R(u,8,) = R(0,8,) < 2. Hence the proportional improvement in risk
can be larger than 1 — 2 /p, a quite dramatic amount when p is large. As has
been frequently pointed out (and will be mentioned again below) this propor-
tional improvement decreases to 0 quite rapidly as ||u|| increases.

For moderately small values of n the estimators 8 of Section 3.3. yield
similar dramatic maximum improvements in risk. They do not do so for larger
values of n. Note that via a simple direct calculation

R(a,0;8,) =o?n (1 + E(trS71))

r
(3.4.1) {Uzn—l(l N —2) ifn>r+3,

= n—r-—
00, ifn<r+2.
For 5:‘ constructed via (3.3.1) from B ;» 1 =1,2,3, here are some correspond-
ing formulas for n > r + 3: )

. o? 2p(r — 2) - p?
(34.2) R(«,0;8,) — R(a,0;5,) > (—;)Eﬂ=O(W)
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[see Berger (1985, page 364)];

(34.3) R(,0;8,) — R(a,0;5,) > n(n r)( (r—2))’
sowhen p=r — 2,
(3.4.3) R(a,0:50) - R(a,0;5,) > Z0—2

22 % »T T2 n(n—r)

[see Berger (1975)];
2

——_ar—_zj(zp(" -2) - p?)

4. 5 - ;~ >
(3.4.4) R(«,0;8,) — R(a,0;5,) e

[see Stein (1960)], so when p = r — 2
o?(r—2)
n(n-r-2)
For 53 the proportional improvement in risk at (a, 0) is
R(@,0;8,) — R(a,0;8;) r—2
R(a,0;68,) n—2

While this can approach 1 [for r - x and (n — r)/r — 0], it is ordinarily much
less. For example, for n = 20, r = 3,5, 10 (resp.) it is 0.06, 0.17, 0.44 (resp.).

(3.4.4) R(a,0;8,) — R(a,0;5;) =

(3.4.5)

REMARK 3.4.1. The right sides of (3.4.2)-(3.4.5) are values for the estima-
tors corresponding to §;, i = 1,2,3, without the positive part adjustment
which has been included in their definition. It is easy to show that the positive
part adjustment decreases the risk at (a, 0) and, hence, yields strict inequality
in (3.4.2)-(3.4.4). It is also true that the risk at («, 0) of the given positive part
estimators is strictly decreasing in p. Hence the right sides of (3.4.3") and
(3.4.4') are lower bounds for improvement in risk when p > r — 2.

REMARK 3.4.2 (A summary conclusion). On the basis of this evidence it
appears that the estimator of choice, af this stage of research, is ‘0‘3 asin (3.3.1)
and (3.3.5), with &, a close competitor. Of course for a more definitive
comparison one should really compare the functions R(a, B;3,), i = 1,2, 3, for
various values of ||B|| rather than just for 8 = 0 as has been done above. A
numerical study could feasibly yield such a comparison. It should, however, be
borne in mind as noted in Remark 3.3.6 that future research may discover an
estimator based on an expression like (3.3.6) which is preferable to §;,
i=1,23.

Note that 53 has the additional advantage of being robust for misspecifica-
tion of O, the covariance matrix of the V; (see Section 4.4.) As a secondary
observation, note that 82 might appear preferable to &5 because of its some-
what simpler form; however, this should generally not be a significant factor
since the matrix S will ordinarily already be available from the computation of

&, B.
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REMARK 3.4.3 (An argument in favor of §). While proportional gains in risk
in the range of 0.06 to 0.44 as noted following (3.4.5) are not as dramatic as
the figure (1 — 2/p) available from the classical James—Stein situation, they
seem large enough to be often worth seeking.

Of course it is the case here (as with the James—Stein problem) that the
proportional gain in risk decreases rapidly to zero as ||B|| increases. However,
there is a factor which makes this decrease for larger ||B|| often of less
relevance than it is in the James—Stein situation. Explanation of that factor is
the main goal of this remark.

The results of Section 3 have concerned regression problems in which
interest is in the unadjusted mean a. In such problems the regression parame-
ters are often thought a priori to be near zero. [They may for example
correspond to measurements on concomitant variables suspected to have little
or no influence on the measurement (Y) of primary interest; data which were
collected, perhaps, only because it was convenient to do so and which once
collected cannot easily be totally ignored.] Such situations are familiar in
practice, and one frequent suggestion is to use a prehmmary test
estimator—using 8 = & if the test of ||8|| = 0 rejects and & = Y if it accepts.
As has already been explained, some of the estimators of Section 3.3 can be
viewed as smoothed preliminary test estimators. In addition, their use can be
justified on the basis of minimaxity in a way that (it seems) preliminary test
estimators cannot be, and one may expect from other research on preliminary
test estimators that the estimators of Section 3.3, or something much like
them, should behave better than any preliminary test estimator. See, e.g.,
Sclove, Morris, and Radhakrishnan (1972) and Judge and Bock (1978, Chapter
12).

There are situations in which only some of the regression parameters
By, ---,B, are suspected a priori of being near zero. The considerations of
Section 3.3 can be easily modified for such a situation by using /3; in (3.3.1) to
estimate parameters not suspected of being near zero and using a vector
estimator like B for those suspected of being near zero. If at least three
parameters are suspected of being near zero, then one can in this way improve
on the usual estimator 8, = & (Some improvement is also possible, as in
Section 3.1 when just two parameters are suspected of being near zero.)

4. Variants of the multiple regression problem.

4.1. Unknown error variance. In the most common applications the error
variance o2 is actually unknown, but is estimable. So, suppose in (3.1.1) that
o? is unknown but there is available an independent variable U with U /o2
distributed as x2. Usually m =n —r — 1.

THEOREM 4.1.1. Let r > 3 in the above setting. Replace o? in the defini-
tions (3.3.8)—-(3.3.10) of B;, i =1,2,3, by U/(m + 2). Then the resulting
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estimators of B remain minimax when 0 < p < 2(p — 2) and the correspond-
ing estimators (3.3.1) of a are also minimax and dominate &.

ProOF. The statement of 3, follows immediately from Berger (1976) as did
the proof of Lemma 3.3.3. The proofs for the modified ﬁz and Ba result from
substituting U/(m + 2) for o® in the original proofs, taking the additional
expectation in the appropriate risk expressions for ﬁz and B3 [see Berger
(1975)] and performing some simple, straightforward algebra. The details are
thus omitted. O

The above result also holds for the estimators to be introduced in Sections
4.2 and 4.4. In much the same way it is possible to prove an extension of
Theorems 2.2.1 and 3.2.2.

THEOREM 4.1.2. & is an inadmissible estimator in the above setting when
r=2and m > 5 or whenr > 3.

Proor. The result for r > 3 is just Theorem 4.1.1. For r = 2 write s =
3(V)/a? with 3(V) as in (38.1.4) and Q = Q/0* with Q defined by (3.2.2).
Then let

p
d+U/m+x'Q %

Now proceed as in the proof of Theorem 2.2.1 to show that

(4.1.1) 5= [I - iﬁ-l]x.

A B 2702 9 p
> — — —_
- d+U/m+uQ (p 2)
(4.1.2) )
+0|E —
(d+U/m+wQ 'u)d

uniformly in u, 0?2 as d — «. In verifying this it is important that
z07'z ’
. (d+U/m + ,u,'ﬁ_l,u,)2
(4.1.3) 1
=0|E —
[ (d+U/m+uwQ 'u)d ]

with Z ~ N(0,3(V)). The condition m > 5 guarantees that E(c*/U?2) is
bounded, which then yields (4.1.3). The theorem now follows from (4.1.2). [We
suspect that the condition m > 5 is not required for validity of the theorem,
although it does seem to be necessary for (4.1.3).] O

4.2. Estimation of other contrasts. The preceding has concentrated en-

tirely on estimation of the single (linear) contrast «. It may instead be desired
to estimate some other linear contrast. Denote such a contrast as k = aa + b'8
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with ¢ € R and & € R™ known and not both zero. The existence theory of
Section 2.3 yields the following parallel to Theorem 3.2.

THEOREM 4.2. Let V,Y be as in (3.2.1). Let r > 2. Then 8, = a& + b'B is
an inadmissible estimator of k under ordinary quadratic loss L = (8 — k).

ProoF. The proof is parallel to that of Theorem 3.2.2. The matrix @ is
now taken to be @ = (Z)(a, b"). The resulting matrix Q = E(S(V)Q3(V)),
when it exists, is still nonsingular, although it is of course no longer given by
(3.2.2). When ) as above does not exist one must first condition on a subset of
{V} just as in the proof of Theorem 3.2.2. The theorem thus follows from
Theorem 2.2.1 as did Theorem 3.2.2. O

As before, the preceding does not yield a useful formula for an alternative to
8, although one can again conjecture that something rather like (2.2.6) and
(3.2.3) will eventually be shown to yield a practically viable alternative to &,.
When r>4 and n >r + 4 it is possible to produce a useful alternative
estimator dominating §, which involves an expression like B;,i=1,20r3,of
Section 3.3. The derivation is somewhat lengthy and not entirely satisfactory.
Details appear in Brown (1987, pages 53-56).

4.3. Different mean for V. To now we have assumed known that E(V,) = 0.
If it is known that E(V;) = v with v # 0, then the general pattern of inadmis-
sibility revealed in Section 3.2 remains valid but the results of Section 3.3
seem to apply only through the methodology of Section 4.2.

Note that if V, ~ N(v, I) (independent) and [as in (3.2.1)] Y~ N1« + VB,
o?I), o2 known, then

(43.1) Y~N(1(a+vB) +(V-1)B,0%) = N(a* + V*B,0%I), say.

Here, the rows of V* are independent N(0, I) variables, as in (3.2.1). It should
be clear that estimation of « on the basis of V,Y as in (4.3.1) is equivalent to
estimation of the contrast a* — v’ in the setting of (3.2.1). The following thus
summarizes the preceding results as they now apply.

THEOREM 4.3.1. Let E(V)) = v (v known) as in (4.3.1) above. Let r > 2.
Then 8, = & is an inadmissible estimator of a under ordinary quadratic loss.

If r>4 and n >r + 4 an estimator improving on §, can be found by
proceeding as in the remark at the end of Section 4.2 to estimate the contrast
a* — v'B on the basis of (V*,Y). Estimation of contrasts other than « can be
discussed similarly.

REMARK 4.3.2. In most applications V,Y are as in (4.3.1) but v is un-
known. We conjecture that 8, = & is then an admissible estimator of «. In
certain other applications » is unknown but there also exist additional inde-
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pendent observations on V unaccompanied by a corresponding Y. These could
be used to produce an independent estimator of v. It can be shown under
suitable conditions that 8, is then inadmissible when r > 2.

4.4. Unknown covariance matrix of V. Remark 3.2.1 has already discussed
the situation where V, ~ N(0,®) (independent) with ® a known positive
definite matrix. (Strictly speaking, when © is unknown, then S is no longer an
ancillary statistic since its distribution depends on the unknown nuisance
parameter ©.) Observe that if ® is unknown it can be estimated by S/(n — 1).
Bearing this in mind along with the general nature of the problem it is natural
to conjecture that & is inadmissible if r > 2.

This conjecture is certainly valid when r > 3. The following result is now
easy to establish and so its proof is omitted. We also note that the following
result reformulated as a prediction problem is essentially what was stated and
proved in Baranchik (1964, Lemma 3.1). [See also Takada (1979)].

THEOREM 4.4.1. The risk of 53 as an estimate of « is independent of © (so
long as O is nonsingular). Consequently, 65 dominates & for all (nonsingu-
lar) ® whenever 0 < p < 2(r — 2).

There is an interesting contrast between the result of Theorem 4.4.1 and
the results and conjectures of Section 4.3. Note that nothing need be known
about the covariance matrix ® of V in order for & to be inadmissible, but it
appears that one does need information about the mean vector v for V. Now,
when v = 0 and ® = I is known one might expect that knowledge of ® should
be used and would lead to a noticeably better estimator. Improvement of the
estimators §,, 5, and 5, over & does depend on ©. However, it does not appear
that any of these estimators is to be preferred over 53. (Indeed, the reverse is
probably true, as noted in Remark 3.4.2.) However, as noted in Remark 3.3.6,
it should be that an estimator somewhat like 55 [derived from B5 of (8.3.6)]
should dominate &; when © = I. It remains to be seen whether such domi-
nance would be by a numerically significant amount.

4.5. Other variants. Other assumptions can undoubtedly be relaxed with-
out altering the basic fact that the usual estimator of the single parameter « is
inadmissible. Of course, alteration of these assumptions may affect the specific
formulae [such as (8.3.1) and (8.3.3)-(3.3.6)] for improved estimators. Prime
candidates for modification in future research are the assumptions that V be
normal and that the residuals Y — E(Y|V) be normal, along with the assump-
tion of quadratic loss in the estimation of a (or some other contrast).

4.6. An empirical Bayes interpretation. Suppose the parameters (a, 8)
have a (formal) prior distribution under which a has a uniform prior and B
has an (independent) normal prior with mean 0 and covariance 72I. Then the
(formal) Bayes estimator of « is the (formal) posterior mean

(4.6.1) 6=&+c?VS (o287 + 72[)—1/§.
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Note that
(462)  E(IBI’IS) =1IBI* + trS™* and E(I|BI?) = r*r.

A crude estimate of 72 is therefore ||3||2/r. Substituting this in (4.6.1) yields
the empirical Bayes estimate

2 -1 4

(4.6.3) Bup = & +U2Vs-1( 75 +I) B

Al Al
The factor (a-2r/||B|2)S ™! is nearly negligible when || 3|2 is large. If this factor
is omitted from (4.6.3) the resulting estimator is exactly of the form §, given
by (3.3.1) and (3.3.6) with p = r. The estimator (4.6.3), or a modification of it
using a less crude estimate of 72 (and possibly a constant p in place of the
second r in the formula), is thus another good candidate as a minimax
estimator to improve on 8, = & when 6 = I.

5. Ancillarity. The admissibility results of this paper are paradoxical in
two ways. The first and more obvious one is that they show to be inadmissible
the intuitively appealing estimator @a—an estimator which also happens to be
best invariant and minimax. The second and possibly more significant paradox
is that they apparently contradict a widely held belief about the role of
ancillary statistics. This section briefly discusses the ancillarity paradox.

The role of ancillary statistics. An ancillary statistic is one whose distribu-
tion is independent of the parameters of the statistical problem. It is widely
held that statistical inference should be carried out conditional on the value of
any ancillary statistic. That is to say, one should proceed as if the observed
value of the ancillary statistic were a fixed, known constant. Another way of
phrasing this is to say that the distribution of the ancillary statistic should be
irrelevant to the statistical inference.

Let me quote briefly from Savage’s (1976) paper, ‘“On rereading R. A.
Fisher.” This quotation refers explicitly to the regression setting, described
above, in which the value of the independent variable(s) is an ancillary
statistic. [The reference in the quotation is actually only to the case of
inference about the regression coefficient in ordinary linear regression (= one
independent variable), but there is no reason to think that Savage or Fisher
would have considered the multivariate linear regression problem studied here
to be any different in this regard.]

“Fisher believes, and most of us with him, that if the statistic is ancillary,
inference can be made from the conditional distribution of the data, given the
parameters of interest and the ancillary statistic. That, for example, is how
everyone ordinarily studies the regression coefficient ... .

...the conclusion of statisticians of all persuasions has seemed to be that
the conditional distribution of the regression coefficient given the value of the
[independent variables] is appropriate for inference.”

(Savage’s discussion continues with a Bayesian interpretation for the belief
described here.)
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Cox’s example. Cox (1958) has presented an important example relating to
conditioning on an ancillary statistic. This example involves a hypothesis
testing problem. The ancillary statistic is the sample size, which is either
n,=1/0f or ny, = 1/03, n; < n,. The formally optimal level @ = 0.05 text
has conditional level nearly 0.1 if n, obtains and nearly 0 if n, obtains. Cox
concludes:

“Now if the object of the analysis is to make statements by a rule with
certain specified long-run properties, the unconditional test just given is in
order, although it may be doubted whether the specification of desired proper-
ties is in this case very sensible. If, however, our object is to say ‘what we can
learn from the data that we have’, the unconditional test is surely no good.
Suppose that we know we have an observation from 3. The unconditional test
says that we can assign this a higher level of significance than we ordinarily
do, because if we were to repeat the experiment, we might sample some quite
different distribution. But this fact seems irrelevant to the interpretation of an
observation which we know came from a distribution with variance o2. That
is, our calculations of power, etc., should be made conditionally within the
distribution known to have been sampled, i.e., if we are using tests of the
conventional type, the conditional test should be chosen.”

“To sum up, ... information as to whether it was 3, [corresponding to n,]
or 3, [corresponding to n,] that we sampled tells us nothing about 6, and
hence we make our inference conditionally on 3; or X,.”

Thus, Cox’s paradox indicates that the classical formulation is inappropriate
for the testing problem he has considered. Brown (1978), following Kiefer
(1976, 1977), argues similarly for a class of problems including that of Cox,
and presents a formulation to supplement the classical one.

One can ask a similar question about the ancillarity paradox presented in
the current article: does the paradox suggest that the classical decision theo-
retic formulation is inappropriate and needs to be altered? I think the answer
is “No”.

Cox’s article makes a distinction between tests and confidence procedures
on the one hand and point estimators on the other. Note that tests and
confidence procedures involve a terminal decision statement plus a stochastic
claim as to the accuracy of the terminal statement. For validity of the overall
procedure that stochastic claim must be useful and correct. This is what
breaks down in Cox’s paradox. The stochastic claim that the unconditional
level is @ = 0.05 is not useful. In fact, to say that the test performed has level
a = 0.05 is nearly certain to be interpreted in practice as a claim that the test
performed has conditional level a = 0.05 given the structure of the data
actually observed; and such a claim is invalid.

In point estimation there is no such difficulty. An estimate may be nearer or
further from the true value but (unless also accompanied by a confidence
procedure) there is no statement concerning how close to true the estimate is.
The only warranty the statistician can give is that he has done his best in the
sense of providing an admissible (or nearly admissible) procedure which is also
reasonable in the face of whatever generally acceptable a priori evaluations can
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be made about the parameter. Since no conditionally interpretable stochastic
claim is being made, the estimation procedures discussed in this paper are
conditionally valid and there thus seems no reason not to consider their
admissibility in the classical (unconditional) formulation.

Conditional and unconditional admissibility. Ordinary notions of consis-
tency demand use of procedures which are valid and admissible both condition-
ally and unconditionally. (Numerically minor deviations from this goal may be
satisfactory and justifiable on the grounds of convenience. The preceding
statement also requires the qualification that the problem be correctly mod-
elled, otherwise it may be desirable to adopt robust but formally inadmissible
procedures to reflect realistic possibilities that have been omitted from the
formal model.)

Under normal circumstances Bayes procedures for ordinary (proper) priors
attain this goal. [Even here there is a technical qualification which must be
added to avoid pathologies. The unconditional (= marginal) Bayes risk must
be finite. It is possible to formally construct statistical examples in which an
ordinary Bayes procedure always has finite posterior risk given the data and
even finite expected posterior risk given the value of an ancillary statistic and
yet has infinite expected risk marginally and is inadmissible.]

The regression example in Section 3 shows that estimators (such as &)
which are formally Bayes with respect to prior measures having infinite mass
may easily be conditionally admissible and yet unconditionally inadmissible.
Consider an estimator such as §,. This estimator or one qualitatively and
numerically similar can be justified from an empirical Bayes or robust Bayes
perspective conditionally given S, and an estimator similar to §, is condition-
ally admissible given S. [See, e.g., Berger (1980, 1985).] However estimates
qualitatively similar to 6, cannot be unconditionally admissible. [See Remark
3.3.6 and Brown (1987)]. Thus, conditional use of (objectively or subjectively
specified) formal Bayes estimators or empirical or robust Bayes methods may
lead to inconsistency in the form of unconditional admissibility. It seems to me
the conclusion is that none of these general paradigms should be applied
conditionally without also taking into account the unconditional, frequentist
structure of the situation.

Acknowledgments. The inadmissibility of §, was presented (with a
rather awkward proof involving an estimator somewhat like ;) as part of my
third Wald Lecture in August 1985. I want to thank C. Antoniak for a
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DISCUSSION

JAMES BERGER
Purdue University

The paper presents an exciting and rich mix of foundational issues concern-
ing conditional reasoning and methodological developments involving im-
proved estimation in multiple linear regression. My discussion will focus on
the foundational issues, though certain features of the improved estimators
will be used to illustrate some of the issues.

My first attempt at understanding the fundamental issue raised by the
paper was along the following lines (sticking with the criterion of ‘“‘admissibil-
ity” for preciseness): ,

Ancillarity Paradox—A procedure which is conditionally
admissible for each value of an ancillary statistic can be
unconditionally inadmissible.

As I thought about it, however, this did not seem to capture the true novelty of
the paper, because this ancillarity paradox has long been known, going back at
least as far as the Cox example concerning testing with two randomly differing
sample sizes. Brown notes that there is a difference between tests and estima-



