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WEAK CONVERGENCE OF A SELF-CONSISTENT ESTIMATOR
OF THE SURVIVAL FUNCTION WITH
DOUBLY CENSORED DATA

By MYRoON N. CHANG
University of Florida

Double censoring often occurs in collecting lifetime data and accordingly
self-consistent estimators are widely employed for estimating the survival
functions. In this paper we prove the weak convergence of self-consistent
estimators using classical results on the Fredholm integral equation. Also, a
method of calculating the asymptotic variance is presented.

1. Introduction. Let X, Y, and Z be nonnegative variables where X de-
notes the time of occurrence of a well-defined event such as death, and Z and Y
are subject to the restriction P(0 < Z < Y) = 1. An observation on X is said to
be subject to left censoring by Z and right censoring by Y if X is observable
whenever X lies in the interval [Z, Y]. If X is outside the interval, then we know
whether X < Z or Y < X and observe the value of Z or Y accordingly. A random
sample of observations on X subject to right and left censoring by Y and Z,
respectively, is called a doubly censored sample. Gehan (1965), Mantel (1967),
Peto (1973), Turnbull (1974) and others have given examples of doubly censored
samples encountered in practical situations.

Let (X,,Y,Z;), i=1,...,n be a set of n independent observations on
(X, Y, Z). The available information in a doubly censored sample can be summa-
rized using the n independent pairs (W,, 8,), i = 1,..., n where

W, = max(min(X,, Y,), Z),
and
1 ifZ <X, <Y,
8,=(2 ifX,>Y,
3 ifX,<Z.

Turnbull (1974) constructed a self-consistent estimator (nonparametric MLE)
for the survival function Sy = P(X > ¢) using a doubly censored sample. Under
a set of mild assumptions, Chang and Yang (1987) proved identifiability and
strong consistency of the self-consistent estimator using direct arguments. A
proof of weak convergence of the self-consistent estimator is not yet available.

Because the self-consistent estimator is an implicit solution of an estimating
equation for the nonparametric MLE, it is natural to expect that an abstract
implicit function theorem, such as in Reeds (1976) or in Fernholz (1983), could be
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used to prove weak convergence. However, a deep exploration by Gill (1989)
showed that such a theorem will not be applicable generally because continuous
differentiability and other conditions often fail to hold. Our objective in this
paper is to continue the work of Chang and Yang (1987) to prove a weak
convergence result for the self-consistent estimator by direct arguments. Instead
of treating the self-consistent estimator as the implicit solution of equation (5.1)
in Tsai and Crowley (1985), we use the integral equations, (2.5), relating survival
functions to observable subsurvival functions developed by Chang and Yang
(1987). Let S{” be the self-consistent estimator for Sy. We shall show that if
higher order terms are ignored, Vn (S{” — Sy) is related to the observable
empirical processes through a system of Fredholm integral equations and classi-
cal results on the Fredholm integral equations can be used to prove weak
convergence.

In Section 2, we state the basic assumptions, derive a system of integral
equations and present a theorem on the Fredholm integral equations which is
essential for proving weak convergence. Section 3 contains the main results and
in Section 4 we present a method for calculating the asymptotic variance of the
self-consistent estimator.

2. Assumptions and the Fredholm integral equation. Our notations are
similar to Chang and Yang (1987). Let (W,, 8,), i = 1,..., n, defined in Section 1
be distributed as (W, 8). Let the subdistribution functions and the empirical
subdistribution functions be defined as

Q(t)=P(W<td=j), j=1,2,3,

and

n

1
an)(t)=;ZI[VVist18i=j]r J=12,3,

=1

where I[-]is the indicator function. Denote Sy () = P(X > t), Sy(t) = P(Y > t)
and S,(t) = P(Z > t). We shall consider the estimation of Sy, the survival
function for X.

Throughout the remainder of this paper, the following conditions will be
assumed to hold. ’

Al. The random variables X; and (Y, Z;) are independent for each i, i=
1,2,...,n. ‘

A2. P(Z<Y)=1

A3. Sy(t) — Sz(t) > 0 on (0, ).

A4. Sy, Sy and S, are continuous functions of ¢, on ¢ > 0, and 0 < Sy(¢) < 1
for ¢t > 0.

A5. §4(0) = Sy(0) = 1, Sx(00) = Sy(00) = Sy(0) = 0.

A6. There exist § and T, 0 < 8 < T < o0, such that S,(¢) = constant < 1 on
[0,8] and S,(T) =0, ie, P(Z=0)>0, P(Z< (0,8) =0 and
P(Z<T)=1.
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REMARKs. (a) Assumptions A1-A5 were used by Chang and Yang (1987) to
prove identifiability and strong consistency of the self-consistent estimator.
(b) Under assumptions A2 and A4, assumption A3 is equivalent to

P(Z<t<Y)>0 foranyte (0,00).

(c) The purpose of assumption A6 is to avoid singularity of certain integral
equations [see (5) and (7)] encountered in the proof. It is not clear whether the
results are valid without A6.

(d) The number § in A6 could be arbitrarily small and T could be arbitrarily
large.

(e) Due to symmetry of the problem, A6 could be replaced by a similar
condition on Y.

(f) Assumption A6 is generally easy to verify in practice. If there is a certain
lag of left censoring at time 0 and there is no left censoring after a certain time
period, then assumption A6 will be satisfied.

(g8) If there is no left censoring at all, i.e., if S,(¢) = 0, then assumption A6 is
satisfied. So, weak convergence of the Kaplan—-Meier estimator is a special case
of our results.

Under assumptions A2 and A4, Chang and Yang (1987) derived the following
system of integral equations relating the survival functions to the subdistribu-
tion functions

Qi(t) = __/(;t(SY — Sz) dSy,
(1) Qi(t) = - ['Sxdsy,

Q3(t) = __/:(1 - Sx)dsz-

Let S¢” denote the self-consistent estimator of Sy. Define S{ and S§™ as in
(2.8) and (2.9) of Chang and Yang (1987). Then the sample counterpart of (1) is

(1) = ~ [{(sy - 5¢”) asg,
(2) Q) = ~ s asge,

(1) = - ['(1 - s) asg.
0

Under assumptions A1-A5, Chang and Yang (1987) showed that S{* — Sy,
S{M — Sy and S§ — S, uniformly on [0, T'] almost surely. Let

(3) u™ = Vn (S — Sy, S — Sy, S — S,)’

and

(4) g™ = Vn (" - Q, Q" - Q,, Q" — Q)"
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where 7 denotes transpose. Subtracting (1) from (2) and noting that u{"(0) =
u§™(0) = u§(c0) = 0, we obtain

(n) u™ — gy
m(g) = — [ _ [t22 3 4S(™
(5) () = - [ 55~ [ 5 s ¢
dgi®  euf”
() = — [* — [P gem
(6) u(t) = - g = [ g dsv
and
00 dqgn) =9 lt(n)
(M(¢) = - dsm
(7) )= [ os ) T e

where u{™ and ¢{™ are the ith elements of u™ and ™, respectively. Under
assumption A6, u{”(T) = 0 almost surely. Thus, (7) can be rewritten as

(n)

dg§™ 1
®) w0 = [T - [

A more convenient representation of (5), (6) and (8) results if we use the
notation

dsgm.

1 cus® — ul cul™ r u™ !
9) 0™M(¢)=—|- du(™, — dul®, — duf® |,
9)  o(t) m(fosy—z 0, = [ g dub [ g

(n) L dg{™ dg{™ T
(10) a™(t) =( fSy—SZ qu f = SX) ,
,u(ds) = —dlag(dSX(s),dSY(s),dSZ(s )

and
k(t,s) = (k(¢,5)),

where k(¢, s) is a 3 X 3 matrix with elements k,; = kyy = kyy = kg, = kgy = 0,
kig = —ky,,

I[0 <s < t]

Sy(s) — Sy(s)’

I[0<s <t]

Sx(s) ’

k12(t: S) =

k21(tr 5) =

and
I[t<s<T]

1 — Sy(s)
Using this notation, (5), (6) and (8) can be rewritten as

k31(t’ S) =

(11) w™(t) = a™(t) + 60(t) + ["u(ds)k(t, s)u(s).
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A more compact representation of (11) is
(12) (I-K)u™=a®™ + "™,
where I is the identity operator and the operator K is defined as

Ku = j(;Tp(ds)k(-, s)u(s).

Theorem (2.1) guarantees existence of a unique solution for (12) under as-
sumptions A1-A6. Let D[0, T'] denote the space of all functions on [0, T'] which
are right continuous and have left limits. Let D[0, T'] = D[0, T] X D[0, T'] X
D[o, T].

THEOREM 2.1. Under assumptions Al-A6 there exists a resolvent kernel
matrix

I(t,s) = (L;,(¢,5)),
where T,

o U J=1,2, 3 are bounded measurable functions on [0,T] X [0, T]
such that for any a € D[0, T'] the integral equation

(I-K)u=a
has the unique solution

u(t) = a(t) + [ "u(ds)T(t, s)a(s),

or compactly,
u=(I+7T)a.

Proor. From classical results on the Fredholm integral equation, it follows
that the conclusion in the theorem holds if 1 is not an eigenvalue of K, i.e., for
any u € D[0, T] N

(13) (I-K)u=0 o AuEOon[O,T].

The proof of (13) is technical and deferred to the Appendix. For a detailed
discussion of the one-dimensional Fredholm integral equations see Cochran
[(1972), Section 3.4]. Cochran’s derivations can be translated almost line by line
to the three-dimensional case. O

REMARK. For T = + o, (13) holds without assumption A6.

3. Weak convergence of u(™ to a Gaussian process. In Lemma 3.3, we
shall prove that 6 almost surely converges to zero uniformly on [0, T']. Now,
each component of Vna™ is a sum of n iid. random variables. Therefore, a(™
converges to a three-dimensional Gaussian process, and the main result (Theo-
rem 3.1), the weak convergence of u(™, follows from Lemma 3.3 and

(14) u™ = (I+T)(a™ + §m).
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Let d, be the Skorohod metric on D[0, T'] as defined in Billingsley [(1968),
Chapter 3], and define the metric on the product space D[0, T'] given by

d(lt, D) = max(do(ulr 1')l)r d()(u2r 02)’ dO(u3: 03))1 u,v € D[O’ T]1

where u = (u,, uy, u3)" and v = (v,, vy, v3)". In what follows, we consider pro-
cesses defined on D[0,T] endowed with the topology determined by the
metric d.

We begin with two results (Lemmas 3.1 and 3.2) needed to establish the
asymptotic negligibility of 6.

LEMMA 3.1. If Vis a subset of D[0, T] with compact closure, then almost
surely

(15) (/%d(S}g) — 8), [vd(S¢) - Sy), [vd(sg” - SZ)) ,
0 0 0
converges to 0 uniformlyint € [0,T] andv € V.

Proor. We shall prove uniform and almost sure convergence for the first
component of (15). The proof for the other two is similar.

Because V has compact closure, V is totally bounded. That is, for any & > 0,
there exist step functions a,, a,, ..., a; € D[0, T] such that for any v € V

(16) dy(v, a;) <e.

for some i, 1 < i < k. From Billingsley [(1968), page 111] it follows that there
exists a strictly increasing, continuous mapping A of [0, T'] onto itself, which
depends on v, such that

sup A(t) — ¢ <e
0<t<T

and
sup |o(t) — a;(A(2))l <e.

0<t<T

Furthermore, the inequality

[od(sg - S¢)| <|[ (v = aA) d(Sg ~ Sx)
0 0

and the uniform convergence of S{ to Sy imply that there exists N such that if
n > N, then ‘

< +

ftat)‘ d(S}{L) - Sx)
0

< 3¢

ftu d(S§r") - Sx)
0

for all ¢ € [0, T] and all v € V almost surely. Therefore,

[od(sg - sy)
0

almost surely converges to 0 uniformly in ¢ € [0,T] and v € V. O
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Let u{® and ¢{™ denote, respectively, the expressions (3) and (4) with Vn
replaced by n® while 8{™ and a{” denote the expressions (9) and (10) with &™),
g™ and Vn replaced by u(™, ¢\ and n® respectively.

a

LEMMA 3.2. For any a, 0 < a < %, ul™ almost surely converges to 0 uni-

formly on [0, T].

Proor. Replacing 4™ and ¢‘™ in (5), (6) and (8), respectively, by u{® and
q{™, we obtain

(n) (n) _ 4,(n)
t dqal tUs2 Us3
17 up(e) = - [ - [(—Sasp,
(n) (n)

tdqy tUg
18 ulP(t) = —f - f ds{v,
( ) a2( ) o SX o SX Y
and

T dg3 T ul

(19) u(e) = [

- dSim.
t I—SX t I—SX z

Equations (17), (18) and (19) have the representation
(I-K)ul®=al+6m,

Note that, under assumption A6, dq(¥ = dS{™ = 0 almost surely on (0, §)
and Sy — S, > ¢ > 0 on (0, T']. Using integration by parts and the assumption
0 < a < 1, it is easy to show that a{™ almost surely converges to 0 uniformly on
[0, T].

The remainder of the proof will be for a fixed sample point at which

a&n) — 0 and (S&"), Sg,"), Sén)) - (Sxy Sy, SZ)

uniformly on [0, T'] and dg{% = dS$» = 0 on (0, §).
Let
llul = sup max(ju, ()], [us(2)], [us(£)]).
0<t<T
We shall discuss separately the case where {||u{”||} is bounded and the case
where {||u{™||} is unbounded.

Cask L. ({||u{™]} is bounded). We shall apply Theorem 14.3 in Billingsley
(1968), which is an analogue of the Arzela—Ascoli theorem, to prove that u{™ has
a compact closure in D[0, T']. Since ||u{”)|| is bounded, {u{™} obviously satisfies
condition (14.32) in Billingsley (1968). Because a{™ — 0 uniformly on [0, T'], the
sequence {a'™) satisfies condition (14.33) in Billingsley (1968). Since S{ — Sy,
S{® - S, and S{ — S, uniformly on [0, T] and Sy, Sy, S, are continuous
functions, the maximum jump size of S{*, S{ and S{™ converges to 0. It
follows that the sequence of the second term of the right-hand side of each
equation in (17)—(19) also satisfies condition (14.33) in Billingsley (1968). Conse-
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quently, Theorem 14.3 in Billingsley (1968) implies that {x{”} has a compact
closure in D[0, T'].
From Lemma 3.1

(n) _ ,,(n) (n)
() = | [tHe2 ~ Yoz n) _ tUa ny _
0a (t) ( o SY _ Sz d(s§( SX)’/; SX d(Sg/ SY),

(20)

converges to 0 uniformly on [0, T']. Therefore,
(I-K)u® -0

uniformly on [0, T'], and for any subsequence {u{"*)} which converges to u® in
D[0, T'] we have

(I-K)u® =o.

Theorem 2.1 implies that ©u = 0. Therefore, {u{™} converges to 0 in D[0, T'],
and it follows that {u{”} converges to 0 uniformly on [0, T'].

Cask IIL ({||u{™|} is unbounded). We shall show that the unboundedness of
{lIlu{|]} will lead to a contradiction. Let C, = ||u{”)|. We can select a subse-
quence of {||u{”||} indexed by {n,} such that C,, = . Define a new sequence

1
D&”k) = _u(ank).

ng

As in Case I, we can prove that {v{")} converges to 0 uniformly on [0, T'], which
contradicts

llog™ || = 1. o

LEMMA 3.3. The sequence of vectors 0™ almost surely converges to 0
uniformly on [0, T].

ProoF. In view of (9), it is sufficient to prove that for any bounded measur-
able function F on [0, T']

1 P
sup — -0

[Fugm d(ug)
o<t<T VI |Y0 /

s i#jand i, j=1,2,3.

We shall prove convergence for i = 1, j = 2. The other cases can be proved
similarly. In the proof we assume F(¢) = 1 on [0, T]. The proof can be easily
generalized to F # 1.
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Equation (6) implies that
1
duf™ = — —[dg§™ + u{™ dS{].
Sx

Consequently,

2
1 +S¥Y — Sy 1 (uf™)
[t g = _ [12X T OX oy dS(m
Vn fo T fo Sy BT g /o Y

(S0 = SN _ 1, S~ Sx
0

Sx(¢)

+/t¢]§n)d(s(n) g )_ L t(u%n))zds(n)
b Sy X X ‘/’7_/0 Sy y

Strong consistency of S{® implies that the first two terms almost surely
converge to 0 uniformly on [0, T']. As in the proof of Theorem 4 in Breslow and
Crowley (1974), the uniform and almost sure convergence to 0 of the third term
can be derived from Lemma 3.1 and tightness of the empirical process g§™.
Finally, Lemma 3.2 implies that the last term almost surely converges to 0
uniformly on [0, T]. O

We are now in a position to state the main theorem.

THEOREM 3.1. Under assumptions Al1-A6, u™ converges weakly to a
Gaussian process on D[0, T].

ProoF. Theorem 2.1 guarantees the validity of (14), where T is a continuous
mapping from D[0,T'] into D[0, T']. Lemma 3.3 demonstrates that 8™ is a
higher order term. It follows that (I + I')#™ almost surely converges to 0
uniformly on [0, T']. The weak convergence of process @™ and Theorem 5.1 in
Billingsley (1968) imply that (I + I')a‘™ converges to a Gaussian process on
D[0,T]. Consequently, the conclusion in the theorem follows. O

4. Asymptotic variance of yn (S{” — Sx). Since the asymptotic vari-
ance—covariance matrix of u™ obtained using (14) involves a three-dimensional
integral equation, the numerical computation may be complicated. In addition,
the variance-covariance matrix of u{™ and u{® may not be of interest in
practice. In this section we shall provide a method for calculating the asymptotic
variance of u{® = yn(S{” — Sy) using the theory of Fredholm integral equa-
tions and the technique of influence curves. For the idea of influence curves see
Huber (1981) and Reid (1981).
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Substituting u§” and u{™® in (5) by the right-hand side of (6) and (8),
respectively, we have

n _ t dqf") ¢ rsdg{™ dSx(s)
u() = - [ +/0( LS )(sy—sz)(s)

t d(I:gn) dSX(s)
+./(;(—/;T1 - SX) (SY_ SZ)(S)

¢ dSX(s) suf") T uin)
+’/‘:)(SY_SZ)(S)|:0 Sx Y_'/; 1 - S

_ ¢ dg™ + ¢ ¢ dSy dqé”)(s)
fSY—.SZ -/ s Sy —S; | Sx(s)

dSZ] + o{(1)

+

[ fone_dSy | da§(s)
'/(; fo Sy_Sz)l_SX(s)
+ /()Tu{n)(s)[l[o < sSj(ts])dSY(S) ( e dfs)

_ dSZ SAL dsx
]‘_SX 0 SY_SZ

] +04(1),

where s A ¢ = min(s, t) and 0{"(1) almost surely converges to 0 uniformly on
[0,T]as n - .
Therefore, we have the following theorem.

THEOREM 4.1. The process u{™ = Vn (S{” — Sy) satisfies the following inte-
gral equation on [0, T]

(21) w(t) = b(t) + [ &t s, ds)u{™(s) + (1),

where

e ol e dSy | daf(s)
b,(t) = _fo Sy - S, + ./(;( s SY—SZ) Sx(s)

T
f
0

fs/\t dSy ) dg§™(s)
0 SY_SZ I—SX(S)’

and

II0 <s<t]dSy(s) ,+ dSx ds,(s sat dSx
(s, 5, a5 = TOESEHE) e s

Sx(s) y— Sz - 1 — Sk(s Y_SZ.
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Since (21) is a one-dimensional Fredholm integral equation, Theorem 2.1
implies that there exists a resolvent function

Ty(2, s, ds) = (dSy(s), dS;(s))(n(t, s), walt, 5))”

such that
(22) u{™(2) = b(£) + ['To(t, 5, ds)b,(s) + of(1),
0
where y;, i = 1, 2, are bounded and measurable functions. Define
Ifo<s<t]
F(t,s)= - ———————,
l 5:(5) = 5,(5)
Il0<s<t ds
Ft,s) = [ 1 X
Sx(s) s Sy — S,
and
1 SAL dSX
F,(t, s) = .
3( S) 1 - Sx(s) '/(; SY - SX

Then, the first term in the right-hand side of (22) can be written as

bu(t) = ['Fi(t,5) da{™(s) + ['Fy(t, 8) daf™(s) + ['Fi(t, ) daf(s).

Therefore, the second term in the right-hand side of (22) is equal to
T T
[Tt 5, )| ["Fi(s,w) dafP() + Fils, u) da(w) + Fy(s,w) dafP(w)

- fT fTI‘O(t,s,ds)Fl(s,u) dg{"(u)
0 {[ 0 ]

N [foTro(t’ s, ds)F(s, u)] dg§™(u) + [/(;TI‘O(t, s, ds)Fy(s, u)] dqén)(u)}

Furthermore

uf™(t) = [1C,(t,8) da{(s) + ['ICy(,5) daf(s)

+ [T1C(t, 5) da§™(s) + o (1),
0
where

1C(t, s) = Fi(t,s) + fOTro(t, o, dv)Fy(v,s),

IC)(t,s) = Fy(t,8) + [ To(t, v, do)Fy(v, )
0
and

IC(t, s) = Fy(t,s) + fOTI‘O(t, v, do)Fy(v, s).
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Thus we have

THEOREM 4.2. The process u{™® = yn(S{’ — Sy) converges weakly to a
Gaussian process with asymptotic variance

/ "ICH(t, u) d@u(u) + [ "ICH(t, u) dQy(u) + [ "IC2(t, u) dQy(u)

2
T
~{ [T w) d@y(w) + 16t u) d@w) + IC(t,w) d@y(w)]}
We further note that IC,(t, u) is the solution of the integral equation

IC(t,u) = F(t,u) + ['g(t,5,ds)IC(s,u), i=12,3.
0

APPENDIX

ProoOF oF (13). The argument in the proof is an analogue of that of Theorem
3.2 in Chang and Yang (1987).

Assume (I — K)u = 0 and u € D[0, T']. Since u,’s are bounded, the compo-
nents in Ku are absolutely continuous. Consequently, the u;’s are absolutely
continuous. (I — K)u = 0 can be rewritten as

t t
[(Sy = 8g) duy + [(ug = u;) dSx = 0,
0 0

t t
23) fo Sy du, + fo u, dSy = 0,

[0’(1 — Sy) du, — [O’uldsf 0,

u)(0) = u5(0) =uy(T) = 0.
Note that Sy — S, > 0 and 1 — Sy > 0 on (0, T']. We shall use the following two
results in the sequel:
(A) If uy —uz;>20(<0)on (¢,t,) C[0,T], then du, = 0 (< 0) on (¢, ¢,).
B) If u; >0(<0)on (¢, t,) € [0,T], then du, > 0 (< 0) and duy; < 0 (= 0)
on (¢, t,).
If u, # 0 on [0, T], there are only two cases:

Case I. There exist ¢, and ¢,, 0 < ¢, < t, < T, such that u(¢,) = u,(¢;) =0
and u, keeps the same sign on (¢, ¢,); positive, say.
Case II. u, keeps the same sign on (0, T']; positive, say.

We shall prove that each case leads to a contradiction.

Case I. From u, > 0, we have du, > 0 and duz < 0 on (¢, ¢,). If (u, — u3)
keeps the same sign on (¢, t,), then u, is a nonincreasing or nondecreasing
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function on (¢, t,), which contradicts with the assumptions that u,(t,) =
u,(t,) =0 and uy(t) > 0 on (¢, t,). So u, — uy doesn’t keep the same sign on
(¢, ty). From the continuity of u, — u;, there exists a t* € (¢,, ¢,) such that
uy(t*) — uy(t*) = 0. For any t € [t*, ¢,],

ug(t) = ug(t) = [ (duy = dug) 2 0.

From (A), u, is nondecreasing on (t*, t,), which contradicts the assumptions that
u,(t*) > 0 and u,(t,) = 0.

Cask II. The assumption that u, > 0 on (0, T'] implies that u, is nonde-
creasing and u, is nonincreasing. Because of u,4(0) = u4(T') = 0 and the continu-
ity of u, and u,, there exists a t* € [0, T'] such that uy(¢*) = ug(t*). If uz # 0,
then t* > 0. For any ¢t € (0, t*),

us(t) - ug(t) = - | “(duy - duy) < 0.

Consequently, du, <0 on (0, t*), which contradicts with that u,(0) =0 and
u,(t*) > 0. If uy =0, by adding the first three equations in (23), we obtain

(Sy(2) = Sy(2))un(2) + us(£)Sx(¢) = 0.

Since u, > 0, Sy —S; >0, u, >0 and Sy > 0 on (0, T'], the left-hand side is
positive.

Thus we have proved that u; = 0 on [0, T']. From the second and the third
equations in (23), it is easy to see that u, = u;=00n [0,T]. O
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