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NONPARAMETRIC TESTING FOR DOSE-RESPONSE CURVES
SUBJECT TO DOWNTURNS:
ASYMPTOTIC POWER CONSIDERATIONS

By DoucLAs G. SIMPSON AND BARRY H. MARGOLIN
University of Illinois and University of North Carolina, Chapel Hill

Dose-response experiments are widely used in scientific research and
nonmonotone dose-response curves are commonly observed. A class of non-
parametric tests for dose-response curves subject to downturns at high doses
is examined via its asymptotic properties. This class includes the well-known
Jonckheere—Terpstra test as a limiting case. The analysis indicates that the
Jonckheere-Terpstra test lacks robustness to a downturn in the dose-
response, and that other members of the class provide superior overall
performance. A result concerning U statistics in locally asymptotically nor-
mal families of distributions facilitates the derivation of the asymptotic
power function for the class of tests under consideration. This result may also
be used to obtain asymptotic power functions for other tests based on U
statistics, for instance, the Mann—Whitney—Wilcoxon test. The accuracy of
the asymptotic approximation is examined via Monte Carlo simulation and is
found to be quite good for moderate sample sizes, suggesting that the
approximation might reasonably be used for sample-size determinations.

1. Introduction. Dose-response experiments are widespread in scientific re-
search. By exposing the experimental units to a range of doses of a treatment,
the experimenter hopes to gain assurance that a positive result reflects the
phenomenon of interest, and that failure to obtain such a result is not due
simply to an unfortunate selection of a single test dose. In these experiments the
test agent at times can have more than one effect and nonmonotone dose-
response relationships can occur. For example, in an agricultural experiment,
increasing the amount of irrigation can enhance crop yields up to a certain level,
but it can produce rot and reduced yields at higher levels. Similarly, in the Ames
test [Ames, McCann and Yamasaki (1975)], mutagenicity of a test chemical is
reflected in an increasing relationship between the chemical dose and the
frequency of visible colonies among plated salmonella bacteria, but cellular
toxicity at high doses can reduce the population of microbes on the plate and
lower the frequency of visible colonies [Margolin, Kaplan, and Zeiger, 1981;
Vollmar (1981)].

A dose-response that rises monotonically at low to moderate doses and
decreases monotonically at high doses poses an important inferential question:
How can these two different effects of the treatment be separated when one is
not certain a priori that there is a downturn or at what dose it commences? In
the Ames test, for example, it is essential to assess the significance of any initial
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mutagenic increase in the dose-response and yet to minimize the influence on
this inference of any downturn at higher doses. Nondirectional procedures like
the F-test for homogeneity fail to achieve this separation. Parametric statistical
modeling offers one appealing approach. Ideally the science suggests an appropri-
ate model [e.g., Margolin, Kaplan and Zeiger (1981)]; however, this is not
commonly the case.

Nonparametric dose-response testing offers an alternative approach. Terpstra
(1952), Jonckheere (1954), Chacko (1963), Puri (1965), Shorack (1967) and others
have studied nonparametric tests for monotone trends. The test of Terpstra
(1952) and Jonckheere (1954), in particular, is well-known, as evidenced by its
discussion in a number of recent publications [Potter and Sturm (1981); Boyd
(1982); Harding (1984); Thakur (1984); Hoop and Mohebalian (1985)]. Simpson
and Margolin (1986) proposed a class of recursive nonparametric tests for
increasing dose-response when a downturn is possible at high doses. Their Monte
Carlo results indicate a substantial improvement in power relative to the Jonck-
heere-Terpstra test and the nonparametric test of Chacko (1963) and Shorack
(1967) if a downturn is present. This appears to be at a modest cost in power for
a monotone dose-response. Simpson and Dallal (1989) provided software for
these tests.

The main purpose of the present paper is to investigate the tests of Simpson
and Margolin (1986) via their asymptotic properties. These tests are indexed by a
user-specified tuning parameter ¢ € [0,1) and include the Jonckheere—Terpstra
test as the limiting case ¢ = 0. The effect of g on the power for different
dose-response configurations is of particular interest here. Section 2 provides a
formulation of the testing problem and a description of the tests under consider-
ation. Section 3 is concerned with the consistency of these tests. Section 4 is
general in scope and provides the joint limiting distribution in a local asymptotic
setting of a collection of U statistics with respect to different partitions of the
data. Section 5 uses these results to obtain asymptotic power functions for the
class of tests under study and to draw general conclusions about the impact of
the tuning parameter. Section 6 examines the agreement between the asymptotic
and (Monte Carlo) finite-sample power functions.

2. Preliminaries. Assume that the experimental units are arranged in m
ordered dose groups and that the ith dose group yields independent, identically
distributed observations Xj,..., X;,. The hypotheses of interest are stated

nonparametrically in terms of stochastic orderings. For i = 1,..., m, let F(¢) =
P(X; <t), t € R'. The hypothesis of no dose-response effect is
&) H:F() = - =F,(),

but it is expanded here to include
(2) H': Fvl()S S‘F‘m()i

the hypothesis that the dose-response is nonincreasing. The alternative hypothe-
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ses of interest have the form:
(3) F()z - 2F(-)< - <E,(),

where h € {2,...,m} and Fy(t) > F,(¢) for some ¢ € R', reflecting an initial
monotone increase in the dose-response through dose & followed by a monotone
decrease through dose m. [For a decreasing dose-response with a possible upturn,
one reverses all inequalities in (2) and (3).] Tests of (1) versus (3) with A = m are
studied in Terpstra (1952), Jonckheere (1954), Chacko (1963), Puri (1965) and
Shorack (1967). Mack and Wolfe (1981) and Hettmansperger and Norton (1987)
proposed tests of (1) against (3) with & € (1,..., m}, but these tests are inappro-
priate for the testing problem considered here, because they include H’ (kA = 1)
in the alternative space and because they do not separate the different effects of
the treatment in testing for significance.

The Jonckheere-Terpstra statistic and the recursive test statistics are func-
tions of

i i g ( iu> )v J=2,...,m,

where
0, ifx>y,
Y(x,y)=(3%, ifx=y,
1, ifx<y.

Observe that R; is simply the two-sample Mann—-Whitney—-Wilcoxon statistic
for comparing the aggregate of groups 1 through j— 1 with group j. If
R,,..., R,, are large there is evidence of an increasing dose-response relationship
among groups 1 through m. The Jonckheere—Terpstra test is based on the sum

S=R,+R,+ --- +R

m?

which, when appropriately standardized, may also be interpreted as an index of
the association between dose and response. It has been observed that R,,..., R,,
are stochastically independent under H [Terpstra (1952); Dwass (1960)]. Hence,
letting

S;=Ry+---+R,, j=2,...,m,

_]’
it follows that S; = S;_, + R; is a decomposition into components S;_, and R;
independent under H (j = 3,..., m). This suggests adapting recursively to the
downturn in the dose-response by using R; to choose between the potential
trend test statistics S; and S;_, (j=m, m —1,...). Simpson and Margolin
(1986) proposed basing the test for trend on S, w1th the index M determined by
the data according to the rule

M=max{j€ (2...,m): R, > c,(q)),

where c,(¢) = 0 and where, for some prespecified ¢ € [0,1), c;(¢) is a g quantile
of the distribution of R; under H (j = 3,..., m). This test, denoted by Sy(q) to
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emphasize the dependence on the tuning parameter, has critical regions of the
form
(Sy=dy)=U (R, >¢/(q),S,>4d;} N {Rj < cj(‘l)}-
i=2 j=i+1

We shall take d; = d,(p) to be a (1 — p) quantile of the distribution of S; under
H (i=2,...,m), where p € (0,1). This ensures that the critical regions for
different test sizes are nested and reduces specification of d,,..., d,, to specifi-
cation of p. For fixed ¢ and a desired size a under (1), a conservative choice of p
is

(4) p=all-q)/(1-¢"")
[Simpson and Margolin (1986)].

In the asymptotic investigation to be presented the well-known marginal
asymptotic normality of R; and S; provides critical values

(5) cj(Q) = ”O(Rj) + UO(Rj)(I)_l(q)i J=3,...,m,
and
(6) di(p) = po(S) + 0o(S))@ (1 -p), Jj=2,...,m,

where p, and o, denote expectation and standard deviation under H, and ® is
the standard normal distribution function. Letting N;=n, + --- +n;, j=
1,...,m,

J
Ho(Rj) = éNj—qn,‘, 002(Rj) = Nj—lnj(Nj + 1)/12: No(Sj) = Z #O(Ri)
=2

and, using the independence,

J
"oz(sj)= 2002(3,-), j=2,...,m.

=2

3. Regions of consistency. A sequence of tests with critical regions w, is
consistent for a given configuration of distributions if P(wy) — 1 as N — oo.
Reasonable nondirectional tests of (1) are consistent for any fixed alternative, so
consistency results provide little insight for such tests. On the other hand,
directional tests are designed for narrower classes of alternatives, so it is
informative to determine the regions over which they are consistent; see, for
instance, Hollander (1967) and Barlow, Bartholomew, Bremner and Brunk (1972),
page 210. This section is concerned with the consistency of the recursive tests.

Let Y; = (R; — po(R)))/0(R;) and Z; = (S; — po(S;))/0(S;), i = 2,..., m. Let
M = max{2,(i: Y, >y)}, where y = ® (q) and let z = ®~'(1 — p). Then (5)
and (6) yield the critical region

(Zy=zz)= (Zzzz)ﬁ(Yj<y))U(L:Ja(zizz,lf'iZy) ﬁ (Yj<y) :

j=3 J=i+1
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For convenience write N for N,,. It is assumed that X,,,..., X,nn,, are indepen-
dent, that F),..., F,, are absolutely continuous and that n,/N — a, € (0,1) as
N> o,i=1,...,m.

THEOREM 1. (i) If (2) holds, then limsupy_, , P(Zyy >22)<a,0<q <1.
(i1) Consistency of S,;(0) implies consistency of Sy;(q), 0 < q < 1.
(iii) If (3) holds, then S,,(q) is consistent, 0 < q < 1.

An outline of the proof is in the Appendix. Property (i) establishes that it is
meaningful to compare the regions of consistency of the tests S,,(g). Moreover,
this property distinguishes the tests S,,(q) from nondirectional tests, like the
Kruskal-Wallis test [Kruskal (1952); Kruskal and Wallis (1952)] and from the
tests of Mack and Wolfe (1981) and Hettmansperger and Norton (1987). For
these tests the probabilities of rejection converge to 1 if the dose-response is
strictly decreasing. Result (ii) implies that one never loses consistency by using
Su(q), 0 < q <1, instead of the ordinary Jonckheere—Terpstra test. On the
other hand, examples of alternatives in (3) for which the Jonckheere—Terpstra
test fails to be consistent are easily constructed.

4. Local asymptotic normality and U statistics. In developing asymp-
totic results for S,,(q) it is useful to observe that Y;, as defined in Section 3, is a
standardized U statistic with respect to a three-group partition of the data

(X Xt )y (Kiseos X))y (Xjros X))o G =2,0,m

In this section the standard theory of locally asymptotically normal (LAN)
families of distributions is applied to obtain the joint limiting distribution under
alternatives contiguous to (1) for a vector of U statistics with respect to different
partitions of the data. A general account of LAN families can be found in
Ibragimov and Has’minskii (1981).

Suppose {F,, t€ O} is a dominated family of distributions and suppose
fr=1(-;t) is a density for F,. We assume the mapping from ¢ to f/? is
continuously differentiable in L,, that is, there are functions ¢, (¢ € ©) such
that

(7) Jeih < oo, [{ 143 - 112 = 386,117%) = 0(8?)
and
(8) J{lstiZ = 412 = 0(1)

as § — 0, where the integrals are with respect to the dominating measure. In
standard cases £,(x) = (3/dt)log f(x; t). If (7) holds, F, is said to have finite
Fisher information J(¢) = [£7f,. If (8) holds, J(¢) is continuous in ¢ Conditions
(7) and (8) imply the following LAN condition [Ibragimov and Has’minskii
(1981), pages 118-120]: If £,, £,,... are independent replicates of ¢ ~ F, and if
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t, — tand n'/?f, > B as n > o, then
n n

(9) log I—Ilf(éi; ta+ B)/f(§5t,) = n™VB Y 4(&) — 3B%J(¢t) + 0,(1)
i= i=1

as n — oo and, moreover, the log-likelihood ratio is asymptotically normal with
mean — 1B2J(¢) and variance B%J(¢).

Specializing to the m-sample problem, let X, X,,... be a sequence of inde-
pendent random variables, let Ny=0and N;=n, + --- +n;,, i =1,..., m, and
let G = {G,,...,G,) be the partition of the indices {1,2,..., N = N, } into the
sets G;={N,_;+1,...,N}, i=1,...,m. For j€ G, let F(x)=P(X; <x).
We consider the hypotheses

Hy: F(-) = F(-;9)

and
Ky: F(:)=F(;0+NY%,), i=1,..,m,
where
m
Z npB;=0
i=1

and where {F,} satisfies (7) and (8). The parameter § may be a location
parameter, but other families of distributions are also covered by the develop-
ment. Let L, denote the log-likelihood ratio for K, versus Hy:

(10) Ly= 5 X log{7(X; 0+ N8, /1(X;;6)}.

i=1 jeGq,

The conditions on Fj and (9) imply that under H,,

m m

(11) Ly=N12% 8 ) /0(Xj) - 1J(8)N"' Y n,B? + 0,(1)
i=1 jeg, i=1

and K is contiguous to Hy,.

For j=1,...,s let Hi = {H,,. m,} be a partition of {1,2,..., N} con-
sisting of unions of sets 1n G, the basm partltlon Let U; be an m; sample U
statistic of order {r;,. } with respect to H;, j =1,..., s. Then U; has the
form

(12) U=C'L -+ L ¥(X(4);...; X(4,)),

A A

yjm

my

where the sums are over the distinct subsets A, = (ay,..., a,,) of size ry that
can be selected without replacement from Hj,, k =1,...,m;, C; is the number
of terms in the sum and X(A) means (Xal,..., X.) 1f A = (al,.A a,). The
kernel function ¥, is assumed without loss of generality to be symmetric in its
first r;, arguments, its next r;, arguments and so on.

We approximate Uy, ..., U, by their projections. Suppose that E,¥; = 0 and
Eg¥? < 0, and that n,/N —a;€(0,1) as N> o0, i=1,...,m. For k=
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L...,m;let

¥ (x) = Eg¥( X(B,);...; x, X(By);...; X(B, ),
where B, (u # k) is a subset of size r;, from H;, and B, is a subset of size
r;, — 1 from H,. By a standard result [Hoeffding (1948); Lehmann (1951)],
(13) U =V, + o0, (N"'/?)
under Hy, where

m;

(14) > Y (X))

=1k ieH,

and n, is the cardinality of H,.
To obtain the joint limiting distribution of V..., V,, and hence of U,,..., U,,
it is useful to rewrite (14) in terms of the basic partition G. Let

Aa(x) = éI{Gk < H,, }¥;(),

where I{-} = 1if its argument is true, = 0 otherwise, £ = 1, ..., m. Rearranging
the sum in (14) and noting that

I{G,c Hj,}\(x) = I{G, € H,,} ¥;,(x)

yields

(15) V,=N"! > bj; > N (X)),
i=1 ke€G,

where

ml
bjz=NZI{Gtgij}’}k/njk, j=1,...,s.
k=1

The approximations (11) and (13)-(15) yield the following result, which is proved
in the Appendix.

THEOREM 2. Suppose {F,} satisfies (7) and (8). Let U,,..., U, be as in (12)
and suppose Eg¥; = 0 and Eg¥? < 0, j=1,...,5. Assume n,/N — a; € (0,1)
as N - o0, i=1,...,m. Then

2{(N?U,,..., N'?U,)} - N(u,T)
under K, where p = (p,..., p,) with

m

b= ) aiBibﬁEa[fa(X))\ij(X)]

and bY, = limy _, , b,, and where T = ((v;,)) with

m
Y= L abibLE [N i(X)N(X)],  J=1,...,8k=1,..,s.
i=1
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Theorem 2 provides an asymptotic distribution for (R,,..., R,,) under K.
The Mann-Whitney-Wilcoxon statistic R, is handled as a special case. Let
U, = N \n;'R; — } and note that

U=NI'n;(N-N)" ¥ ¥ Y ¥x,,X,),

«q€H; ap€Hjy a3 Hjy

where H, =G,V ---UG,_,, Hy=G; and Hpy=G;,,U---UG,, j=
2,..., m, and where

, ifx>y,

O i
<

Y(x, y) = ifx =y, j=2,...,m.

ifx <y,

B =
-

If F, is absolutely continuous, then

1 _F(x), ifu=1,
Yu(x) = (F(x) -1, ifu=2,
0, if u=3.

Moreover, A(x)=¥,(x) if G, H;,, u=1,2,3, and b, takes the value
N/N,_,, N/n; or N/(N — N;) depending on whether G, is contained in H,
H;, or Hj,;, respectively. Using Theorem 2 and simplifying shows that
(N'2U,,..., N'/?U,) is asymptotically normal (g, I') under K, where pu =
(nu‘27 (RS} M‘m) and [' = diag(Y227 seey Ymm) with

k

B; = (:Bj_:Bj—l)E0[F‘0(X)/0(X)]’ Br=N;' X nB

i=1

and
vy = NN/(12n,N,_,).

The exact variance of N'/?U; under Hy is N(N;+ 1)/(12n;N;_,), which can
replace v;; in the asymptotic approximation.

In the asymptotic distribution of (R,,..., R,), the only quantity that de-
pends on the form of the sampling distribution is the constant E,F,¢,. This fact
will be exploited in the next section. For continuous families of distributions,
differentiating the relation

E [Fy(X)] =3
yields the identity
ad
BB(X)4X)] = ~E| 25E(X)]
If 6 is a location parameter, the right side reduces to the familiar expression

E,[f(X — 6)] = [f2 Table 1 gives the form of the constant E,F,¢, for several
families of distributions.
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TABLE 1
The constant EyF; ¢, for several choices of Fy.

Distribution (F) EyFyy
Normal [mean = 8, variance = ¢2(8)] (20(8)7'/2} 71
Logistic (mean = 8, scale = o) (60)7 !
Cauchy (median = 6, scale = o) 2me)7 !
Exponential (mean = 6) 46)7!

5. Asymptotic power. In the nonparametric testing literature it is common
to derive the asymptotic relative efficiency between a nonparametric test and an
analogous parametric test. Here interest is focused instead on comparisons
within the class of nonparametric tests S;;(q). The relative performances of the
tests depend on the direction of deviation from H, so no overall measure of
asymptotic relative efficiency is available. Useful insight is obtained, however, by
direct comparison of the asymptotic power functions [cf. Puri (1965)].

Assume {F;} satisfies the LAN conditions of the previous section and let Y;
and Z; be as defined in Section 3. The results of Section 4 imply that, under K,

Y = (Y,,...,Y,) is asymptotically normal with mean n = (7,,...,n,,), where
(16) n= N_l/zoo—l(Rj)]Vj—lnj(Bj - Ej—1)Eobeo,

and with covariance equal to the (m — 1) X (m — 1) identity matrix. This
asymptotic distribution for Y and the representation

J
Zj = GO_I(SJ) Z OO(R,)Y” j = 2,..., m,

1=2

yield an asymptotic power function for S,,(g). Let z=® (1 — p) and y =
®'(g), where p and g are as in (4), and let M = max{2,(j = Y, > y)}. Then
the power P(Z,, > z) for alternatives in K, can be approximated by

(1= (=) TTo(y - n)

(17) m ‘ m
+ Z(I’2(Z—Vj’y—nj; Pj) n D(y — ),
j=3 k=j+1

where v; = {o,(Ry)n, + - -+ +o(R;)n;}/0)(S;) and p; = oo(R;)/0)(S)), J=
2,..., m, and where ®y(u, v; p) = P(U > u,V > v) if (U, V) is a bivariate nor-
mal random variable with mean (0, 0), unit variances and correlation p. If ¢ = 0,
one obtains the asymptotic power function for the Jonckheere—Terpstra test:

(18) 1- fI)(TI)_l(l —a) - Vm).
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Qqm.75

Qqu.5
q-.25

q=0

25 3.0

(@)

()

Fic.1. Asymptotic power (a = 0.05) of Sy;(g) for F(x) + ®(x — tA;), i = 1,...,6, ¢ = 0(0.25)0.75:
(a) A = (0.0,0.25,0.5,0.75,1.0,1.25); (b) A = (0.0,0.25,0.5,0.75,0.75, 0.25).
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For specified Fy and n,,..., n,,, one uses (16)—(18) to approximate power for
alternatives of the form F(:) = F(-; 6,*), i = 1,..., m, by setting

6=N"1Y nb* and B,=NY%(6*-4).
i=1

Figures 1 through 4 plot asymptotic power of S,,(q) as a function of the tuning
parameter ¢ and another quantity ¢ that parametrizes various paths through
the space of 6* = (6*,...,0*). These plots are scaled to predict power for
normal mean shift alternatives with unit variance, m = 6and n, = --- =ng=
5. Other choices for F; would produce similar plots, because the sampling
distribution appears only in the constant E F,¢, in (16). IMSL routines
MDBNOR, MDNOR and MDNRIS facilitated computation of (17) and (18). Critical
values for nominal test size 0.05 were determined from (5) and (6).

Figure 1(a) and (b) considers 8* = §*(¢) = (0,*(¢),..., 05*(¢)), where 6.*(t) =
tA, i=1,...,6, and plot asymptotic power of S;,(q), ¢ = 0(0.25)0.75 versus ¢.
Figure 1(a), in which A = (A,,..., Ag) = (0.0,0.25,0.50,0.75, 1.0, 1.25), illustrates
the cost in power for a monotone trend of using S, (g), g = 0.25,0.5,0.75,
instead of the Jonckheere-Terpstra test S,,(0). Figure 1(b), in which A =
(0.0,0.25,0.50,0.75,0.75, 0.25), demonstrates that using S,,(gq), ¢ > 0, instead of
the Jonckheere-Terpstra test can yield a sizeable gain in power if there is a
moderate downturn.

1.0

t

F16. 2. Asymptotic power (a = 0.05) of Sy(q) for Fi(x) = ®(x — (1 — H)A;; — thy,), i =1,...,6,
g = 0(0.25)0.75, where A}, = (0.0,0.25,0.5,0.75,1.0,1.25) and Ag = (0.0,0.5,1.0,1.25,1.0,0.0).
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1.0

F1G. 3. Asymptotic power (a = 0.05) of Sy(q) for F(x) = ®(x — 1.58(4,, t,2)), i =1,...,6, ¢ =
0(0.25)0.75, where A = (0,0.2,0.4,0.6,0.8,1.0) and g(s, ¢, u) = (s/t)exp{u”'(1 — (s/t)*)}.

To show the tradeoff directly, Figure 2 considers the configurations 8*(¢) =
(1 -t)A, + tAy, where A, =(0.0,0.25,0.5,0.75,1.0,1.25) and Aq = (0,0,0.5,
1.0,1.25,1.0,0.0) for ¢ € [0,1]. The lower extreme is a linear trend in the parame-
ter values; the upper extreme is a roughly quadratic trend that drops back to the
zero level at the highest dose. The power curves for Sy(%) and S,,(0) cross at
t = 0.34, which corresponds to 8* = (0.0,0.34,0.67,0.92, 1.0, 0.83).

Figure 3 illustrates the effect of the location of the downturn. Define g(x, ¢, u)
= (x/t)exp{u"Y(1 — (x/t)*)}. For fixed positive ¢ and u, g(x, t, u) is a nonnega-
tive, unimodal function of x on [0, 00) that increases from g(0, ¢, u) =0 to
g(t, t,u) = 1 and decreases thereafter to zero. The larger u is, the sharper the
downturn beyond t. By varying ¢ one can study asymptotic power as a function
of the point of downturn. Figure 3 considers 6,*(¢) = 1.5g(4,, ¢,2), i = 1,...,6,
with A = (0,0.2,0.4,0.6,0.8,1.0) and g = 0(0.25)0.75. For ¢ = 1 the dose-response
is monotone over the sampled doses. The crossing point ¢ = 0.73 corresponds to
0* = (0,0.65,1.17,1.45,1.49,1.33). To get an idea of the steepness of the down-
turn note that g(2¢,¢,2) = 2e~ %% = 0.45, g(3t, t,2) = 3e * = 0.055 and so on.
The power of the Jonckheere—Terpstra test drops substantially below a = 0.05 if
t is in the range (0.07,0.4). Less pronounced drops are apparent for S,,(0.25) and
S,;,(0.5) when ¢t is near 0.1. Otherwise the tests tend to have greater power for
later downturns, which is to be expected because of the larger effective sample
sizes for testing the initial upward trend.
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1.0

0.8

(b)

Fic. 4. Asymptotic power (a = 0.05) of Sy(q) as a function of q for Fi(x) = ®(x — tA;), i =1,...,6,
¢ = 0(0.5)2: (a) A = (0.0,0.25,0.5,0.75,1.0, 1.25); (b) A = (0.0,0.5,1.0, 1.25, 1.0, 0.0).
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Plotting power as a function of g shows directly the effect of this tuning
parameter. Figure 4(a) and (b) gives plots of this type for two dose-response
configurations, one linear and one with a downturn. The performance is clearly
poor for g > 0.95; the corresponding tests do not use enough of the data. At the
other extreme, g near zero results in poor robustness to a downturn. Away from
these extremes the performance appears to be relatively stable across a range of
choices for g. We recommend g = ; as a compromise that provides robustness to
a downturn without sacrificing much power to detect a monotone dose-response.
It is also easy to compute: If ¢ = ; the cutoff value for R, is simply C; = 3n,N,_,,
the median under (1).

These conclusions are essentially invariant to the choice of F, in K, so the
LAN theory provides a useful simplication. The accuracy of the resulting
approximation, which clearly depends on the choice of Fj, is examined in the
next section.

TABLE 2
Monte Carlo and asymptotic power (nominal o = 0.05) for the Jonckheere—Terpstra test (J) and
Sy (0.5) (m =6,n, = --- = ng=>5): (a) Normal deviates with unit variance; (b) Logistic deviates

with unit scale; (c) Cauchy deviates with unit scale; (d) Exponential deviates; (€) Normal deviates
with variance equal to the mean.

Monte Carlo power Asymptotic power
J Sy (0.5) ratio J Sy (0.5) ratio

(a) Normal means
000 025 050 075 100 125 0.722 0.613 1.18  0.723 0.636 1.14
000 025 050 075 075 025 0.174 0.281 0.62  0.190 0.310 0.61
000 050 100 150 175 200 0.969 0.947 1.02 0977 0.961 1.02
000 050 1.00 150 100 0.00 0.093 0.623 0.15 0.129 0.671 0.19

(b) Logistic means
000 025 050 075 100 125 0.371 0.281 1.32 0374 0.300 1.25
0.00 025 050 075 075 025 0.117 0.146 0.81 0.117 0.160 0.73
000 050 1.00 150 175 200 0.682 0.578 1.18  0.694 0.620 1.12
0.00 050 1.00 150 1.00 0.00 0.079 0.301 0.26 0.090 0.311 0.29

(c) Cauchy medians
000 025 050 075 100 125 0.327 0.259 126  0.351 0.281 1.25
000 025 050 075 075 025 0.111 0.149 0.74 0.113 0.152 0.74
000 050 1.00 150 175 2.00 0.592 0.506 1.17  0.660 0.584 1.13
0.00 050 1.00 150 1.00 0.00 0.086 0.252 0.34 0.088 0.290 0.30

(d) Exponential means
1.00 125 150 175 200 225 0.356 0.288 1.24 0.336 0.268 1.25
1.00 125 150 175 175 125 0.118 0.167 0.71 0.122 0.170 0.72
1.00 150 200 250 275 3.00 0.500 0.434 1.14 0.450 0.381 1.18
1.00 150 2.00 250 2.00 1.00 0.037 0.224 0.16 0.085 0.266 '0.32

‘e) Normal means (= variances)
1.00 125 150 175 200 225 0401 0.333 120  0.394 0.318 1.24
1.00 125 150 175 175 125 0.117 0.190 0.62 0.135 0.195 0.69
100 150 200 250 275 3.00 0.529 0.490 1.08  0.528 0.453 1.16
1.00 150 2.00 250 200 1.00 0.036 0.300 0.12 0.090 0.318 0.28
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6. Asymptotic versus simulated power. Monte Carlo and asymptotic
power approximations were computed for the tests S;,(0) and SM( %) Table 2
shows results for equivariant (scale = 1) location shift trends for normal, logistic
and Cauchy deviates, for trends in the means for exponential deviates and for
normal deviates with variance equal to the mean. The results are for six doses
and n; =5, i =1,...,6. Critical values for a nominal test size of a = 0.05 were
computed using (5) and (6). The Monte Carlo results are each based on 5000
replications using IMSL routines GGAMR, GGCAY, GGNML and GGUBS. Under a
binomial sampling assumption for the proportion of rejections, the maximal
standard deviation of the power estimate from 5000 Monte Carlo replications is
roughly 0.007, occurring when the power is 0.5.

For the normal and logistic families the agreement between the Monte Carlo
and asymptotic results are rather good; most of the differences are within Monte
Carlo sampling error. For the Cauchy family the asymptotic results appear
mildly optimistic, but the agreement is still good, especially given the reputation
of the Cauchy distribution. The agreement is also rather good for the exponen-
tial distribution and the normal distribution with mean equal to the variance.
For these latter distributions the sum-to-zero constraint on the B; is crucial;
E,F,¢, in (16) must be evaluated at the average value of the parameter, as
described in Section 5.

This modest study suggests that the asymptotic power function for S,,(¢q) is
quite accurate for moderate sample sizes and that it might reasonably be used
for sample size determinations. That relative efficiencies appear to be well
predicted lends support to the theoretical conclusions of Section 5.

APPENDIX

Proor oF THEOREM 1. Let Y, Z;,, i = 2,..., m, and M be as in Section 3.
Let 7, = P(X;, < X)) = [F(t)dF(t), 1 <i, j <m. Let §, and 7, denote the
weighted averages

k—1
8k=Nk_—ll Z nJWJk and Tp = ZnN S/Zn —1 k=2,...,m.
Jj=1

For fixed m and assuming n,/N — a; € (0,1) as N — oo, known results concern-
ing the Mann—-Whitney and Jonckheere—Terpstra statistics imply that, for finite
y and 2, P(Y;>y) > 1 (- 0) if and 'only if §;> 1 (< %) in the limit and
P(Z; > z) > 1 (- 0) if and only if 7, > 1 (< 1) in the limit. Using these facts,
the proof of (i) is straightforward. The proofs of (ii) and (iii) proceed by checking
the conditions of the following lemma, which says that the test S,,(q) will be
consistent if at least one of the tests Z;, > 2, i = 2,..., m, is consistent and if the

probability of selecting an inconsistent test becomes neghglble in large samples.

LEMMA 1. Let A= {i€(2,...,m): 7,> L} and b= max{i € A: §,> }}.
Suppose (i) A is nonempty and (ii) j > b and j € A° imply §; < ;. Then Sy(q),
0 < g < 1, is consistent.
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Proor. For finite y and z,
(19) liminf P(Z,, > z) = liminf ), P(Yi 2y, N (Y;< y)),
I€EA,i>b J=i+1

because P(Z; > z) » 1fori € A and — 0 for i € A°, and because P(Y, < y) —
0. Moreover,

(20) 1= P{j@(Y}<y)} + ZP{sz,jiil(Yﬁy)},

where the sum is over the disjoint sets {i = 2,...,b — 1}, {i € A%, i > b} and
{i € A,i > b). The first term on the right in (20) converges to zero as N — oo,
as do the summations over {i = 2,..., b~ 1} and {i € A%, i > b} in the second
term. Hence, the result follows from (19) and (20). O

ProoF OoF THEOREM 2. Theorem 2 follows from a result of Le Cam [see
Hajek and Sidak (1967), page 208] and the following lemma.

LEmMA 2. Suppose the conditions of Theorem 2 hold and let Ly be as in
(10). Then (Ly, N'/2U,,..., NY2U,) converges in distribution under Hy to a
multivariate normal random vector with mean (- is%,0,... ,0) and covariance

D= *
o Ty
where p and T are as in Theorem 2 and

o2 = J(8) ¥ a,p2.

i=1
Proor. Using (13), (15) and Chebyshev’s inequality,
NYHU; = V) = 0,(1),
where

m
VO=NTY b Y MNi(X,), J=1,...,s.
i=1 kegG,

Hence, using also (11),
(Ly + 102 NV2U,,..., NV2U,) = (Ay, NV?V?,..., NV2V0) + 0,(1),

where

Ay=N"'"2Y B8 ¥ fo(Xj)~

i=1 jegG;
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Fix an arbitrary a = (a,, a;,...,a,) € R°*1. Then

agAy + NV2 ) ajVjO = Y a’n;'? ) {%B fa(X) + Z akbklAkL(X )}

j=1 i=1 JE€G, k=1
+ 0,(1).
This converges in distribution to Ya!/?W,, where W,,..., W, are independent

and W, ~ N(0, aD,a’), and where D, has (J, R)th element dl i J=0,...,8,
k=0,...,s, with di = BZJ(0), dio, = dipo = BbLE YA, and dz w=dij =
by bk,Eo}\ Ari» J#0, B+ 0. Note that D, is finite by the Cauchy Schwarz
1nequa11ty, because J(f) and E,¥? are both finite. The result follows because
Yal’?W, ~ N(0, aDa’) and a was arbltrary a
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