The Annals of Statistics
1990, Vol. 18, No. 1, 191-219

CUBE ROOT ASYMPTOTICS!

By JEANKYUNG KiM AND DAvID POLLARD

Yale University

We establish a new functional central limit theorem for empirical pro-
cesses indexed by classes of functions. In a neighborhood of a fixed parameter
point, an n~ !/ rescaling of the parameter is compensated for by an n?/3
rescaling of the empirical measure, resulting in a limiting Gaussian process.
By means of a modified continuous mapping theorem for the location of the
maximizing value, we deduce limit theorems for several statistics defined by
maximization or constrained minimization of a process derived from the
empirical measure. These statistics include the shorth, Rousseeuw’s least
median of squares estimator, Manski’s maximum score estimator, and the
maximum likelihood estimator for a monotone density. The limit theory
depends on a simple new sufficient condition for a Gaussian process to
achieve its maximum almost surely at a unique point.

1. Introduction. There is an interesting class of asymptotic problems where
estimators converge at a rate different from the familiar O,(n"~ 1/2), with nonnor-
mal limit distributions. Chernoff (1964) provided the prototype with a O (n~'/%)
rate of convergence for an estimator of the mode, whose limit distribution was
expressible by means of a functional on Brownian motion with quadratic drift.
He found the limit distribution for the § that maximized PO — a,0 + a], the
empirical measure of an interval of fixed width. He also considered briefly the
case where the width decreased with sample size, showing how that affected
the rate of convergence.

Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1972) gave a heuristic
analysis of the a-shorth estimate of location—the mean of the observations in
the shortest interval containing a fraction « of the sample—using arguments
similar in spirit to Chernoff’s. They derived O,(n~'/?) asymptotics; Shorack and
Wellner (1986, Section 23.3) used the Hungarian strong approximation for the
quantile process to make the derivation more rigorous. Groeneboom (1985) also
used a Hungarian strong approximation, for the empirical distribution function,
in deriving Op(n‘l/ 3) asymptotics for an estimator of a monotone density.

Eddy (1980, 1982) extended Chernoff’s method to establish functional limit
theorems for rescaled kernel density estimators on the real line. He checked
inequalities for product moments to verify the required uniform tightness condi-
tions. As with the strong approximation approach, the available tools con-
strained Eddy’s analysis to one-dimensional problems. Pei (1980) carried some of
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192 J. KIM AND D. POLLARD

the arguments into higher dimensions, under smoothness assumptions that led to
0,(n~'?) asymptotics.

In this paper we adapt empirical process techniques (of the type used to prove
abstract Donsker theorems) to generalize Chernoff’s heuristics to higher dimen-
sions. We confine our attention to situations where O,(n~'/%) asymptotics
obtain, leaving for a future paper problems, such as mode estimation based on
kernels with decreasing bandwidths, where the estimators converge at other
rates.

Our results concern estimators defined by maximization of processes

Png(’o) = ;l— Zg(guo)’

i<n

where {£;} is a sequence of independent observations taken from a distribution P
and {g(-, #): § € B} is a class of functions indexed by a subset © of R?.

The following theorem will be proved at the end of Section 4, as the
culmination of a sequence of results that highlight the roles played by each of
the assumptions. The envelope Gg(-) is defined as the supremum of |g(-, )| over
the class

9n={&(-,0): 10 - 6] < R).

The meaning of the term uniformly manageable will be explained in Section 3.

1.1. MAIN THEOREM. Let {8,} be a sequence of estimators for which

(1) Png(? on) = Supg c o Png(': 0) - p(n72/3)‘

Suppose

(ii) 6, converges in probability to the unique 6, that maximizes Pg(-,0);

(iii) 6, is an interior point of ©.
Let the functions be standardized so that g(-, 8,) = 0. If the classes 95, for R
near 0, are uniformly manageable for the envelopes Gy and satisfy

(iv) Pg(-, ) is twice differentiable with second derivative matrix —V at 0

(v) H(s, t) =lim,_,  aPg(-,0,+ s/a)g(:, 0, + t/a) exists for each s,t in
R< and

lim aPg(-, 6, + t/a)z{'g(-,ﬂo + t/a)| > sa} =0

for each ¢ > 0 and tin R%

(vi) PG = O(R) as R - 0 and for'each ¢ > 0 there is a constant K such
that PGY Gy > K} < €R for R near 0;

(vii) P|g(-,0,) — &(-,0,)| = O(|6, — 6,]) near 6,

then the process n?/°P,g(-, 6, + tn=/3) converges in distribution to a Gaussian
process Z(t) with continuous sample paths, expected value — 1t'Vt and covari-
ance kernel H.

If V is positive definite and if Z has nondegenerate increments, then
n'’%(8, — 6,) converges in distribution to the (almost surely unique) random
vector that maximizes Z.
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Some subtleties concerning the notion of convergence in distribution are
discussed in Section 2. We also establish in that section a simple condition for
the limiting Gaussian process to have a unique maximizing value, a property
needed before the limit behavior of 8, can be derived via a form of continuous
mapping theorem.

Section 6 consists of five examples chosen to illustrate the sort of problem
where cube root asymptotics arise. The first example concerns the shorth. We
analyze this estimator in some detail; it is the prototype of a more general class
of estimator defined by constrained optimization. The second example presents a
generalization of Chernoff’s mode estimator to higher dimensions. The third
example extends the analysis of the shorth to cover Rousseeuw’s (1984) least
median of squares estimator for a regression parameter. The fourth example
solves a long-standing problem in the econometrics literature—see the discussion
by Amemiya (1985, page 345)-—concerning the asymptotic behavior of Manski’s
(1975, 1985) maximum score estimator. The final example adapts ideas of
Prakasa Rao (1969) and Groeneboom (1985) to rederive the limit theory for the
maximum likelihood estimator of a monotone density. Further details regarding
the first four examples may be found in Kim (1988).

Underlying these examples is a single mechanism for the Op(n‘l/ 3) rate of
convergence. It may be understood from a simple one-dimensional example.
Suppose 9;1 is chosen to maximize T(8) = P,[6 — 1, 6 + 1], the proportion of
observations in an interval of length 2 centered at 6. To a first approximation
I,(8) is close to I'(6) = P[§ — 1,6 + 1]. If P has a smooth density p(-), the
function I' is approximately parabolic in a neighborhood of its maximizing
value 6,

I(8) — I(6,) = f1

The first order terms must cancel for a maximum. Superimposed on this
deterministic trend is a random perturbation,

D,(8) = [T.(6) — T,(6,)] — [T(6) — T(6,)].
For fixed 6, the D,() is approximately N(0, o7/n) distributed with

ol = Li;:p(x) dx + f__l

The first order terms do not cancel.

For values of § where the trend, which is of order (8 — 6,)?, is large compared
to the standard deviation of the noise, which is of order n~1/2|0 — ,|'/2, the
value of I',(0) is likely to be smaller then I',(6,). It is unlikely that such a 6
would maximize T,. Only for 8 where (6 — 6,)? is of the same order as, or smaller
than, n~'/2|§ — 6,|'/? is there an appreciable probability that I,(#) might be
larger than T,(6,). That is, the maximum is likely to occur in the range where
|6 — 8] is of order n~1/3 or smaller.

To make this rough argument precise one needs to establish error bounds
uniform in 6; the normal approximation must hold, in some sense, uniformly
over 6. That is precisely what the results in Section 4 are designed to do.

p(x)de — [T p(x) dx = —const.(8 - 6,)°.

b
+6, 1+6,

]
1+ p(x) dx = const.|6 — 6.
00

+
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Notice that if o/ decreased like |§ — 6,)%, the rough argument would indicate a
maximizing value in the range where (6 — 6,)? is of the same order as, or smaller
than, n~'/?|6 — 6. That would give an O,(n~'/?) rate of convergence. Variances
decreasing like |6 — 6,|? typically occur in problems where g(-, ) is differen-
tiable in §. We therefore interpret the |6 — 6,| rate of decrease in our examples as
a consequence of a sharp-edge effect. We suggest that this is the main distin-
guishing feature of estimation problems that exhibit cube root asymptotics.

2. Convergence in distribution and the arg max functional. Let
B,..(R9) be the space of all locally bounded real functions on R¢, equipped with
the topology of uniform convergence on compacta. Our main results will concern
the location of the maximizing value (the arg max) for stochastic processes with
sample paths in B, (R?). These will be deduced from a functional limit theorem
for a sequence of such processes, essentially through application of a continuous
mapping theorem for the arg max functional. There will be no difficulty with the
definition of the arg max for the limit process, because we will ensure that each
of its sample paths achieves its maximum at a unique point of R The
converging sequence of processes, however, will not be forced to have such
sample paths.

That raises the difficulty of how the argmax should be defined for those
functions in B, (R%) that do not achieve their supremum, or for functions with
multiple maximizing values. Arbitrary tie-breaking rules, or rules for choosing
amongst values that come close to achieving a supremum over a function, raise
other questions regarding measurability of the arg max.

We will avoid such definitional and measurability complications by moving
away from the interpretation of argmax as a functional on B, (R¢) [or on a
cunningly chosen subset of B, (R¢)]. Instead we will prove limit theorems for
random elements of R¢ that come close enough to maximizing processes with
paths in B, (R?). However we will retain the usual interpretation of arg max for
processes whose paths achieve a maximum at a unique point in R

Our approach is designed to fit well with a general concept of convergence in
distribution introduced by Hoffmann-Jergensen (unpublished manuscript) and
exposited by Dudley (1985). We adopt a small variation on their definition, as in
Pollard (1988).

Let (%, p) be a metric space and %(Z ) be the set of bounded, uniformly
continuous, real functions on Z'. Let (2, &7, P) be a probability space. The outer
expectation of a (possibly nonmeasurable) bounded, real function f on @ is
defined by

P*f = inf{Pg: f < g and g is integrable}.

The maps X, from £ into 2 will not be assumed to have any particular
measurability properties, but the limit distribution @ will be defined on the
Borel o-field of & and have separable support.

2.1. DEFINITION. For maps X, from £ into £ and a probability measure @
on the Borel o-field of %, define the convergence in distribution X, ~ @ to
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mean:

(i) @ has separable support;
(i) P*h(X,) — Qh for each h in %(%).

If X is a Borel measurable map into Z with distribution @ write X, X to
mean X, ~ Q.

This definition has the peculiar virtue of giving meaning to convergence in
distribution without requiring the X, maps to have distributions in the usual
sense—without measurability assumptions there is no particular o-field on &
where the distribution PX ;' should live. Nevertheless, convergence in this sense
does have many of the usual nice consequences, the most important being
Dudley’s (1985) representation theorem.

Imprecisely stated, when X, ~> @ the representation gives an almost surely
convergent sequence, X, ~ X, such that X, has the same distribution as X,
and X has distribution Q However, for nonmeasurable maps, the concept of the
same distribution requires modification and almost sure convergence must be
strengthened. The key new idea is that of a perfect measurable map from a new
probability space (Q, o, I1~3°) into (2, &7, P): Such a map ¢ is said to be perfect if
(Iﬁ’qb_l)*f = Iﬁ’*f(¢) for all bounded, real f on .

2.2. REPRESENTATION THEOREM. (Dudley). If X, ~ @ is the sense of Defi-
nition 2.1, then there exists a new probability space (&, o, ) supporting
7 \ &£ measurable perfect maps ¢, into @ and a Borel measurable map Xinto ¥
such that:

(i) P¢; ! = P for each n;
(i) PX ' = @; 3
(iii) there are measurable random variables {£,} on Q@ for which

p(X(6:(@)), X(3)) < &,(3) forall &

and {§,} converges to zero P almost surely.

See Pollard (1988) for an exposition of this form of Dudley’s representation
theorem.

For our application the space 2 will be B, (R?). Equip it with a metric p for
the topology of uniform convergence on compacta:

o(x, 3) = §12-kmin[1, o5, )],

where
pr(x, ¥) = sup |x(¢) - ¥(2)].
1)<k
The limit distribution will concentrate on the separable subset C_, (R?) of
continuous functions x(-) in B, (R?) for which (i) x(¢) > — o0 as |¢| = o and
(ii) x achieves its maximum at a unique point in R?.
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Convergence in distribution for random elements of B, (R¢) may be charac-
terized by the usual sort of finite-dimensional convergence plus uniform tight-
ness [ = stochastic equicontinuity: see Pollard (1988)].

2.3. THEOREM. Let {X,} be a sequence of stochastic process with sample
paths in B,, (R%). Suppose:

(i) for each finite subset S of R? there is probability measure Qg on B(RS)
such that { X, (t): t € S} ~ Qg;
(ii) for each e > 0, 7 > 0 and M < o, thereis a § > 0 such that

lim sup P* {sup|X,(s) — X,(¢t)| > n} <&,

where the supremum runs over all pairs of s,t with max(|s|,|t|) < M and
|s — t| < 8.

Then there is a Borel probability measure @ with finite-dimensional projections
Qg, such that X, ~ @ (in the sense of convergence in distribution under the
metric for uniform convergence on compacta) and € concentrates on the separa-
ble set of all continuous functions in B, (R%).

Stochastic equicontinuity, condition (ii), is equivalent to the assertion: For
each sequence of positive numbers {§,} converging to zero and each finite M,

P*{sup| X,(s) — X,(¢)|: Is — | < §,, max(|s|, |#]) < M} - o.

This neater form is sometimes more convenient to check.

For our applications the limit measure @ will be the distribution of a
stochastic process Z(¢) = — 1t'Vt + W(t), with V a fixed positive definite matrix
and W(t) a Gaussian process with continuous sample paths, zero means and a
covariance kernel H having the rescaling property

(2.4) H(kt,kt') = kH(t,¢') fork > 0and¢,t € R

When does such a Z have all its sample paths in C_, (R%)? We answer the

question with two lemmas corresponding to the two defining properties of
Crnax(R?).

2.5. LEMMA. Positive definiteness of V and the rescaling property (2.4) for H
together imply that Z(t) - — oo as |t| = oo, with probability 1.

ProoOF. Since #'V¢ increases like |¢|?, it is enough to show for each ¢ > 0 that

, w(¢)
P lim sup W >¢g) =

|¢] = o0

We establish this by a Borel-Cantelli argument, using the fact that the process
W(kt) has the same distribution as V& W(t). Write A(k) for the annulus
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(B — 1< |t <k} Then

i:: P{sup W(t) > e(k — 1)2} < i [P{ sup W(kt) > e(k — 1)2}

k=2 A(k) k=2 \|¢<1
< Y IF"{ sup W(t) > e(k — 1)2/\/5}
k=2 \|t<1
<

o0
P sup [W(¢)| ¥ (Lek??) 7,
k=2

It <1

which is finite, by Corollary 4.7 of Jain and Marcus (1978). O

2.6. LEMMA. Let {Z(t): t€ T} be a Gaussian process with continuous
sample paths, indexed by a o-compact metric space T. If var(Z(s) — Z(t)) # 0
for s #+ t, then, with probability 1, no sample path of Z can achieve its
supremum at two distinct points of T.

Proor. It suffices to prove the result for T' compact.

There is a countable family ¢ of closed balls such that every open set is a
union of balls in ). If a sample path achieves its global supremum at two
distinct points of T, then there must exist a pair of disjoint balls in ¥ such that
the supremum over each ball is equal to the global supremum. So it is enough to
prove, for each pair of disjoint closed balls K, and K,, that

IP’{ sup Z(t) = sup Z(t) = sup Z(t)} =0.
tek, tek, teT
By means of two finite-covering arguments, the task of proving this equality is
reduced to a local problem: For each pair of distinct points ¢,, ¢, in T, show that
there are neighborhoods N, of ¢, and N, of ¢, such that

[P{ sup Z(t) = sup Z(t) = sup Z(t)} =0.
teN, teN, teT
We will establish a stronger assertion, obtained by deleting the sup, ., Z(¢) from
the last equality.
Write H for the covariance kernel of Z. The assumed nondegeneracy ensures
that

H(ty, t,) — 2H(t,, t,) + H(¢,,¢) # 0;
the covariance H(t,, t;) cannot be equal to both H(t,, ¢,) and H(¢, t;). For
definiteness, suppose H(t,, t,) > H(t,, t;). (The other possibilities could be cov-

ered by arguments quite similar to what follows.) Then certainly H(¢,, ¢,) # 0
and, by virtue of the sample path continuity, the function defined by

h(t) = H(t, to) /H(%,, t,)

is continuous. Define a new Gaussian process, Y(t) = Z(¢) — h(t)Z(t,). Covari-
ance calculations show that Y is independent of Z(¢,).
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Because our supposition about H implies h(t,) > h(t;), there exist neighbor-
hoods N, and N, and constants 8, and B, such that

1nf h(t) = B, > B, = sup A(t).

ten,
Argue conditionally on Y. For a fixed realization of Y, the function

T(z) = sup [¥(2) + h(t)]

ten,

is a supremum of linear functions with slopes no less than f,; the function I, is
convex, with right-hand derivative never less than B,. The analogously defined
function I’} for the neighborhood N, is also convex, with right-hand derivative
never greater than B,. The equality I'y(z) = I'j(2) can therefore hold for at most
one real z. Because Z(t,) has a nondegenerate normal distribution independent
of Y, it follows that

| sup 2(1) = sup Z(0)]¥) = P{T(2()) = T(Z(w))[Y} = 0

teN,

Average over the possible realizations of Y to arrive at the desired conclusion,

IP{ sup Z(t) = sup Z(t)} =0. O
teN, te N,

We will be checking the conditions of Theorem 2.3 to establish convergence
for processes {Z,} and then invoking the two lemmas to make the limit process
concentrate its sample paths in C_, (R¢). The limit behavior of the arg max (or
something that comes close enough to maximizing Z,) will then be deduced from
the next theorem, a suitably modified form of the continuous mapping theorem.

2.7. THEOREM. Let {Z,} be random maps into B, (R?) and {t,} be random
maps into R such that:

() Z, ~ Q for a Borel measure Q concentrated on C_, (R?);
(ii) t, = Oy(1);
(iii) Z,(¢,) = sup,Z,(t) — a, for random variables {a,} of order o,(1).

Then t, ~ argmax(Z) for a Z with distribution Q.

ProoF. Invoke the Representation ’I‘heorem for the {Z,} processes. Write

(t) for the composition Z,(¢,(&), ) and Z, for ¢,(,(&)), and so on, omitting
the & to avoid confusion with the ¢ pa:rameter By the usual sort of argument
1nvolv1ng countable, dense subsets of R¢, we could prove measurability of the
unique { maximizing the continuous process Z; it has the limiting distribution
asserted for Z,.

We need to prove that P*h(t,) converges to IPh(t) for each A in %(Rd)
Perfectness of ¢, lets us bound the difference by P*|h(f,) — h(E)|. So it is
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enough to prove that
P*{|f, - # >8) >0 foreachd > 0.

Fix ¢> 0 and & > 0. Abbreviate Z(f) — sup{Z(¢): |t — #| > 8} to A. Use
assumption (ii) and the fact that @ concentrates on C_, (R?) to choose % and
1 > 0 so that

max

limsup P*{|£,| > &} <,
P{|fl>kord <n} <e.
Within the ball {|¢| < &}, the bound from the Representation Theorem gives
|Z,(¢) — Z(¢)| < pi(Z,, Z) < 2%,
If |f| < k and A > 9, it follows for |¢| < k& and |t — £| > & that
Z(t)<Z(f)—n+2%%,.
When 1 > &, + 2%*'¢,, which is true with probability tending to 1 as n — oo,

this 1nequa11ty for Z, forces £, to lie either outside the ball {|#| < k) or within a
8 neighborhood of Z. It follows that

P*{|Z, — {| > 8} < 3¢ eventually,

as required. O

3. Empirical process preliminaries. The results of Section 2 will be
applied to processes generated by independent sampling from a fixed distribution
Pon aset S. As usual, we write P, for the empirical measure constructed from a
sample of size n. We will make use of two maximal inequalities [Theorem 4.2 of
Pollard (1989)] for P, — P as a stochastic process indexed by a class of real-val-
ued functions % on S. The inequalities apply to manageable classes of func-
tions, a term coined by Pollard (1989) to distinguish the defining regularity
property from many similar properties studied in the empirical process litera-
ture.

We will not define the general concept of manageability here, because our
applications will involve only the very simplest sorts of manageable class.
Instead, at the end of this section, we will list several sufficient conditions for
manageability. The bounding terms in the inequalities involve an envelope for
the class %, that is, a measurable function F such that F > | f| for every f in %.
For convenience of notation, we assume that % contains the zero function, a
constraint that will be satisfied in all the applications.

3.1. MAXIMAL INEQUALITY. Let ¥ be a manageable class of functions with
an envelope F, for which PF? < o0. Suppose 0 € %. Then there exists a
function J, not depending on n, such that

(i) VnPsupg|P, f — Pf| < PJP,F%J(sups P,{?/B,F?) < J(1)\/PF2
(ii) nPsupg|P, f — Pf|* < PP,F%]%supg P,f%/P,F?) < J1)*PF2

The function o is continuous and increasing, with J(0) = 0 and J(1) < oo.
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These inequalities will be used to establish an n~'/3 rate of convergence for
various argmax estimators, and also to verify the stochastic equicontinuity
conditions needed for the functional limit theorems that give the limit behavior
of the rescaled estimators. As a preliminary to these applications we will need a
consistency argument, which will usually be based on a uniform law of large
numbers. The Maximal Inequality gives a suitable uniform convergence result
with plenty to spare.

3.2. CorOLLARY. If # is a manageable class of functions with a square
integrable envelope, then supg|P, f — Pf| = O,(n"'/?).

Here are the promised sufficient conditions for manageability. They are
explained by Pollard (1989, 1988). For complete rigor we add the requirement
that the classes be permissible, in the sense of Pollard (1984). The classes that
will appear in our applications will all satisfy this measure theoretic regularity
requirement.

1. Every permissible subclass % of a VC subgraph class, in the sense of Dudley
(1987), is manageable for its natural envelope F = supg]|f | The o/ function is
the same for every such subclass; it depends only on the VC constants for the
subgraph class.

2. If # is permissible and manageable, then so is {|f|: f € %}, with the same
envelope and the same J.

3. If #, with envelope F, is permissible and manageable, then so is {fi — fs
fi € #}, with envelope 2F and the J function less than six times the J
function for &#

The lack of dependence of </ on the choice of subclass in the first assertion will be
important for us. We will be needing maximal inequalities for a whole family of
subclasses {¢p} with bounds that depend on R only through the envelope G, of
%g; the J function will not depend on R. We call such a family uniformly
manageable.

4. Limit theorems. Let P, be the empirical measure constructed from
independent observations £, £,,... on a distribution P. In this section we
develop limit theorems for processes derived from P, acting on a parametric
class ¥ = {g(-,0): § € B} of real-valued functions. The index set © is a Borel
subset of some Euclidean space R, [If &(+, - ) is jointly measurable, the class ¥
is permissible in the sense of Pollard (1984). Measure theoretic regularity condi-
tions will not be an important issue.] An estimator 6, will be assumed to
maximize, or at least come close to maximizing, the process P g(-, 6). We want
to deduce that 6, is close, in various senses, to the 6, that maximizes the
function Pg(-, 8).

The first step is to prove consistency, that is, to show that 6, converges in
probability to 6,. The argument for consistency has become quite standard,
almost to the pomt of cliché. It is enough to assume that (i) 6, comes within o (1)
of maximizing P,g(-,8), (ii) P,g(-,6) converges in probablllty to Pg(-, 0),
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uniformly in 6 (c.f. Corollary 3.2) and (iii) the function Pg(-,0) has a clean
maximum at 6, in the sense that

sup{Pg(-,0):10 — 8,| > 8} < Pg(-,6,) foreachs > 0.

We will say more about consistency for some of the applications in Section 6.
To bridge the gap between consistency and an O,(n~'/3) rate of convergence
we use the Maximal Inequality from Section 3. For each positive R define

Yp=1{2(-,0) € %:10 - 6,) < R).
Equip each ¢, with its natural envelope, G, = supg, |&(+, 8)]. To avoid continual

recenterings we assume that g(-, §,) = 0.

4.1. LEMMA. Let ¢ be a permissible class for which there is an R, >0 and
a finite constant C such that {9p: R < R} is uniformly manageable for the Gy
envelopes and

PG} < CR forallR <R,.
Then for each & > 0 there exist random variables {M,)} of order 0,(1) such that
|Pg(-,0) - Pg(-,0)] < |6 — 6,)* + n=*°M}  for |0 — 6, < R,,.
PROOF. For ease of notation suppose 6, = 0 and R, = c0. Define M (w) as
the infimum (possibly + c0) of those values for which the asserted uniform

inequality holds. Define A(n, j) to be the set of those # in ® for which
(/ = Dn"1/3 < |8] < jn"'/3 Then for m constant,

P{M, >

IA

m}
P{36:|Pg(-,0) — Pe(-,0)| > elf® + n~¥’m?)

IA

Y. P{30€A(n, j): n”*Pg(-,0) — Pg(-,8)| > e(j — 1)* + m?}.
Jj=1
The jth summand is bounded by
n'/*P sup |Pg(-,8) - Pg(-,0)[2/[e(j ~ 12+ m?]”.
16]<jn"1/3

By part (ii) of the maximal inequality and the assumption about PG2, there is a
constant C’ such that the numerator of the last expression is less than
n*%(n"'C’jn"'/%). We can therefore ensure that the sum is suitably small for all
n by choosing m large enough. O

4.2. COROLLARY. If Pg(-, 0) has a (strictly) negative definite second deriva-
twe at 6, and if 6, is a consistent estimator of 6, for which

Png('90n) > sup Png(-,o) — OP(n_2/3),
]

then, under the conditions of the lemma, 6, = 8, + O,(n""/?).
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ProOF. Choose the ¢ so that Pg(-,0) < —2¢|f — 6,|? in a neighborhood of
6, for which the assertion of Lemma 4.1 holds. When 6, lies in this neighborhood,

Pg(-,0,) < Pg(-,8,) + €8, — 6,]> + n~%/*M?.

Since the left-hand side is bigger than P,g(-,6,) — O,(n"2/%) and g(-, §,) = 0,
the bound on Pg(-, #) forces

el6, — 6,% < n"¥°M2 + O,(n"¥?) = 0,(n"¥/?),

from which the asserted rate of convergence follows. O

Once a O,(n~'/?) rate of convergence has been established, attention can
focus on the rescaled process

2/3 . -1/3 . ~1/3
(4.3) zn(t)z{n Pg(-, 0+t 13), if,+m?e0,

, otherwise

and the corresponding centered process

() - (B0 ), i,

, otherwise.

The extension of the domain of definition to the whole of R¢ has no serious
effect on arguments that involve uniform convergence on compacta, provided 6,
lies in the interior of ©.

Traditionally proofs of convergence in distribution are broken into two parts:
an argument for the finite-dimensional distributions, plus a uniform tightness (or
stochastic equicontinuity) argument. The first makes use of a classical result
such as the multivariate central limit theorem; the second involves some sort of
maximal inequality. We maintain this separation by breaking our main result
into two lemmas whose assumptions overlap to some extent. In Examples 6.1 and
6.3 we will need to apply the second lemma before the problem reduces to a form
where the first lemma is applicable.

4.5. LEMMA. Under the following conditions the finite-dimensional projec-
tions of the process Z,, [ defined by (4.3)] converge in distribution.

(i) 8, is an interior point of 9;
(ii) H(s, t) = lim,_, aPg(-, 0, + s/a)g(:, 0, + t/a) exists for each s,t
inR% ‘
(iii) the function Pg(-,0) is twice differentiable at 6, its maximizing value;
(iv) for each t and each & > 0,

lim «Pg(-, 6, + t/a)2{|g(-, b, + t/a)| > as} = 0.

The limit distributions correspond to the finite-dimensional projections of a
process

Z(t) = —Lt've + W(¢)
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where —V is the second derivative matrix whose existence is guaranteed by (iii)
and W is a centered Gaussian process with covariance kernel H.

Proor. For ease of notation suppose 8, = 0. With fixed ¢, condition (i)
ensures that tn~'/3 belongs to ® for n large enough. When that happens

Wn(t) - e n_1/3[g(£i’ tn—1/3) _ Pg(~, tn71/3)].
=1

im
Condition (iii) implies that
n??Pg(-,tn"'?) > —1t'Vt asn - oo,

which contributes the quadratic trend to the limit process for Z,. Together with
condition (ii) it also ensures that

cov(W,(s), W,(¢))

= n'/Pg(-,sn""?)g(-, tn"'?) — n'/°Pg(-, sn'/*) Pg(-, tn"'/?)
—H(s, t).

Condition (iv) implies the Lindeberg condition. O

4.6. LEMMA. Let 9 satisfy the following conditions:

(i) For R running over a neighborhood of 0, the 9, are uniformly manage-
able for their envelopes Gy,
(i) PG: = O(R) as R - 0.
(iii) Plg(-,0,) — &(-, )| = O(|6, — 6,)) near 6,
(iv) For ¢ > 0 there is a K such that PG%Gg > K} < ¢R for R near 0.

Then the processes {W,} defined by (4.4) satisfy the stochastic equicontinuity
condition (ii) of Theorem 2.3.

Proor. Let {§,}] be a sequence of positive numbers converging to
zero. Define #(n) to be the class of all differences g(-, 6, + t,n~'/3) —
g(-, 0, + tyn~1/3) with max(|¢,), |£,) < M and |¢, — ¢,| < 8,. The class has enve-
lope H, = 2G,, where R(n) = Mn~1/3, 1t is good enough to prove, for every
such {4,}, that

n?*P sup |P,h — Ph| = o(1).
H(n)

Define X,, = n'/°P,H? and Y, = sup,,,, P,h% Then condition (i) and the Maxi-
mal Inequality of Section 3 provide a single increasing function J(-) such that

n*?p sup |P,h — Ph| < P|X,J(n'/%Y,/X,)
H(n)

for n large enough. Notice how the n?/? splits into an n!/? required by the
maximal inequality and an n!/® which we have absorbed into the definition of
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X, . Split according to whether X, < ¢ or not, using the fact that n'/°Y, < X,
and invoking the Cauchy—Schwarz inequality for the contribution from { X, > e},
to bound the last expected value by

Ved(1) + PX,, [PJ2(min(1, /%Y, /¢)) .

Condition (ii) ensures that PX, = n'/3PH? = O(1). It therefore suffices to show
that Y, = o,(n~'/%). We will establish the stronger result, PY, = o(n~'/?), by
splitting each A into two pieces, according to whether H, is bigger or smaller
than some constant K: '

P sup P,h* <P sup P,h*{H,> K} + KP sup P,|h|
H#(n) H(n) H#(n)

<PP,H?(H,> K} + K sup P\h|+ KP sup |P,|h| — P\h||.
H(n) H(n)

Of these three bounding terms: The first can be made less then en~'/3 by
choosing K large enough, according to (iv); with K fixed, the second is of order
O(n~1/3,), by virtue of (iii) and the definition of J#(n); the third is less than
Kn~'2J(1)yPH? = O(n~?*?), by virtue of the maximal inequality applied to the
uniformly manageable classes {|A|: & € 5,} with envelopes H,. The result
follows. O

4.7. THEOREM. Under the conditions of Lemmas 4.5 and 4.6, the processes
{Z,) defined by (4.3) converge in distribution to the process

Z(t) = -’V + W(¢),

where —V is the second derivative matrix of Pg(-,8) at 6, and W is a centered
Gaussian process with continuous sample paths and covariance kernel

H(s,t) = lim aPg(-,0,+ s/a)g(-, 0, + t/a).

ProOF. Lemma 4.6 established stochastic equicontinuity for the {W,} pro-
cesses. Addition of the expected value n?*Pg(-, 6, + tn~'/?) does not disturb
this property. Thus {Z,} satisfies the two conditions of Theorem 2.3 for conver-
gence in distribution of stochastic processes with paths in B, (R?); the process Z
has the asserted limit distribution. O

PRrROOF OF THE MAIN THEOREM. The conditions of Lemma 4.1 are satisfied;
its Corollary 4.2, with (i) and (iii), give the O,(n~'/%) rate of convergence for 6,.
Conditions (iii) to (vii) restate the conditions of Lemmas 4.5 and 4.6, so Theorem
4.7 gives the convergence in distribution of Z, to Z.

The kernel H necessarily has the rescahng property (2.4). Together with the
positive definiteness of V and the nondegeneracy of the increments of Z, this
implies (Lemmas 2.5 and 2.6) that Z has all its sample paths in Cmax(IRd ).
Theorem 2.7, applied to ¢, = n'/3(6, — 6,), completes the argument. O
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5. Derivatives as surface integrals. Calculation of the matrix V for the
main theorem often reduces to multiple differentiation for functions of the form

NO) = [{x € A(6)}f(x) dx,

where f is a continuously differentiable real function of R* and A(6) is a region
that depends on a vector parameter §. We will give conditions under which the
derivative of A is expressible as a surface integral around the boundary dA(#) of
A(0). We omit most of the details, because the argument consists mostly of
classical differential geometry. It is based largely on Chapter 10 of Loomis and
Sternberg (1968).

Consider first the behavior at § = 0. We assume that A(6) varies smoothly
with 4, in the sense that there exist diffeomorphisms 7, that map A = A(0) onto
A(6) and JA onto dA(6), such that the mixed partial derivatives (d%/dx 36)T,x
exist and are continuous. The map T, should be the identity map. We also
assume that each A(#) has an almost regular boundary, as defined in Section
10.7 of Loomis and Sternberg (1968).

To begin with, assume f has compact support, to eliminate all problems with
convergence of integrals. Let A(x, ) denote the matrix (d/dx)T,x. Then, by the
change of variables formula,

(5.1) A8) = f{x € A} f(Tyx)|det J(x, 0)]| dx.
Write W,(x, 8) for the matrix dA/d6,. Then

Alx,0) =1+ ZB,»Wi(x,O) + o(|9)

and

det A(x,60) = det I + 6, trace(W,(x,0)) + o(4])

32
=1+ i,zaaim(Tox)a - + O(|0|)
Together with the expansion
af a(Tvﬂx)m
= "+
(M) 1) + Doz =5072 |+ o),

this gives

d
f(T,x)|det A(x, 8)| = f(x) + Zﬂi div(f(x)ﬁTgx + o(|6)).

=0
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Taking derivatives inside the integral in (5.1), then invoking the divergence
theorem we get

aA d
(5.2) # = [{x e 04} (x)n(x,0) 5 Tox|  do,

J 6=0

where n(-,0) denotes the outward pointing unit vector normal to dA and ¢,
denotes surface measure on dA.

To derive the expression for the derivative at a general § near 0, replace A by
A(8) and consider the transformations S; = T, zT, '. The surface integral is
then taken over d A(#) with respect to the surface measure g,. Since T, maps JA
onto dA(#), the integral can be carried back to dA:

EDN 0Tyx
(5.3) =5 = [ € 04} (Tx)n(Tyx, 0) — 2= pu(Tox) doy,

where p,(T,x) denotes the density of g, with respect to the image measure 0,7} *
and n(-, #) denotes the outward pointing unit vector normal to JA(8).

Formula (5.3) can be extended to f without compact support, by expressing f
as a limit of a sequence {f;} of smooth functions with compact support, then
taking the limit of the integrals obtained by substituting f; for f in (5.3).
Provided the limiting integral exists and the convergence is uniform in a
neighborhood of 6, formula (5.3) still holds.

A similar differentiation argument, starting from (5.3), could be made to
derive second derivatives. This would lead to formulae analogous to those of
Baddeley (1977). We will leave the details to those more skilled in differential
geometry than we are; we will argue directly from (5.3) when we need to
calculate second derivatives in Section 6.

6. Applications. The examples in this section illustrate the application of
the main theorem and other results from Section 4. We have not striven to find
the most general conditions under which the estimators follow cube root asymp-
totics; we are content with conditions that are satisfied in at least one nontrivial
case. Our aim is to suggest the sort of problem where cube root asymptotics
might be expected.

Not all the examples fit neatly into the framework of our main theorem. In
particular, analyses of the shorth (Example 6.1) and Rousseeuw’s least median of
squares (Example 6.3) show how problems of constrained optimization can be
converted into simpler maximization problems by means of stochastic equiconti-
nuity arguments for multiparameter processes.

6.1. EXAMPLE. Suppose independent observations are sampled from a distri-
bution P on the real line. The shorth estimator S, is defined as the average over
the shortest interval [u, — r,, p, + 7,] containing at least 3n of the first n
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observations. More formally, we define p,, and 7, by

r, inf{r: sup P [p—r,p+r]= é},
uw

., = a value at which sup P,[u — r,, p + r,,] is achieved.
M

Then we can put
S,=2Px{p,—r,<x<p,+r,}.

We assume the corresponding constrained maximization for P has a unique
solution p,, ry. That is, [p, — 7y, o + 75] is the unique shortest interval with P
measure at least ;. We also assume that P has a bounded density p, which is
strictly positive at p, + r,, and that p is differentiable at those endpoints with
P'(po — 1) — p'(pg + 1y) > 0. [The maximization property forces p to take the
same value at p, + r, and prevents the difference in the derivatives from being
strictly negative. This will follow from a Taylor expansion, which we will present
later.] Existence of a density ensures that P[p, — r,, po + 1] = 3.

With these assumptions we will show that r, = r, + O,(n"'/?) and that
n'/3(u, — p,) has a limiting distribution expressible as a functional of two-sided
Brownian motion with quadratic drift. It will turn out that the variability in 7,
can be ignored: p, comes close to maximizing P,[p — 1y, p + ry], which allows us
to apply the main theorem. A simple argument (8-method) will then show that
S, is asymptotically equivalent to a linear function of p,, from which the limit
theory for S, will follow immediately.

For notational convenience, let us assume that p, = 0 and r, = 1. We prove
first that 7, = 1 + O,(n"'/?). Because the class of all intervals is a VC class of
sets (and hence is manageable for the constant envelope 1),

sup |P,,[u —r,u+ r] - P[p —r,p+ "]l = Op(n—1/2).
n, r

Denote this supremum by A,. The assumptions about the density ensure exis-
tence of a positive constant x such that

sup P[p—1+8,p+1-8]<i—-«é
M

for each small enough positive 8. Consequently
sup Plp— 1+ A /k,p+1—A/k] <A, +1—kA,/k=1
"

This inequality forces r, > 1 — A, /k. Similarly there is another positive con-
stant A such that

P[-1-8,1+8]=>L+28
for all small enough positive §. Consequently
P[-1-A/AN1+A,/A]>-A,+1+AA,/A=1
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which forces r, <1+ A,/\. The upper and lower bounds on r, impose the
desired Op(n‘l/ %) rate of convergence. Further refinement of the argument
would lead to a central limit theorem for Vn (r, — 1); the analogous refinement
for the a-shorth would lead to a simple proof for the functional limit theorem of
Griuibel (1988).

The O,(n~'/?) rate of convergence for p, requires more delicate handling.

Mere consistency follows from the facts:
(i) p,, maximizes P,[p — 71, pn + r,].
(ii) p = 0 uniquely maximizes the continuous function P[p — 1, pu + 1].
(i) sup,|P,[p — 1 p + 1,] — P[p — 1, p + 1]] - 0 in probability.
The local behavior of a two-parameter process controls the rate of convergence.

Write 6 for the pair p,8 and define g(-,8) = g(-,pn,8) as a difference of
indicator functions:

glx,p,8)={p—-1-0<x<p+1+8 —{-1-8<x<1+8§}.
Let ¢ denote the class of all such g(-, §) functions. By definition, the estimator
1, maximizes P, g(-, u, r, — 1). A Taylor expansion around § = 0 gives
Pg(-,p,8) = —jcip® + cuud + o(p?) + 0(8%),

where ¢, = —p’(1) + p’(—1) and ¢, = p’(1) + p’(—1). The coefficient p(1) —
p(—1) of the linear term in p must vanish because Pg(-, p,0) is maximized at
p = 0. One of our initial assumptions was that ¢, > 0.

The class ¥ has VC subgraphs. For § near zero, |g(+, #)| is bounded by the
sum of the indicator functions of [—1 — |0], — 1 + |8|] and [1 — |8},1 + |8|]. For
R near zero, the envelope Gy is an indicator function of two interval of total
length 4R; boundedness of the density ensures that PG2 = O(R). The condi-
tions of Lemma 4.1 are satisfied. It gives a uniform (for § near 0) bound for each
fixed ¢ > 0:

Pg(-,pn,8) <Pg(-,p,8)+e(p®+8%) + 0,(n2?)
< — (%, — e — o(1))p® + copd + (e + 0(1))8% + O,(n~¥?).
Choosing ¢ = jc,, we deduce from the comparison
0="Pg(-,0,r,—1) < Bg(-, pp 1, — 1)
that
0< —(fer = o()), + Op(n /)iyl + Op(n~7).

By completing the square in |p,| we conclude that p, = O (n™"/?).

Now we can show that u, comes close to maximizing P,[p — 1, u + 1]. For 6,
and @, near zero, |g(-, 8,) — g(-, 0,)| is bounded by the indicator function of two

intervals with total length less than 4|8, — 6,|. The conditions of Lemma 4.6 are
satisfied; the process

X,(a,B) =n¥¥P,— P)g(:,an 3, pn"13)

satisfies a stochastic equicontinuity condition of the type required by Theorem
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2.3. Since n'/3(r, — 1) = 0,(1), this implies that, uniformly over p in an O (n~'/?)
neighborhood of zero,

Xn(n1/3nu" nl/g(rn - 1)) - Xn(n1/3l“”0) = Op(l)‘
That is,
Png(',[l., T — 1) = Png(,}l.,()) + Pg(y.u" r, — 1) - Pg(’,l',o) + Op(n_2/3)a

uniformly over an O,(n~'/?) neighborhood. Within such a neighborhood, the
leading — ic,p? terms cancel from the Taylor expansions for the two expected
values with respect to P, leaving terms of order o,(n~?/®). Suppose m, maxi-
mizes P,g(-, 1,0). An analysis similar to the one for p, shows that m, =
O,(n~'/%). Consequently,

P,,g(~,un,0) = Png(.’uu‘n, r, — 1) - Op(n72/3)
2 Png(" m,,r, — 1) - Op(n_2/3)

= ng(" mn’O) - Op(n_2/3)'
That is,

P&(-, 1,,0) = sup Pog(-, ,0) — 0,(n"2).
®

To find the limit distributions for n'/3%u,, we have only to apply the main
theorem for the one-parameter class of functions {g(-, p,0): p € R}.
For fixed s and ¢, it is a matter of elementary calculus to show that

lim aP|g(-,s/a,0) — g(-,t/a,0)* = 2p(1)|s — ¢|.
Using the identity 2xy = x? + y2 — (x — y)? we deduce that
Tim aPa(-,5/a,0)8(-, /2,0 = p(1)(s| + I ~ Is ~ 1).

That is, the covariance kernel H for the limit distribution is a multiple of the
covariance kernel min(|s|, [t|) = 3(|s| + |¢| — |s — ¢|) for a two-sided Brownian
motion B. The first part of the main theorem gives

n*?P.g(-,tn"13,0) ~» —Lct® + y2p(1) B(¢),

where ¢, = —p’(1) + p'(—1). It is easy to check that the limit process has
nondegenerate increments. The second part of the main theorem gives

nt3u, ~ argmax[— let? 4+ 2p(1) B(t)].
t

Derivation of the limit distribution for n'/3S, follows a well-known path.
Define

h(x,p,r)=x{p—r<x<p+r}.
With p and r ranging over a bounded region, the functions A(-, u, r) form a VC
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subgraph class with a bounded envelope. From Corollary 3.2,
sup{|PA(-,p,7) = Ph(-, p, 7)|: [l < 1,|r| < 2} = 0,(n"1%).
From a Taylor expansion,
Ph(-,p,r)=Ph(-,0,1) + 2p(1)p + o(p) + o(r — 1).
Since p, = O,(n"**) and r, = 1 + O, (n~'/?), it follows that
S.=2Ph(-, g, 1)
= 2Ph(-,0,1) + 4p(L)p, + o,(n"17?).

Hence
n*/3(S, — 2Ph(-,0,1)) ~ 4p(1) argmax[—%clt2 +y2p(1) B(t)].
¢

A change of scale shows that this coincides with the limit distribution found by
Andrews et al. (1972), as corrected by Shorack and Wellner (1986).

6.2. EXAMPLE. Let K be a compact, convex subset of R¢, for which the class
of all translates is a VC class. For example, K might be chosen as a closed
rectangle or a closed ball or even something unusual like a closed hexagon. Write
k(-) for the indicator function of K and define

g(x,0) =k(x—0) — k(x).

Let 9n maximize P,g(-,0). This is a fixed diameter analogue of an estimator
suggested by Pyke (1984).

The classes %, = {g(+,0): |0] < R} are uniformly manageable (difference of
functions with VC subgraphs) for their envelopes Gg. Since Gy, is less than the
indicator function of the set of all points no further than R from the boundary
of K, it is supported by a set with Lebesgue measure decreasing at the rate
O(R). Let P be a distribution on R? for which I'() = Pg(-, #) is maximized at
6 = 0. If P has a bounded density p(-) on R? the key condition PG} = O(R) is
satisfied.

If we also assume that p(-) is continuously differentiable with derivative p
and that K has an almost regular boundary in the sense of Section 10.7 of
Loomis and Sternberg (1968), then the arguments of Section 5 may be applied to
calculate the second derivative of T'. The map 7} is a simple translation by 6; the
normal n(x) = n(x + 6, 8) to the surface does not change with 6; the density p,
is identically 1. Because K is compact, we can substitute in (5.3) to get

d d
3511(0) ﬁfk(x —0)p(x)dx

f{x € 0K }p(x + 0)n(x) do,.
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Differentiation with respect to 8 then gives

—V= f{x € 9K }p(x)n(x) do,.

For example, if K is a ball of radius r, centered at 0 and if p(-) is radially
symmetric with p(x) = B(—|x|?), then

V= CyrsB( ""02)Id’
where C, denotes d~! times the surface area of the unit sphere in R At least

for nontrivial, radially symmetric densities V is positive definite.
Both conditions (v) and (viii) of the main theorem follow from the limit result:

lim aP|k(x = s/a) = k(x = t/a)| = f{x € 0K }|n(x)(s — t)|p(x) do,.

Call this limit L(s — t). Uniformity of the convergence over bounded s and ¢
gives (vii). The form of the covariance kernel H follows from

2aPg(-,s/a)g(-,t/a) = aPk(x — s/a) — k(x)[* + aP|k(x — t/a) — k(x)[’
— aP|k(x — s/a) — k(x — t/a) |’
- L(s) + L(t) — L(s — t).
The condition H(s, s) — 2H(s, t) + H(t, t) # 0 for s # ¢ needed for Lemma 2.6

reduces to the requirement L(u) # 0 for u # 0, which is satisfied provided
p(x) # 0 for o,-almost all points around the boundary of K.

6.3. ExaMPLE. Suppose y; = x!8, + u;, where 8, is an unknown vector in R¢
and the pairs (x,, u;) are independently sampled from a probability distribution
P on R?*!. Rousseeuw (1984) defined the least median of squares estimator f3,
to minimize

median, _,|y; — x/B|*.

This can be recast as a problem of constrained optimization similar to that of the
shorth. Let us reparametrize by putting 8 = B, + 6. Define

f(x,u,0,r)={x0 —r<u<x6+r}.
If r, is the smallest value of r for which

Sllanf(‘,' ,0,7‘)2 %’
0 .

then 6, =B, — B, is a value at which the supremum of P, f(-,-,0,r,) is
achieved.

For the special case of a one-dimensional location parameter, Rousseeuw
(1984) argued by analogy with the heuristics of Andrews et al. (1972) for the
shorth, to suggest an O,(n™"/ %) rate of convergence for 8,. We will apply the
results from Section 4 to provide another analysis. Because our arguments are
analogous to those used in Example 6.1 for the shorth, we will omit some details,
stressing only the extra complications caused by the regression structure. Davies
(1989) has recently extended our methods to cover deterministic {x;}.
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For simplicity we assume the following conditions. They could be relaxed
slightly.
(i) x; and u; are independent.
(ii) x; has a finite second moment and @ = Px_ x! is positive definite; the
distribution of x; puts zero mass on each hyperplane.

(iii) #; has a bounded, symmetric density y that decreases away from its
mode at zero; it has a strictly negative derivative at r,, the unique median of |u|.

Let us assume that the r, in (iii) equals 1.
We denote the distribution function of «; by T'. Thus

Pf(-,-,0,r)=P(T'(x0+r)—T(x'0—r)).

This is a continuous function of # and r, which is maximized by § = 0 for each
fixed r:

s1;p Pf(-,-,0,r)=T(r) = T(-r).

It follows that there are positive constants xk and A for which

sup Pf(-,-,0,1 —-8) <L —«é
9

and
Pf(-,-,0,14+8)>1+2A8

for each small enough positive 8. The function f(-, -, 8, r) is the indicator of the
intersection of two closed half spaces in R?*!. The class of all such sets is a VC
class and hence is manageable. Corollary 3.2 gives

Sup|P,,f(-,- ,0, r) - Pf(y ’ayr)l = Op(n_1/2)'
o, r

As for the r, in Example 6.1, these facts imply that r, =1 + §, with §, =
O,(n~1?%).

Convergence in probability of 6, to zero can also be established by an
argument similar to that for the u, of Example 6.1.

Define g(x,u,0,8) = f(x,u,0,1 +8) — f(x,u,0,1 + 8§). The class ¢ of all
such functions has VC subgraphs; its subclasses 45 are uniformly manageable.
The envelope G is bounded by a sum of indicator functions,

{-kKIR-1-R<u<|x|R-1+R}
+{-x|IR+1-R<u<|x|R+1+ R}.
Since u has a bounded density and Plx| < co, it follows that PG = O(R), as
required. For 6 and & near 0, a Taylor expansion gives
Pg(-,-,6,8) = 7(1)0°Q8 + o(18°) + o(8?),

where y(1) denotes the derivative of the density y at 1. Lemma 4.1, applied to
the pair 6, 6 instead of to just 6, now implies that 6, = O,(n"'/?), as in the
shorth example.
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With a bounding argument similar to the one for the envelope we can show
that

Plg(" : ’01’81) _g(" : ’02’82)| = 0(|01 - 02' + |81 - 82')'

Lemma 4.6 then supplies us with the stochastic equicontinuity needed to prove
that 6, comes within o,(n~??) of maximizing P,g(, -, 8,0).
To find the limiting covariance function H, we first evaluate

lim aPlg(’ : ,s/a,O) _g(’ ) t/a’O)l

Let & tend to zero more slowly than a~/2 Then aP{|x| > ae} — 0, so we may
ignore those contributions where either |x’s/a| or |x't/a| is large, and express
the limit as

lim «P[|T(1 + x’s/a) — T(1 + x't/a)]
a— o0

+|T(=1 + x's/a) = T(=1 + x't/a)|] = 2y(1)P|x'(s — t)|.
Denote the limit by L(s — t). Then, as in Example 6.2,
H(s,t) = 3(L(s) + L(¢) — L(s — t)).

The limiting Gaussian process has nondegenerate increments provided L(s) # 0
for s # 0; assumption (ii) ensures that this is so.

The main theorem now identifies the limit distribution of n'/3(8, — B8,) with
the arg max of the Gaussian process

Z(0) = 7(1)6'Q0 + W(0),

where W has zero means, covariance kernel H and continuous sample paths.

6.4. ExaMPLE. Consider the regression model y; = x/8, + u;, with the pairs
(x;, u;) distributed independently according to a distribution P on R?*!, Manski
(1975, 1985) introduced and studied the maximum score estimator, B,, defined
by maximization of the sum of indicator functions

IP

({720,220} + {y5,<0, x/8<0}].

=1

As B, is determined only up to scalar multiples, we will assume that it is
standardized to unit length. Similarly, we may rescale the regression equation to
ensure that B, is also a unit vector. The parameter space may be identified with
the surface S of the unit sphere in R?.

We will assume initially that x; has a continuously differentiable density p(-)
and that the angular component of x;, considered as a random element of S, has
a bounded, continuous density with respect to surface measure on S. Further
assumptions will be added during the analysis.

Define ¢ as the class of functions of the form

g(x,u, B) = h(x,u)[{x'B 2 0} — {x'B, = 0}],
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where
h(x,u) = {u+x'B,>0} — {u+ x'B, <0}.

The subgraphs of functions in ¢ form a VC class; the ¢, satisfy the required
uniform manageability condition.

Write P, for the empirical measure constructed from the (x;, u;) pairs. A little
algebra shows that B, also maximizes P,g(:, -, 8). The corresponding popula-
tion quantity Pg(-, -, B) is maximized at 8, if Manski’s assumption,

median(u|x) =0,

is satisfied. For under that assumption the conditional expectation k(x) =
P[ h(x, u)|x] is nonnegative if x’8, > 0 and nonpositive if x’8, < 0, which im-
plies that

Ple(x)({x'B=0>x'B)} — {x'By = 0> x'B})]

is everywhere less than or equal to zero, with equality when B = B,. Manski
(1985) gave conditions under which the maximizing value is unique. He combined
these with uniform laws of large numbers to deduce consistency of 8,. We will
therefore assume that 8, converges in probability to §,.

Calculations with envelopes are straightforward because

|g(x,u, B)| = {x'B=0>xBp} + {x'By > 0>xB}.

The envelope Gy is bounded by an indicator function of a pair of multidimen-
sional wedge-shaped regions, each subtending an angle of order O(R). [More
precisely, these regions intersect S in sets having surface measure of order
O(R).] From our assumption about the angular component of x we deduce that
PG% = O(R). A similar argument shows that

Plg(a’Bl)_g(”B2)|=O(|B1_B2|) nearBO.

We apply the formula (5.3) to find the derivative of the function I'(8) =
Pg(-, -, B) for B near B,. To avoid analytic complications let us assume to begin
with that the density p has compact support and that the function x is
continuously differentiable. The transformation

Ty = (I—|BI7BB')(I — BoBg) + IBI7'BBS

maps the region A = {x'8, > 0} onto A(B) = {x'8 = 0}, taking JA onto JA(B).
Initially we must allow 8 to range over a neighborhood of 8, in R? and not just
over a neighborhood in S—otherwise the formulae from Section 5 will not be
valid. The surface measure oz on dA(8) has the constant density ps(x) = B'8,/|8|
with respect to the image of the surface measure o = o5 under Tj. The outward
pointing normal to A(B) is the standardized vector —,B /|B| and along JA the
derivative (d/38)Tpx reduces to —|B|~ 2[Bx’ + (B’x)I]. Thus

d
75 (BY = IBI"B'Bo(1 + 181%88") [ (xBo = 0}(Tyx) p (T )x do.
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Because Ty x = x and x(x) = 0 along {xB, = 0}, the only nonvanishing con-
tributions to the second derivative come from
Tox)| = —(k(x)By)x".

B=Bg

a
a8
Thus
2
R
In the special case when u is independent of x and u has a continuous density 1,
the derivative £(x) equals 2¢/(x’B,)B, and the last integral reduces to

D(Bo) = = [ (x'8y = 0} (&(x)By)p(x)xx"do.

~29/(0) [ {x'B, = 0}p(x)xx’ do.

Of course this matrix is singular, because the function I is constant along rays
emanating from the origin. However, for variation around B, within the mani-
fold S, minor regularity assumptions will ensure nonsingularity. For example, it
would suffice to have

o{x: x'By = 0and (k(x)B,)p(x) > 0} > 0.

In order to calculate the limiting covariance kernel it is helpful if we introduce
local coordinates for S. Define

B(O) =y1l- |'9|2,80 + 0,

where 6 is orthogonal to B, and ranges over a neighborhood of the origin.
Decompose x similarly, into rB, + z, with z orthogonal to 8,. Then

aPlg(-,,B(s/a)) - &(-, -, B(t/a))[’
- aP‘{r\/l —Is/al® + 2's/a 2 0) = (1= |t/af +2t/a > 0}[.

With a change of variable, w = ar, the last expression splits into a sum of two
terms like

ff{ —2't(1 - |t/o:|2)_]‘/2 >w> —2z's(1 - |s/a|2)_1/2}p(w/a,z) dwdz.

Integrate over w, then let « - oo to get

flz’(s - t)|p(0, 2) dz

as the limit of the sum of the two terms. Write L(s — ¢) for this integral. As in
Example 6.2, the limiting covariance can now be written as

H(s,t) = X(L(s) + L(¢t) — L(s — t)).
The condition for nondegeneracy is that L(s) # 0 for s # 0.
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The final limit theorem for B, is best expressed in terms of the local
reparametrization 8, = B(6,). Provided the quadratic form

Q(8) = [{x'By =0} (i(x)By)p(x)(6'x)’ do
does not vanish for nonzero 6§ orthogonal to 8, and provided L(s) # 0 for s # 0,
n'/39, ~ argmax|[—Q(8) + W(0)],
0

where the arg max is taken over 8 orthogonal to 8, and W is a centered Gaussian
process with continuous paths and covariance kernel H.

One could relax the assumption that p has compact support to an assumption
that p(x) — 0 rapidly enough as |x| = . We leave to the reader formulation of
suitable conditions that justify the passage to the limit (for p approximated by
densities p, with compact support) needed to derive the expressions for @ and L.

6.5. EXAMPLE. Let P be a distribution on [0, c0) having a decreasing density
function f. The corresponding distribution function F is therefore concave. Let
F, be the empirical distribution function constructed from a sample of n
1ndependent observations on P. The nonparametric maximum likelihood estima-

tor f of f, which maximizes a pseudo likelihood over all decreasing densities, is
given by the left derivative of the concave majorant of F, (= the smallest
concave function on [0, o0) that is everywhere greater than or equal to F,).

Prakasa Rao (1969) established a limit theorem for n'/%( f(x) — f(x)). After
rescaling, the limit distribution at a fixed x was given by the slope at the origin
for the concave majorant of Brownian motion with quadratic drift. Apart from a
scale factor, this is the same as the distribution of the arg max for the same limit
process. Groeneboom (1989) sketched a simpler proof of the theorem, based on an
Hungarian strong approximation argument. We will show that the theorem also
follows from our limit theorems.

The behavior of A, = n'/3(f(x,) — f(x,)) at a fixed x, > 0 is determined by
the process

Z"(t) = n'2/3[Fn(x0 + tn;l/3) - Fn(xo) - f(xo)tngl/:;].

If f is differentiable at x,, an application of Theorem 4.7 to the class of
functions

8(y,8) ={y<x+0) — {y=<x} —f(x,)8

would show that {Z,} converges in distribution to a process
Z(t) = 3¢°f (xo) + i (xo) B(2),

with B a two-sided Brownian motion. The standardized difference A, equals the
left derivative at ¢ = 0 of the concave majorant C, of Z,. (Notice that Z, and C,
are only defined for ¢t > —n'/3x,, but that does not matter for the metric p for
uniform convergence on compacta.) If f(xO) < 0, it might seem that C, should
converge in distribution to the concave majorant C for Z. The results of
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Groeneboom (1989) not only imply that C has a two-sided derivative at ¢ = 0,
with probability 1, but also give the distribution of the derivative. [See also the
related results of Daniels and Skyrme (1985).] It would seem that A, should
converge to that distribution.

A rigorous proof for the convergence in distribution of {A,} involves a little
more than an application of a continuous mapping theorem. The convergence
Z, ~ Z is only in the sense of the metric p. A concave majorant near the origin
might be determined by values of the process a long way from the origin; the
convergence Z, ~> Z by itself does not imply the convergence C, ~ C. We need
to show that C, is determined by values of Z, for ¢ in an O,(1) neighborhood of
the origin. That was the point of Prakasa Rao’s (1969) difficult Lemma 4.1,
which may be reexpressed as follows:

ASSERTION. Given a finite interval [t,, s,], there exist random variables
{r,} and {o,} of order O,1) such that 7, < t, and s, < o,, and C, agrees

throughout [t,, s,] with the concave majorant of Z, calculated over the interval
[Tn’ On]'

With this result the proof that A, ~> derivative of C at the origin may be
carried out along the lines of Theorem 2.7, supplemented by a continuity
argument for the left derivatives of concave functions. [The proof would
even give convergence in distribution of processes n'/3(f(x,+ tn=/3) —
f(x, + tn™1/?)) in the sense of a Skorohod-M, convergence on compacta.]

Under the assumption that the derivative f is continuous and strictly nega-
tive at x,, we will establish the assertion by means of a small variation on our
Lemma 4.1. For the part about the agreement of the concave majorants, it is
enough to construct 7, and ¢, so that C (7,) = Z,(r,) and C,(0,) = Z,(0,). [The
concave majorant C* calculated for the interval [7,, 0,] must certainly be less
than C, on that interval. Linear extension of C* outside the interval gives a
concave function everywhere greater than Z, and hence C}* must be greater
than C, on the interval.] We will give the argument only for 7,; the argument for
g, is analogous.

Define x, = x, + t,n ™'/ and let K, denote the concave majorant of F,. The
line through (x,, K ,(x,)) with slope f,(x,) must lie above F,, touching it at two
points: x, — L, and x, + R,, with L, > 0 and R, > 0; the line segment from
(x,—-L,, F(x,— L)) to (x, + R,, F(x, + R,)) makes up part of K,. It will
suffice if we show that L, = O,(n~'/%). The argument depends on the inequality

K, (x,) + fu(x,)B = F,(x, + B) forall B,
with equality at B = —L, and B = R,,. It follows that the function
T(B) = F(x, + B) = F(x,) — Bf,(x,)

achieves its maximum at 8 = —L, and 8 = R,,.
A simple argument based on the uniform convergence of F, to F—compare
with Theorem 7.1.2 of Prakasa Rao (1983)—will show that each of L,, R, and

1
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the centered estimate vy, = fn(xn) — f(x,) is of order o,(1). That lets us argue
locally. Define functions

8.5 B8)={y<x,+B} - {y=<x,} —f(x,)8.

It is easy to check that the uniform manageability properties and the moment
bound on the envelopes required for Lemma 4.1 hold uniformly in n, for 8 in a
neighborhood of zero. The same argument as in the proof of that lemma gives,
for each ¢ > 0,

angn('r :B) - Pgn(" :B)l =< 8182 + Op(n_2/3)
uniformly over a neighborhood of zero. From the Taylor expansion
Pg,(-,B) = 387f (x,) + o(B?),
we deduce that

IT.(B) + By, — 3B (x,)| < eB* + o( B?) + O,(n"%3)

uniformly for 8 near zero. Because f'(xn) < 0, there exist positive constants c¢;
and ¢, such that, with probability tending to 1 for 8 in a small enough
neighborhood of zero,

—30B% = BY, — O,(n7%?) < T,(B) < —3e18% — By, + Op(n 7).

The quadratic — ic,82 — By, has its maximum of y2/c, at —v,/c, and takes
negative values for those 8 with the same sign as y,. It follows that, with
probability tending to 1,

max I,(8) = min(I,(~L,), T,(R,)) < 0,(n*").

We also have
mex [(B) = T(=v./¢3) = 3v2/c; = O,(n7%?).

These two bounds imply that v, = O,(n~'/%). With this rate of convergence for
{v,} we can now deduce from the inequalities

0 = I1n(0) < I‘n(—Ln) < - %cl(Ln - ‘Yn/cl)2 + %Yr?/cl + Op(n72/3)
that L, = O,(n~'/?), as required.

REFERENCES

AMEMIYA, T. (1985). Advanced Econometrics. Harvard Univ. Press, Cambridge, Mass.
ANDREWS, D. F., BIcKEL, P. J., HaMPEL, F. R., HUBER, P. J., RoceErs, W. H. and TUKEY, J. W.
(1972). Robust Estimates of Location. Princeton Univ. Press, Princeton, N.J.
BADDELEY, A. (1977). Integrals on a moving manifold and geometrical probability. Adv. in Appl.
Probab. 9 588-603.

CHERNOFF, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 31-41. ‘

DanIELs, H. E. and SKYRME, T. H. R. (1985). The maximum of a random walk whose mean path
has a maximum. Adv. in Appl. Probab. 17 85-99.

DAVIES, L. (1989). The asymptotics of S-estimators in the linear regression model. Ann. Statist. To
appear.



CUBE ROOT ASYMPTOTICS 219

DuDLEY, R. M. (1985). An Extended Wichura Theorem, Definitions of Donsker Classes, and
Weighted Empirical Distributions. Lecture Notes in Math. 1153 141-178.

DUDLEY, R. M. (1987). Universal Donsker classes and metric entropy. Ann. Probab. 15 1306-1326.

Eppy, W. F. (1980). Optimal kernel estimators of the mode. Ann. Statist. 8 870-882.

EppYy, W. F. (1982). The asymptotic distribution of kernel estimators of the mode. Z. Wahrsch.
Verw. Gebiete 59 279-290.

GROENEBOOM, P. (1985). Estimating a monotone density. In Proc. Berkeley Conf. in Honor of
Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen, eds.) II 539-555.
Wadsworth, Belmont, Calif.

GROENEBOOM, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab.
Theory Rel. Fields. 81 79-110.

GRUBEL, R. (1988). The length of the shorth. Ann. Statist. 16 619-628.

JAIN, N. C. and MaRrcus, M. B. (1978). Continuity of sub-gaussian processes. In Probability in
Banach Spaces. Advances in Probability 4 81-196. Dekker, New York.

KiM, J. (1988). An asymptotic theory for optimization estimators with non-standard rates of
convergence. Ph.D. thesis, Yale Univ.

Loowmis, L. H. and STERNBERG, S. (1968). Advanced Calculus. Addison-Wesley, Reading, Mass.

Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice.
J. Econometrics 3 205-228.

Manski, C. F. (1985). Semiparametric analysis of discrete response: Asymptotic properties of the
maximum score estimator. J. Econometrics 27 313-333.

MaRcus, M. B. and PISIER, G. (1981). Random Fourier Series with Applications to Harmonic
Analysis. Princeton Univ., Princeton, N.J.

PE1, G. (1980). Asymptotic distributions of M-estimators in non-standard cases. Ph.D. thesis,
Carnegie-Mellon Univ.

PISIER, G. (1984). Remarques sur les classes de Vapnik—Cervonenkis. Ann. Inst. H. Poincaré Sect.
B 20 287-298.

POLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York.

PoLLARD, D. (1988). Empirical Processes: Theory and Applications. Conference Board of the
Mathematical Sciences, Regional Conference Series in Applied Mathematics, Washington,
D.C. To appear.

PoLLARD, D. (1989). Asymptotics via empirical processes. Statist. Sci. 4 341-366.

PraKASA Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhya Ser. A 31 23-36.

PrAkASA Rao, B. L. S. (1983). Nonparametric Functional Estimation. Academic, Orlando, Fla.

PYKE, R. (1984). Discussion on “Some limit theorems for empirical processes” by Giné and Zinn.
Ann. Probab. 12 996-997.

ROUSSEEUW, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871-880.

SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York.

DEPARTMENT OF STATISTICS

YALE UNIVERSITY

Box 2179 YALE STATION

NEwW HAVEN, CONNECTICUT 06520-2179



