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CONSTRUCTION OF 2™4™ DESIGNS VIA
A GROUPING SCHEME!

By C.F.J. Wu
University of Waterloo

We develop a method for grouping the 2% — 1 factorial effects in a 2-level
factorial design into mutually exclusive sets of the form (s, ¢, st), where st is
the generalized interaction of effects s and ¢. As an application, we construct
‘orthogonal arrays OA(2%, 24", 2) of size 2%, m constraints with 2 levels and n
constraints with 4 levels satisfying m + 3n = 2% — 1, and strength 2. The
maximum number of constraints with 4 levels in the construction cannot be
further improved. In this sense our grouping scheme is optimal. We discuss
the advantages of the present approach over other construction methods.

1. Introduction. In this paper we use a “grouping” method to construct
factorial designs with 2-level and 4-level factors from those with 2-level factors.
Consider a saturated fractional factorial design with N = 2* runs (rows) and
2% — 1 variables (columns). Each variable has two levels denoted by 0 and 1. The
2% — 1 variables can formally be represented as the 2% — 1 factorial effects of k
factors (see Section 2). Since for any two columns of the design, each possible
level combination appears equally often, the design is also called an orthogonal
array OA(N,2V~12) of size N, N — 1 constraints with 2 levels, and strength
two [Rao (1947)]. Take three columns of the form («a, B, af), where the column
af is obtained as the sum (mod2) of the column a and the column B. (In
factorial design, af is called the generalized interaction of effects a and B.)
Replace these three 2-level columns by one 4-level column according to the rule

000 0
001 1 1
1) 101 2
110 3

This 4-level column is orthogonal to the remaining 2-level columns in
OA(N,2V~12) in the sense that each of the eight pairs (i, j), i = 0,1,2,3 and
J = 0,1 in the two columns appears equally often (Addelman, 1962).

More generally, if among the 2% — 1 columns there are n exclusive sets of the
form (a;, B;, @;8,), i = 1,..., n, by applying the previous method of replacement
to each set, 3n 2-level columns in OA(N,2V~!2) are replaced by n 4-level
columns. The resulting design is still saturated and is an orthogonal array
OA(N,2™4™ 2) of size N, m constraints with 2 levels and n constraints with
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4 levels satisfying m + 3n = N — 1, and strength two. The method was em-
ployed by Addelman (1962) to construct many 2™4" designs. By using a general
result of Bose and Bush (1952), he also showed that the upper bound on =, the
number of 4-level columns, is (2% — 1)/3 for even k and (2% — 5)/3 for odd &,
where N = 2% However, he did not give any systematic method for grouping the
2% — 1 effects (columns) or its proper subset into exclusive sets of the form
(a, B, aB). Nor did he show that the previous upper bound on n is attainable
with a proper grouping scheme. The main purpose of this paper is to develop
such a grouping scheme in Section 2. In Section 3 we consider other methods for
constructing OA(N, 2™4",2) and discuss the advantages of the present approach
over the others.

2. Grouping of factorial effects. The 2* — 1 constraints in OA(N, 2V, 2),
N = 2%, can be represented as 1¥:12%2 - .. k*t where x, = 0 or 1 and at least one
x; is 1. In statistical design of experiments, i denotes the main effect of factor i
and i the interaction effect of factors i and j, etc. [Raghavarao (1971)].
Therefore we call these 2% — 1 constraints the 2% — 1 factorial effects (i.e., main
effects and interactions of different orders) of factors 1,2,..., k. We use the
identity I to denote 1% - -- k% with x; = 0 for all i. These 2* — 1 elements and
the identity I form an Abelian group, denoted by B,, of size 2* by the
multiplication rules: for s =1% ... k™ and t =1 ... k%, s-t=1% .. k%,
z; = x; + y; (mod 2).

The group B, has another interpretation. Its 2* elements are the 2% subsets of
a set of size k£ with the empty set being the identity I. For any two subsets s and
t, s-t is their symmetric difference. Our grouping scheme may find other
applications in this context.

The groups B, can be constructed iteratively as follows. Define B, = ( f) and,
for k > 2,

Bk—l
@ B[ g )

where B, , -k consists of the elements of the form w-k, we B,_,. For
example,

1
1
2
12
3
13

23
123

The order in which the factorial effects appear in B, is called the Yates order.

Our grouping scheme works as follows. For & = 2, the three effects (1,2,12)
are already of the form (a, 8, a - B). For & = 3, only three out of seven effects
can be grouped into a set of the form (e, 8, a - B), say, (1,2,12). We then use
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mathematical induction. Given a grouping scheme for By, & > 2, we will find a
grouping scheme for B, ,. From (2), we can write
B,
B, - (k+1)
B, - (k+2)
B, - (E+1)(k+2)

(3) B,y =

It is shown in Theorem 2 that, for %2 > 2, all the elements wy, ..., wy, N =2%
in B, can be expressed as w; = w,;, - W,;), where 7 and 7 are two permuta-
tions of {1,..., N}. Therefore the elements in B, - (k+ 1), B, - (k + 2) and
B, - (k+ 1)k +2) can be grouped into the exclusive sets (Wagiy - (B + 1),
W,y (B+2), w-(k+1)(k+2), i=1,...,N, each of which is of the form
(a, B, a - B). An algorithm for finding the two permutations 7 and  is given in
the proof of Theorem 2.
Theorem 1 summarizes the scheme.

THEOREM 1. (i) For even k > 2, all the 2% — 1 effects can be grouped into
(2% — 1)/3 mutually exclusive sets of the form (o, B, a - B).

(ii) For odd k >3, only (2* — 5) effects can be grouped into (2% — 5)/3
mutually exclusive sets of the form (a, B, a - B).

ProoF. For even k, we can apply the induction step (3) for grouping until
reaching & = 2, thus exhausting all the effects. This proves (i). For odd £, it can
be repeated until reaching 2 = 3. Since in B, only three out of seven effects can
be of the form (a, B, a - B), there are four effects that cannot be included in the
grouping scheme. This proves (ii). O

Results from applying this grouping scheme to B,, k£ = 2 to 5, are given in
Table 1.

TABLE 1
Sets of the form (a, B, & - B) in B, \ {I}

k

2 (1,2,12)

3 (1,2,12)

4 (1,2,12), (3,4, 34), (13,24, 1234), (23, 124, 134), (123, 14, 234)

5 (1,2,12), (4, 5,45), (234, 1235, 145), (1234, 135, 245), (134, 15, 345),

(14,25, 1245), (124, 235, 1345), (24, 35, 2345), (34, 125, 12345)

6 (1,2,12), (3, 4,34), (13,24, 1234), (23,124, 134), (123, 14, 234),
(5,6,56), (15,26, 1256), (125, 16,256), (25, 126, 156), (35, 46, 3456),
(345, 36, 456), (45, 346, 356), (135, 246, 123456), (12345, 136, 2456),
(245, 12346, 1356), (235, 1246, 13456), (1345, 236, 12456),
(1245, 1346, 2356), (1235, 146, 23456), (2345, 1236, 1456),
(145, 2346, 12356)
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THEOREM 2. For any k > 2, there exist two permutations m and T of

{1,..., N}, N = 2% such that w; = w,, - w,;, fori=1to N, where w; are the
N elements of B,

Proor. We prove this by induction. For k = 2, it follows from

I-I=1 I-I=1
1-12=2 1-2=12
(4) or
‘ 2-1=12 2.12=1
12-2=1 12-1=2.
For & = 3, it follows from
I-1=1
1-2=12
2-3=23
12 -23 =13
(5)
3-12=123
13:-1=3
23-123=1
123 - 13 = 2.
For & > 4,
B,_,
B, ,-(k—1
g, | B (k=)
B, ;- k
Bk_z'k(k_l)
By induction, there exist two permutations = and 7 of {1,...,2*72} such that

k

W, = W, " Wy, fori=1,...,2*72 w, e B, ,.

The rest of the elements in B, \ B,_, can be represented by
w;- (k=1) = {w, -k} - {wg - k(k-1)},
w k= {w, k(e =D} {wg - (k- 1)},
w; k(k = 1) = {w,) - (k= 1)} - {wy; - k).
This completes the proof. O

REMARK. 1. Theorem 2 does not hold for k=1 since {177} and

{ : i _ i} This explains why the induction in the proof of Theorem 1 has to stop

at k= 3.
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REMARK. 2. The permutations # and 7 in Theorem 2 are not unique.
Therefore the proposed grouping scheme does not give a unique decomposition of
the factorial effects into sets of the form (a, B, a - B). For example, the grouping
for £ = 4 in Table 1 is based on the = and 7 (for k£ = 2) given by the right
system of (4). If the left system of (4) is used for 7 and 7, the grouping for % = 4
will be (1,2,12), (3,4, 34), (13,124, 234), (23, 14, 1234), (123, 24, 134).

To conclude this section, we give a method of grouping for the case of even &
which does not require the construction of the two permutations = and . Take
k =4.Let a; = (1,2,12) and a, = (3,4, 34) be the two generating sets. Denote
the two cyclic permutations of a, by a2 = (4,34,3) and a3 = (34, 3,4). For two
sets a = (a, B,v) and b = («, B’, ¥’), define their product a * b = (aa’, B8, YY').
Then the 15 effects in B,\ {I} can be grouped into the 5 sets a,, a,,
a, * ay, a, * a3, a, * a3. By induction, for & = 2m, the 2% — 1 effects in B, can be
grouped into I = (2% — 1)/3 mutually exclusive sets of the form (a, 8, a - B),
denoted by c,,...,c,. Let a,,., =(k+ 1,k + 2,(k + 1)(k + 2)). Then the ef-
fects in B, o\ B,={B,-(k+1),B, - (k+2),B, - (k+1)(k+2)) can be
grouped into ¢;*a,, ., ¢;*a% ., c;*ad. ., i=1,...,1, each of which is of the
form (a, B, a - B). The grouping for £ = 6 in Table 1 is constructed from the
grouping for £ = 4 in this fashion. Note that the order in which the sets in B,
appear in this grouping scheme resembles the Yates order for 4™ factorial design,
where 4™ = 2% For k = 6, it is (a,, a,, a,a,, a,a}, a,ad, a,, a,a,, a,a?, a,ad,
aya;, a,a}, axa, aaqay, a,a,a}, a,a,0}, a,a3a,, a,a3a3, a,a3aj, a,aja,
a,aja, a,aja}).

3. Comparison with other construction methods. The grouping scheme
in Section 2 provides a general way of replacing sets of three 2-level columns of
the form (a, 8, aB) by 4-level columns according to (1). The following result is a
direct consequence of Theorem 1.

COROLLARY. The following designs can be constructed by using the grouping
scheme in Section 2:

(i) for even k > 2, OA(2*,2™4"2), m+3n=2F—-1,n=1,...,(2k - 1)/3;
(i) for odd k > 3, OA(2%,2™4™,2), m + 3n =2 -1, n=1,...,(2% - 5)/3.

Another approach is to construct 2™4" designs from 4-level factorial designs.
For example, the orthogonal arrays in Corollary (i) can be obtained by first
constructing OA(2%,4™,2), n, = (2* — 1)/3, and then replacing a 4-level factor
by three 2-level factors as in (1). The orthogonal arrays in Corollary (ii) can be
obtained by suitable replacement from OA(2%,8'4",2), n,= (2% — 5)/3 — 1,
k odd, which Chacko and Dey (1981) constructed by extending a result of
Addelman and Kempthorne (1961).

Although the arrays in the Corollary can be constructed by other methods,
the present approach to construction has some advantages. First, it is elemen-
tary and simple. (On the other hand, the Chacko-Dey construction is based on
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the complicated group-theoretic method of Addelman and Kempthorne). Second,
the replacement method relates each 4-level factor to three factorial effects in a
2-level design. This makes it easier to study the aliasing patterns of main effects
and interactions in the 24" design since they can be easily derived from those of
the 2* design. Knowing the aliasing patterns is crucial to the statistical analysis
of experimental design data. This method of introducing a 4-level factor is
extensively used by Taguchi [see, for example, Taguchi (1986)] in teaching design
techniques to nonstatisticians. Use of the grouping scheme has the additional
advantage that the construction of designs with 2-, 4- and 8-level factors is quite
straightforward. For example, OA(16,2%8,2) is obtained by replacing the seven
2-level factors denoted by (1,2,3,12,13,23,123) in OA(16,2'%,2) by an 8-level
factor. Similarly, we can construct OA(32,4%8,2) from OA(32,24%2) and
0A(32,29"8,2), a + 3n = 24, from OA(32,2™4",2) with n < 8.
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