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A common reaction among applied statisticians is that the Bayesian
statistician’s energies in an applied problem must be directed at the a priori
elicitation of one model specification from which an optimal design and all
inferences follow automatically by applying Bayes’s theorem to calculate
conditional distributions of unknowns given knowns. I feel, however, that the
applied Bayesian statistician’s tool-kit should be more extensive and include
tools that may be usefully labeled frequency calculations. Three types of
Bayesianly justifiable and relevant frequency calculations are presented using
examples to convey their use for the applied statistician.

1. Introduction. My purpose here is to discuss three important uses of
frequency calculations for the applied Bayesian statistician: (1) for understand-
ing, communicating and scientifically validating Bayesian statements, (2) for
examining operating characteristics of Bayesian inferences derived from general
models in order to understand the propriety of those models in a range of possible
contexts, and (3) for monitoring the adequacy of specific models with fixed data
sets. Before discussing these, I describe what I mean by the terms in the title of
this paper, because their uses here may be somewhat idiosyncratic.

1.1 Bayesian inference for the applied statistician. First, consider the expres-
sion “Bayesian inference.” By this I simply mean the method of statistical
inference that draws conclusions by calculating conditional distributions of
unknown quantities given (a) known quantities and (b) model specifications.
Thus, in Bayesian inference, known quantities are treated as observed values of
random variables and unknown quantities are treated as unobserved random
variables; the conditional distribution of unknowns given knowns follows from
applying Bayes’s theorem to the model specifying the joint distribution of known
and unknown quantities.

One important point in this last statement is that the plural form of “specifi-
cations” is intentional. If more than one model is being entertained, then more
than one Bayesian inference is being entertained. For the applied Bayesian
statistician, there is no need to arrive at one Bayesian inference, although such
a goal may often be desirable.
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Another important point for the applied Bayesian statistician concerns what
is meant by “known”. In many practical problems, the number of characteristics
that might be known for analysis is enormous (e.g., addresses, names and family
histories of medical patients). Although some purist Bayesian positions might
assert that every characteristic that is observable at essentially no cost must be
treated as known, the more realistic applied position must be that there are costs
associated with builiding complex models. Consequently “known” refers to values
that are both available and considered worthwhile to include in model specifica-
tions.

Just as several specifications can be entertained by the applied Bayesian
statistician, several definitions of what is known can be considered. Thus, for
example, in a completely randomized experiment, initial analyses might assume
no covariates are known, a second group of analyses might assume a few obviously
relevant covariates are known, and subsequent analyses might assume several
other less important covariates are also known. As more covariates are considered
known, the model specifications become more complicated and more difficult to
formulate, but have the potential payoffs that the inferences will be more precise
and specific to subpopulations defined by the covariates regarded as known.

1.2 Bayesianly justifiable and Bayesianly relevant. A calculation is Bayesianly
justifiable for the applied statistician if it follows the path just described, that is,
if it treats known values as observed values of random variables, treats unknown
values as unobserved random variables, and calculates the conditional distribu-
tion of unknowns given knowns and model specifications using Bayes’s theorem.
The calculation of a confidence level for a particular interval estimate is an
example of a calculation that is not Bayesianly justifiable since it treats the
known values of statistics as unobserved.

A Bayesianly relevant calculation for the applied statistician is one that helps

the process of communicating and validating Bayesian answers, as well as the
process of selecting model specifications upon which to condition. For instance,
standard goodness-of-fit tests for models are Bayesianly relevant under this
definition since they help select models, but they are not, at least as usually
interpreted, Bayesianly justifiable since they treat observed values of statistics
as unknown random variables. We will see later in Section 5, however, that often
such tests, or modifications of them, can be interpreted so as to be Bayesianly
justifiable. Of course, these descriptions of the terms Bayesianly justifiable and
Bayesianly relevant are not mathematically precise definitions. Nonetheless, I
believe that they are useful, and their intended meanings will become clearer in
the context of examples- described later.

1.3 Frequency calculations. By frequency calculations I mean probability
calculations that are given relative frequency, as opposed to utility interpreta-
tions, where the relative frequencies of specified outcomes can be over a set of
actually observable events, over a set of hypothetically observable events, or a
set of unobservable events. For example, the distribution of the number of heads
in twenty new tosses of a coin, having already observed the outcomes of ten
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tosses of the coin, is a frequency calculation whether the twenty tosses are
actually carried out or merely contemplated. Furthermore, such a calculation is
Bayesianly justifiable when the results of the twenty new tosses are unobserved
and the distribution being calculated is conditional on the outcomes of the ten
observed tosses as well as model specifications, e.g., independent, identically
distributed (i.i.d.) Bernoulli trials. Even though the outcomes of the first ten
tosses are observed, frequency calculations could be made concerning the out-
comes of these first ten tosses or about the outcomes of the next twenty tosses
ignoring the fact that the first ten tosses were observed; such frequency calcula-
tions would not be Bayesianly justifiable because they do not fix the first ten
tosses at the observed outcomes.

As with previous descriptions of terms, this description of frequency calcula-
tions is not a precise definition. But again I believe that the term is a useful label
for the collection of techniques I discuss.

1.4 Outline. Section 2 presents several reasons why the applied statistician
should care about Bayesian methods of inference; four examples from my work
are used to illustrate some of the ideas in the section. These examples also should
help the reader understand the more abstract discussion in later sections by
revealing the types of concrete applications of Bayesian statistics I have in mind.
Section 3 describes simple frequency calculations that are useful in practice for
understanding and communicating Bayesian statements, as well as frequency
calculations that calibrate Bayesian statements by tying them to frequencies of
real-world events. Section 4 discusses the use of frequency calculations to examine
the operating characteristics of Bayesian inferences in order to guide the choice
of models on which to base inferences. Section 5 describes the use of posterior
predictive frequency distributions of test statistics to monitor the adequacy of
specific model specifications with fixed data sets. Finally, Section 6 concludes
with a few summary comments.

This paper is rather idiosyncratic in the sense that I rely almost entirely on
examples from my own work to illustrate ideas and make no systematic attempt
to connect my discussion to the vast statistical literature concerning the rela-
tionships among Bayesian, frequency and fiducial ideas. Also, in contrast to
much of this work which describes how inferences should be conducted by
idealized statisticians in an idealized world, I am concerned with activities of
applied statisticians in the real world who are subject to constraints of finite
resources, many problems to examine, and mixed expertise of consumers.

2. Why should the applied statistician care about Bayesian infer-
ence? One reaction not uncommon among applied statisticians is that Bayesian
methods are not really of much practical use; reacting to the emphasis on
subjectivity, these statisticians feel that Bayesian thinking may be relevant to
personal decision making, but that it is largely irrelevant to the public study of
scientific questions. Several reasons why the applied statistician should be
concerned with Bayesian methods are described here.
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2.1 Levels of randomness lead to better answers. Since Bayesian models treat
all unknowns as random variables, Bayesian models formulate distributions for
parameters, and thereby naturally create models with multiple levels of random-
ness. Commonly, the answers that are derived from such models with levels of
randomness are termed empirical Bayesian, but the essential feature here is not
the label attached to the estimators but the Bayesian structure, which treats the
unknown parameters of interest as random variables. The resultant extra flexi-
bility generally leads to better answers by allowing borrowing of strength.

As a specific example, in Rubin (1980) I used a simple Bayesian model to
create improved prediction equations of performance in law school for applicants
at 82 law schools. The parameters of interest were the weights of undergraduate
grade point average (UPGA) across the 82 law schools in equations predicting
FYA (First Year Average) using weighted UGPA plus LSAT (Law School
Aptitude Test). The data consisted of FYA, UGPA and LSAT for three years of
attending students. Three basic methods for estimating the weight u;, i = 1,
..., 82 were considered:

(1) separate estimates for each of the 82 law schools based on least squares
regression of FYA on LSAT and UGPA;

(2) a common estimate obtained by taking a weighted average of the separate
least squares estimates in (1);

(3) Bayes/empirical Bayes estimates obtained by letting u; be i.i.d. N(g,, ¢2),
then estimating u, and o2 by maximum likelihood, and finally estimating the u;
by their posterior expectations given the maximum likelihood estimates of u,
and oZ; for each i, these estimates were between those in (1) and (2).

The results of the study were that, first, the Bayesian estimates predicted
future FYA slightly better than the other methods, and second, the Bayesian
estimates looked reasonable in contrast to the separate estimates, which fluc-
tuated wildly from year to year and across law schools, and the common estimate,
which allowed no variation in multipliers across law schools. Table 1 gives the
multipliers of UGPA for three schools, three years of data, and methods (1) and
(3).

Many other examples of the success of Bayesian methods of estimation exist,
an early extensive one being Mosteller and Wallace (1964). More recent relevant
references include: Lindley and Smith (1972), Novick, Jackson, Thayer, and Cole
(1972), Efron and Morris (1975), Fay and Harriot (1979), Dempster, Rubin, and
Tsutakawa (1981), DuMouchel and Harris (1983), Morris (1983), and Dempster,
Selwyn, and Weeks (1983).

2.2 Bayesian methods can provide straightforward answers in apparently diffi-
cult problems. Modeling parameters not only generally provides better answers
in complicated problems, it also can create simple answers in apparently compli-
cated problems by allowing the pooling of many small pieces of information. A
specific example conveys the essential idea.

Braun, Jones, Rubin, and Thayer (1983) investigated the evidence that pre-
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diction equations for FYA in business school differ for white and black applicants;
that is, perhaps different weightings of UGPA, GMAT-V (Graduate Management
Admission Test-Verbal) and GMAT-Q (Quantitative) would result in more
accurate predictions for the different applicants. This problem is similar in
structure to the law school example in Section 2.2 with the addition of more
predictor variables, and essentially the same algorithm can be used to obtain
Bayes/empirical Bayes estimates. The new feature that makes this study appar-
ently difficult is the paucity of data from which to estimate a prediction equation
for black applicants: of the 59 schools in the study, 14 have no black students
and 20 have between one and three black students. Although unique least squares
equations cannot be estimated for these 20 schools, it is clear that they do provide
some evidence about the relationship between FYA and the predictors, and
Bayesian models can utilize this evidence to create estimated prediction equations
for both whites and blacks in each of the 59 schools. As expected, schools with
few data points have estimates similar to the pooled estimate and have large
standard errors, whereas schools with many data points have estimates closer to
their least squares estimates and have small standard errors. A more detailed
summary of the results in Braun, Jones, Rubin and Thayer (1983) is given in
Rubin (1983a). :

2.3 Users interpret answers Bayesianly. Another reason for the applied stat-
istician to care about Bayesian inference is that consumers of statistical answers,
at least interval estimates, almost uniformly interpret them Bayesianly, that is
as probability statements about the likely values of parameters. Consequently,
the answers statisticians provide to consumers should be capable of being
interpreted as approximate Bayesian statements—that is, statisticians’ summary
statements should be Bayesianly justifiable in the sense defined in Section 1.

A simple example conveys the central idea. Suppose x; ‘id N(u, 1), i = 1,
-+, N. The standard interval estimate for u is based on the statement that

(% — ) ~N(0, 1/VN)

where % is the observed mean X in the sample. Thus the standard 95% interval
for u is

(2.1) % + 2/VN.

This interval is usually constructed and motivated as a 95% confidence interval;
that is, treating X as a random variable with u fixed, interval (2.1) includes x in
95% of possible samples. However, in any applied problem with the observed
value of i inserted in (2.1), the interval is—at least in my experience—nearly
always interpreted Bayesianly, that is, as providing a fixed observed interval in
which the unknown p lies with 95% probability. This is, of course, the only
interpretation of the observed 95% interval that directly addresses the essential
question about u, so it is the interpretation of primary interest to the consumer
of statistical answers. If we as statisticians accept the fact that consumers will
interpret such statements Bayesianly as well as accept the position that it is
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appropriate that consumers of statistics seek such answers, then we have an
obligation to make sure that the answers we provide are Bayesianly justifiable.

2.4 Exposure of scientific uncertainty. In many cases, it will be difficult to
arrive at a unique Bayesianly justifiable answer. That is, we will often discover
that as we consider various plausible model specifications, all consistent with the
observed data, the resulting Bayesian answers change in important ways. Al-
though this sensitivity of inference to model specifications might be seen as a
handicap of Bayesian models, I believe it is a virtue. If we view statistics as a
discipline in the service of science, and science as being an attempt to understand
(i.e., model) the world around us, then the ability to reveal sensitivity of conclu-
sions from fixed data to various model specifications, all of which are scientifically
acceptable, is equivalent to the ability to reveal boundaries of scientific uncer-
tainty. When sharp conclusions are not possible without obtaining more infor-
mation, whether it be more data, new theory, or deeper understanding of existing
data and theory, then it must be scientifically valuable and appropriate to expose
this sensitivity and thereby direct efforts to seek the particular information
needed to sharpen conclusions.

As a specific illustrative example, in Rubin (1983b) I used a Bayesian model
with Box-Cox (1964) transformations to normality to estimate the mean and
median X in a finite population of 804 units from a random sample of 100 units.
Each unit was a municipality in New York state in 1960 and X was its population
(New York City was represented by its five boroughs). Using the Box-Cox
reference prior for the transformation parameter, A, led to relative posterior
probabilities of .0000, .1372, .8628, .0000 for A = 0, —1, —%, —%. Table 2 displays
95% posterior intervals for the population mean and median given A. The
intervals for the median X are insensitive to plausible values of A\ because the
implied middles of the distributions of X are nearly the same for the two values
of . In contrast, the intervals for the mean X are quite sensitive to plausible
values of A\ because the implied right tails of the distributions of X are dramati-
cally different for the values of A. Such behavior is typical because estimation of
the mean requires assumptions about the extreme tails of the distributions, which
observed data can never directly address. Thus this initial Bayesian analysis
revealed the extreme sensitivity of the mean to the value of \. This led to a
reformulated model that incorporated reasonable prior information and exhibited
less sensitivity of the mean to the value of A. In particular, suppose that no
municipality can be larger than 5 million; then the 95% interval estimate for the
mean X based on A = —% is (1.2 X 10%, 4.2 X 10*) rather than the extremely wide
interval displayed in Table 2.

TABLE 2
Conditional (on ) 95% central posterior intervals based on Box-Cox transformation to normality

True Value in Finite

. = =1 =-
Estimand A Z Y Population

Median X (1.3%10% 24 % 10°) (1.4 X 10°, 2.8 X 10%) 1.7 X 10°
Mean X (2.3 %104 1.8 X 10®%) (1.0 X 10%, 2.5 X 10%) 1.7 x 10
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2.5 Computational directness. A final reason why the applied statistician
should care about Bayesian inference is less philosophical than the previous two
and deals with the ability to analyze data in complicated problems. Continuing
advances in computing mean that many analyses previously considered compu-
tationally hopeless even for large computing centers can now be handled quite
easily, even by individuals without access to large mainframe computers. In
particular, many Bayesian analyses for complicated models can be carried out on
a fixed data set relatively simply and straightforwardly using Monte Carlo
methods to simulate posterior distributions. Corresponding frequency-based in-
ferences using equivalently rich models might still be prohibitively expensive
because, in general, under each model and for all values of its parameters being
contemplated, the frequency distribution of statistics would have to be generated
just as if the procedure were being evaluated for all possible values of the
parameters. This task can be substantially more arduous than the Bayesian’s
since the frequentist statistician is being required to simulate the distribution of
data sets not seen for many values of nuisance parameters that may not be
supported by the observed data. In contrast, the Bayesian data analyst fixes the
observed data and calculates the posterior distribution of the unknown quantities
of interest, averaging over nuisance parameters. Of course, the applied statistician
may often wish to consider several models, but for each model the Bayesian
leaves the observed values of data fixed and integrates over nuisance parameters.

As a specific example, in Rubin (1981) I analyzed the results of eight parallel
randomized experiments of the effects of special “coaching” programs, for the
SAT (Scholastic Aptitude Test); Table 3 gives summary statistics. Letting X; be
the estimated effect in school i and V; be its associated squared standard error
(treated as known), a Bayesian model was formulated in which the X; given the
true effects, u;, were N(u;, V;), the u; were iid. N(u,, ¢2), and the prior
distribution on (x,, ¢,) was approximately proportional to a constant with 0 <
0, < 100. The posterior distribution of the u; was analytically complicated but
easily stimulated by approximating the posterior distribution of o, by a step-
function. Table 4 summarizes the results of 200 independent draws from the
posterior distribution of the u;. The results appear to be reasonable and inform-
ative, and moreover were easily obtained.

Some might view the reliance on Monte Carlo methods as defective relative

TABLE 3
Effects of coaching programs on SAT-V scores in eight randomized experiments
School Estimated Standard error of
treatment effect effect estimate

A 28 15

B 8 10

C -3 16

D 7 11

E -1 9

F 1 11

G 18 10

H 12 18
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TABLE 4
Summary of 200 simulated coaching effects of eight schools

95 percent interval

50 percent interval
School
Median
A -2 6 11 17 36
B -6 4 8 12 19
C -10 3 7 11 22
D -7 4 7 13 21
E -9 3 7 11 16
F -8 2 7 11 20
G -1 6 9 14 24
H -3 4 8 13 24

to mathematical analysis, even for the type of applied statistics just described.
On the contrary, I believe that Monte Carlo methods, in a limited sense, can be
superior to mathematical analysis for certain kinds of applied inference. Using
Monte Carlo methods frees the applied statistician to explore a great variety of
models with relative ease, and thus statisticians can pursue the scientific goals
of matching models to data more effectively and with less algebraic digression
than if mathematical analysis were the only tool; if a resultant model is considered
of general interest, then additional mathematical analysis of it may of course be
highly desirable and generate greater understanding of general quantitative
relationships. But having performed a difficult mathematical analysis for a
specific model, there exists an undeniable investment in that work, and conse-
quently I suspect, an undeniable prejudice to use that model repeatedly, even
when it is not truly relevant. Since less investment is needed to fit models by
Monte Carlo than by analysis, there may well be less prejudice towards convenient
yet inappropriate models. Bayesian statistics and Monte Carlo methods are
ideally suited to the task of passing many models over one data set.

3. Frequency calculations useful for understanding and validating
Bayesian statements. The first group of Bayesianly justifiable and relevant
frequency calculations to be discussed involves the interpretation of Bayesian
statements. First, frequency calculations are useful for understanding the manip-
ulations involved in Bayesian analyses, and therefore useful for communicating
Bayesian answers to more naive consumers; the technique presented here de-
scribes these manipulations by use of simulations from hypothetical superpopu-
lations. Second, frequency calculations are useful for making Bayesian statements
scientific, scientific in the sense of capable of being shown wrong by empirical
test; here the technique is the calibration of Bayesian probabilities to the
frequencies of actual events.

3.1 Superpopulation frequency simulations. Suppose the model for data set X
is given by f(X | 6)p(6) where 6 is the parameter whose posterior distribution is
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to be calculated. Of course, the posterior distribution of ¢ given observed X is
calculated via Bayes’s theorem, but how is the conceptual content of this theorem
easily conveyed? Consider the following simple description.

Suppose we first draw equally likely values of 6 from p(@), and label these
61, ---, 0;. The 6;, j =1, ---, s can be thought of as representing the possible
populations that might have generated the observed X. For each §;, we now draw
an X from f(X| 6 = 0); label these X;, - - -, X,. The X; represent possible values
of X; that might have been observed under the full model f(X | 8)p(6). Now some
of the X will look just like the observed X and many will not; of course, subject
to the degree of rounding and the number of possible values of X, s might have
to be very large in order to find generated X; that agree with observed X, but this
creates no problem for our conceptual experiment. Suppose we collect together
all X; that match the observed X, and then all 6; that correspond to these X;.
This collection of 6 represents the values of 0 that could have generated the
observed X; formally, this collection of 6 values represents the posterior distri-
bution of 6. An interval that includes 95% of these values of 6 is a 95% probability
interval for 6 and has the frequency interpretation that under the model, 95% of
populations that could have generated the data are included within the 95%
interval.

3.2 Frequency calibration. In some formal sense, a Bayesian statement, such
as a 95% posterior interval for an unknown, needs no justification since given
the explicitly stated models, the statement follows from the laws of probability
theory. This justification, however, is not very satisfying to the applied statisti-
cian for two related reasons. First, why should the models that are being
conditioned upon be accepted? This issue is addressed in Sections 4 and 5.
Second, what does the stated Bayesian probability, e.g. 95%, mean objectively or
empirically? The question of tying the 95% to real world events is addressed here
via the concept of frequency calibration.

A Bayesian is calibrated if his probability statements have their asserted

coverage in repeated experience. For example, if {I;, I, - - -} represents a series
of 95% Bayes interval estimates for unknowns {6,, 6,, - - -} from known data sets
{Xi, Xz, ---}, then these statements are calibrated if 95% of them cover their

unknowns and 5% do not. A subsequence of {I}, I,, ---} is calibrated if 95% of
those I; in the subsequence cover their unknowns. For an interesting discussion
of this idea, see Dawid (1982). Clearly, it is desirable for a Bayesian to be
calibrated overall and for all subsequences defined by characteristics of the data

sets. ,
If the Bayesian’s models are correct, he will be calibrated overall and in all

such subsequences. That is, if his models are correct Pr(6; € I;| X;) = .95 for all
J» and thus averaging over all data sets

Pr(6; € I)) = .95,
or averaging over all data sets with observed characteristric @ = Q (X)),

Pr(6; € I;| X; satisfies @) = .95.
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Thus, the Bayesian who uses realistic models can be expected to be calibrated
overall and in any collection of cases with common observed characteristics.
Consequently, the probabilities attached to Bayesian statements do have fre-
quency interpretations that tie the statements to verifiable real world events.

We discuss the concept of calibration in more detail in the context of examining
operating characteristics of Bayesian procedures.

4. Examining operating characteristics to select Bayesian models
resulting in calibrated procedures. Many statisticians spend much of their
professional time analyzing actual data; others spend much of their professional
time investigating properties of inferences resulting from models in order to
arrive at selected models that can be recommended for general use. If the world
were such that all data analyses were to be performed only by expert Bayesian
statisticians with (a) a full arsenal of statistical models that can be tuned to any
situation, (b) full knowledge of the substantive area under study, and (c) essen-
tially unlimited resources for each problem, then the need for Bayesian models
for general consumption would not exist. Realistically, however, many data
analyses are done by statistically relatively rather naive consumers of statistical
techniques, or by statisticians with limited knowledge of the substantive area, or
in a context of limited resources. Because of these constraints, a primary goal of
much Bayesian statistical work must be the development and selection of models
that perform well in rather general contexts. Frequency calculations that inves-
tigate the operating characteristics of Bayesian procedures are relevant and
justifiable when investigating or recommending procedures for general consump-
tion.

4.1 Structure. Suppose that the Bayesian statistician’s model is f(X | 6)p(8)
and that under this model, I(X) is a 95% interval for 6; that is,

Joeroo f(X | 60)p(6) db _ 95
Jo f(X]0)p(0) db R

Further suppose that, as is always the case, the statistician’s model f(X | 8)p(6)
is chosen, to some extent, for computational simplicity and convenience, and is
not precisely the model generating the kind of data in the field to which I(X)
will be applied. Suppose instead that in this field of application, data are generated
according to the unknown model g(X|6)q(f). The model g(X|8)q(8) will be
called the correct model; it is the model that the statistician would want to use
to draw inferences because, in a frequency sense, it represents the distribution of
(X, 0) that occurs in the ranges of examples to which the current procedures
based on f(X|60)p(#) will be recommended to be applied. If in this range of
examples, inferences were based on g(X | 6)q(6), then all such inferences would
be calibrated overall and in all subsequences defined by X.
The correct posterior distribution of 6 is

g(X16)q(6)
Jo8(X10)q(8) do
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For given X, the probability coverage of I(X) over this posterior distribution is

_ Joerx) 8(X10)q(0) db
D PeR Jo 8(X0)q(6) df

If g(X|0) = f(X|6) and g(f) = p(f), then PC(X) = .95 for all X. In general,
however, the coverage probability of I(X), PC(X), has a distribution over the
examples to which I(X) will be applied, a distribution defined by g(X| 6)q(6).
For general consumption, it seems wise for the statistician to choose the model
f(X|6)p(0) used to derive I(X) in such a way that the distribution of PC(X) is
tightly concentrated about .95 for a reasonably broad range of plausible
g(X|6)q(6). That is, it is wise to choose f (X | 6)p(8) so that consumers are nearly
calibrated for any subsequence of studies to which I(X) will be applied.

A much weaker requirement is that consumers be- calibrated for the overall
sequence, but not necessarily for every subsequence: E[PC(X)] = .95, where

E[PC(X)] = LPC(X){J;g(XM)q(G) da} dX
or by (4.1)

E[PC(X)] = L ~£€I(X) g(X10)q(0) do dX.

A procedure is conservatively calibrated overall when PC(X) is typically at least

.95, e.g., E[PC(X)] = .95. If I(X) is calibrated overall with f(X | 8) = g(X| 8) for

all g(0), i.e., for all 6, it is a confidence interval for § under f(X|#). This is a

fairly weak statement in the absence of statements about calibration conditional

on characteristics of the data, but it is not an unattractive property to a Bayesian.
Three examples are used to illustrate these ideas.

4.2 Example 1—Simple normal example with noninformative priors. Consider
the standard normal set-up with X = (xy, - -+, xy) where x; 4 N(g, ¢®) i = 1,
..., N defines f(X | 8), 8 = (u, ¢?), and a uniform prior distribution on (g, In ¢%)
defines p(f). Then the interval I(X) for u is essentially the standard 95%
confidence interval for y, x + 2s/N'2,

Suppose g(X|0) = f(X|6) so that the normal specification is not in doubt.
Then E[PC(X)] = .95 for all g(-). That is, the choice of the noninformative
Jeffreys prior for (u, o2), p(k, In ¢%) o« constant, implies that users will be
calibrated overall as long as the data are normal. Notice that this is a frequency
property of a Bayesian inference. Notice also that this overall calibration does
not imply the user is calibrated for subsequences defined by the data, and thus
is a rather weak statement by itself. For example, if we choose a q(f) and a
specific value for s? say s3, and compare the distribution of PC(X) when s* =
s2 with its distribution when s? < s9, we will find that PC(X) tends to be larger
than .95 when s2 = s2 and smaller than .95 when s < s3. For ¢(0) that is close
to p(8), this effect will, of course, be small. And without specific knowledge
of the substantive field, it’s difficult to imagine a choice for p(f) other than
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p(y, In ¢%) « constant that gives PC(X) more tightly concentrated about .95 for
a range of plausible ¢(6).

I suspect that this sort of calculation showing Bayesian answers to be cali-
brated for a range of plausible deviations from a specific model is the major
reason for the acceptance of particular Bayesian models as useful for general
consumption. For instance, I believe that the acceptance of Jeffreys’s priors in
many applied problems is more due to their yielding standard confidence inter-
vals, that is their yielding approximate Bayesian procedures calibrated overall
for any true prior, than to any invariance or informationless arguments such as
those presented in Box and Tiao (1973). An interesting question that then
immediately arises is how closely related are overall calibration and Jeffreys’s
priors? Recent work by Stein (1981) extending work by Welch and Peers (1963)
and Welsh (1965) suggests that for scalar, 6, I(X) created using Jeffrey’s rule
(1961) to create p(0) is calibrated to order 1/N. Of course, any prior with support
for all 0 in its parameter space is calibrated to order 1/vN under the usual
asymptotic arguments based on the large sample normality of the likelihood
function.

4.3 Example 2—Empirical Bayes intervals. Consider the following empirical
Bayes model for the one-way analysis of variance structure, which is a simplifi-
cation of that given in Morris (1983):

f(X| 0) is given by
x~N(u,1) i=1,---,k;
letting u = (uy, - - -, ps), the parameter 6 is (u, 0%) where p(u | ¢?) is given by
wi & N(O, ¢?),
and p(¢?) is given by
0% ~ uniform (0, «).
Under this model, Morris obtains 95% intervals I;(X) for each u;, which he terms

empirical Bayes intervals for the y;.
Suppose that

&X10)=f(X|0) and gq(u|o® =p(u|s?),
but that g(c2) does not necessarily equal p(s?). Then Morris suggests that
E[PC;(X)]= .95 forall q(s?),

where PC;(X) is the probability coverage of I;(X) for u;. That is, accepting the
normality of the data and the i.i.d. normality of the u;, the resulting Bayes
inferences for u; under f (X | 8)p(0) are conservatively calibrated overall. Thus, in
cases where the normality of the empirical Bayes model seems reasonable,
Morris’s work suggests that the consumer using the statistician’s model
f(X|0)p(8) can expect to be conservatively calibrated overall no matter what
distribution g(c?) is correct. Again, this is a fairly weak statement in the absence
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of statements about conditional calibration. Nevertheless, I do regard it as
providing some support for the use of that prior distribution on ¢ for some range
of problems.

44 Example 3—The effect of stopping rules. Let f(X]0) with X =
(%1, x2, ---) be defined by x; "¢ N(, 1). Suppose values of x; are collected
sequentially following the rule that data will continue to be observed until either
100 values of x; have been collected or #,/vn (where %, is the current sample
mean, and n is the current number of observations) is greater than C where C is
a fixed constant. That is, collect data until the test-statistic is big or 100 values
are collected. Such rules might be used in medical research where the test-
statistic addresses the possible effects of a new treatment and the study is to be
terminated if there exists strong enough evidence that the new treatment is
harmful.

For any fixed p(8), n and %,, Bayesian inferences for 6 are unaffected by the
stopping rule, that is, they are the same as if the sample size n were fixed a priori
or chosen by a random mechanism independent of X; for instance, letting p(6)
be Jeffreys’s prior, we obtain the standard 95% interval for 0, I(X) = %, = 2/ Vn.
Although this result might be viewed as suggesting that Bayesian inference is
unaffected by such data-dependent stopping rules, an examination of the sam-
pling distribution of PC(X), which ideally should be identically .95, shows
otherwise.

Rosenbaum and Rubin (1984) studied the distribution of PC(X) for the
standard interval I(X), where g(X | 0) = f(X | 0) and q(8) = N(0, V) for V = .01,
.1, 1, 100; V = o corresponds to p(f). Table 5 from Rosenbaum and Rubin (1984)
presents results of simulations of the distribution of PC(X) for stopping rules
corresponding to C = 2, 1.5, .5. Values in the table are the 10% points of the
distributions of PC(X), i.e. 90% of the values of PC(X) are larger than the values
given. Thus, for C = 2 and V = .01, 90% of the values of PC(X) were larger than
.54, whereas for C = .5 and V = 100, 90% of the values of PC(X) were larger
than .95. Values in parentheses are the 10% points of the distributions for PC(X)
for random samples with the same sample-size distributions as obtained when
using the stopping rules. That is, for fixed V and C, there is a distribution of
sample sizes, n, using the stopping rule, and n is correlated with PC(X); for
example, when n is less than 100, we know %, = C+vn. But random samples with
the same size distribution can be drawn, and they would not have any correlation

TABLE 5
Estimated 10% point of distribution of PC(X) over g(X | 8)q(6).
Results of stopping rule (results for random samples of same size)

| 4
C
.01 1 1 100
2.0 .54(.88) .78(.92) .91(.94) .95(.95)
1.5 .74(.89) .84(.91) .91(.95) .95(.95)

0.5 .93(.89) .92(.87) .89(.93) .95(.95)
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between n and PC(X). We see that for such random samples, 90% of the values
of PC(X) are larger than .88 for all cases considered.

This table demonstrates a danger when using procedures involving data
dependent stopping rules: the consumer is calibrated overall for a less wide range
of models. As V becomes smaller, the proportion of intervals I(X) that lead to
low PC(X) increases far more rapidly with the data-dependent stopping rule
than with a random sampling rule, even one with the same distribution of sample
sizes. The reason for the different behavior of PC(X) for the data-dependent and
random stopping rules is simple: inferences under p(f) = N(0, ) and under g(#)
= N(0, V), V < =, are more disparate when %, is further from zero, and such
data sets are more likely with the %, > vnC stopping rule than the random
stopping rule. Thus the data-dependent stopping rule leads to data sets exhibiting
greater sensitivity of inference to changes in the specification of prior variance,
and consequently to users being uncalibrated for a wider range of models.

Furthermore the stopping rule can create identifiable subsequences (i.e. ¥, >
vn C) where I(X) is relatively poorly calibrated, especially for small V. For
instance, when V = .01 and C = 2, fifteen of 25 simulated samples stopped at
sample size 100, and of these, 14 had PC(X) = .99. All ten samples that stopped
with n < 100 had PC(X) < .9, with the lowest values of PC(X) in those samples
with fewest observations.

These results do not necessarily mean that data dependent stopping rules
should not be used, but rather that if they are used, more care is needed in
assessing models, and therefore they should probably be used cautiously.

5. Model monitoring by posterior predictive checks. In Section 4 we
calculated the operating characteristics of Bayes procedures derived under the
model (X | 8)p(@) over other distributions for (X, 6). This process is Bayesianly
justifiable when considering which models to recommend for general use, that is,
before X is observed. After observing data X, however, such calculations are no
longer Bayesianly justifiable because the observed values in X should be condi-
tioned upon. Some (perhaps, Berger, 1983) would argue that, nevertheless even
with X observed, such frequency calculations are Bayesianly relevant because
they help to select better models upon which to base inferences.

Whether or not the unconditional operating characteristics of Bayes proce-
dures are Bayesianly relevant when drawing inferences for § from observed data
X, there are many other frequency calculations that are Bayesianly relevant with
observed data in that they help select appropriate models upon which to base
inferences. Standard goodness-of-fit tests, probability plots, examinations of
residuals, all with accompanying frequentist p-values, can help the Bayesian
arrive at specifications f(X | #)p(f) that are consistent with observed data; that
is, they help to select models that plausibly could generate the observed data,
and thus are Bayesianly relevant. But in what sense are they Bayesianly justifi-
ble?

5.1 Bayesian framework for model monitoring. Many such frequency calcu-
lations can be Bayesianly justifiable if conceptualized properly. The only require-
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ment is that we condition on observed values and calculate the distribution of
unobserved quantities. Consider the following scheme. Given observed data, Xops,
what would we expect to see in hypothetical replications of the study that
generated X,ps? Intuitively, if the model specifications are appropriate, we would
expect to see something similar to what we saw this time, at least similar in
“relevant ways”. This statement, which is essentially a fundamental premise of
frequency inference, seems to me so basic that it needs no defense. Unlike the
frequentist, the Bayesian, though, will condition on all observed values.

In order to apply the idea, we first need to define a statistic 7'(X) that
formalizes the notion “relevant ways”. Next we need to define precisely what we
mean by a replication of the current study. Having defined T'(X) and the
replications, we then calculate the frequency distribution of T(X) in the hypo-
thetical future replications, where this distribution is conditional on both (a) the
observed data X, and (b) the current model specification f(X|8)p(). This
distribution—the model monitoring distribution or posterior predictive check
distribution (Rubin, 1981, 1983a)—is the posterior predictive distribution of
T(X), “posterior” meaning conditional on observed values and “predictive”
meaning the distribution of a future observable quantity. If the frequency
distribution of T'(X) does not make the observed value of T(X), T(Xobs) = Tobs,
appear typical, where typical is usually defined by tail areas of the distribution
of T'(X) beyond T'(X,ps), then we may want to revise the model f(X | 8)p(0). The
reason is that the model, in replications of the current study, does not generate
data that are similar to the observed data, where similar is judged by comparing
T.us to the distribution of T'(X).

5.2 Defining statistics. 'The question of how to define statistics T'(X) seems
not easy to address in a formal way. If an alternative model is at hand that can
be used to suggest specific sufficient statistics, it may often be wiser from a
Bayesian perspective to fit the alternative model within the Bayesian framework,
and assess the relative fits of the original and alternative model from the posterior
distribution of all parameters under an extended model which encompasses both
the original and alternative models. In this case Dempster (1975) suggests
computing the posterior distribution of the likelihood ratio for the original model
vs. alternative model, as induced by the posterior distribution of all parameters
under the extended model.

Monitoring models by use of frequency calculations seems most useful when
the current model is possibly acceptable and no particular alternative model is
compelling. Then statistics 7'(X) should be chosen to be potentially revealing of
lack of fit (for example, residuals, order statistics) rather than to be sufficient
under some expanded model; examples are given shortly.

The use of convenient statistics, such as residuals, to monitor models is now
an established part of sound statistical practice. An alternative to examining
such statistics is to embed the current model in a richer and richer web of
Bayesian models. Although possible in principle, this seems to be a hopelessly
complex task to always implement in practice. It is usually substantially more
difficult to create a new relevant model and perform a full Bayesian analysis
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under it than to check the distribution of a few cleverly chosen statistics.
Certainly, when there is no indication that the current model is inadequate, the
extra modeling effort may often be a poor expenditure of time.

5.3 Defining replications. The question of how to define replications is similar
to the question of how to define statistics in that formality may not help much;
the practical context of the problem usually defines the replications. In some
problems, such replications lead to unconditional frequency checks such as
described by Box (1980), where the monitoring distribution of T'(X) is the
distribution of T'(X) implied by the prior distribution of (X, ), f(X | 6)p(8). In
other cases it may make more sense to regard 6 as a fixed feature of the
replications and consider the monitoring distribution of T'(X) to be that obtained
taking the distribution of T'(X) given # implied by f (X | 8)p(6), Pr(T'(X)|9), and
averaging it over the posterior distribution of 6, i.e., over the conditional distri-
bution of 6 given Xops, f(Xobs | 0)p(8)/J f(Xobs | 0)p(8) db. For example, in a study
of D drugs, interest may focus on the fit of the model for these drugs rather than
for a sample of D new drugs drawn from the same population of drugs.

In still other cases, we will want to fix features of data as well as parameters.
For example, in sample surveys we often may wish to fix features such as the
sample size and pattern of missing data in addition to functions of 6. Then the
monitoring distribution of T'(X) is conditional distribution of T'(X) given the
fixed features in § and X, (implied by f(X | §)p(8)) averaged over the posterior
distribution of fixed features. Denoting the fixed features by the vector K(X, 6),
the monitoring distribution of T'(X) is defined to be the conditional distribution
of T'(X) given K(X, 0) averaged over the posterior distribution of K(X, 6), i.e.,
over the conditional distribution of K(X, 0) given X.,s. This gives our best
(posterior given X,ps and current model specifications) guess of the distribution
of T(X) in future replications of the current study that are identical to the
current study with respect to features defined by K(X, 9).

Model monitoring by posterior predictive distributions is ideally suited to
complicated Bayesian models whose posterior distributions are calculated by
Monte Carlo rather than by analysis because we need not be constrained in our
choice of monitoring statistics to ones for which we can calculate distributions
analytically.

I use three examples to illustrate these ideas.

5.4 Example 1—Gauss vs. Cauchy. Suppose ten values of x; are observed
where the statistician’s model is the usual i.i.d. normal setup with
x4 Ny, 06®) i=1,---,10
0= (u,Inc?
p(#) « constant.

The observed values of X and s are %, and s2,,. Consider the posterior predictive
distribution of ten new draws of x; with the same 8; that is, consider replications
of the same study (same parameters, same sample size, new data).
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The relevant distributions will be described as if we were simulating the
replications. First, draw a value of ¢% say ¢2 from its posterior distribution,
which is 952, over a x2 on 9 degrees of freedom. Second, draw a value of u, say
K, from its posterior distribution given o = ¢%, which is normal with mean %,
and variance ¢2/10. Third, draw new x;, - - - , xi0 as i.i.d. N(u,, 02). Repeat these
three steps M times to generate M draws of x;, ---, x;0 from their posterior
predictive distribution with the same 6 = (u, In ¢?) in the replications as in the
actual study. (If # were not fixed to be the same as in the actual study, the first
two steps would be replaced with draws from the prior distribution of # rather
than its posterior distribution. This is impossible with an improper prior such as
in this example; notice that Box (1980) uses proper priors for his predictive
checks, which always draw 6 from its prior distribution.)

In these M replications, the sufficient statistics x.and s® will look approxi-
mately like the observed values x.,, and s%,. However, this is not true for all
functions of the generated data. Consider monitoring statistics such as the gaps
between the order statistics; for specificity, consider the ratio of the first to
second gap, T'(X) = [xa0) — *©))/[*©) — x&)]. When the model that generated the
observed data is normal, the gaps between the observed order statistics will be
typical of the simulated gaps, since both will be generated under the normal
distribution, and thus T'(X,,) will be typical of the M simulated values of T'(X).
But when the model that generated the data is Cauchy, the observed gaps will be
Cauchy gaps, and so T'(X.,) will not be typical of the M values of T'(X), which
simulate the ratio of gaps assuming normality. Consequently, the simulated
monitoring distribution of T'(X) addresses the adequacy of the statistician’s
model and does so in a Bayesianly justifiable manner since it conditions on all
observed values.

5.5 Example 2—Data from eight experiments. Rubin (1981) presents a study
consisting of randomized experiments of coaching for the SAT exams in eight
schools, introduced here in Section 2.5. Letting x; be the estimated effect of
coaching in the ith school, the model for the data is

(i | i) ~N(pi, Vi) i=1,..-,8
where V; is known and
(il py, 0%) ~ N(u,, 0%)
(ny4, 0,) ~ uniform on (0 < o, < 100).

Let x; 005 be the observed value of x;, i = 1, - . - , 8 in the study.

Suppose that we returned to these eight schools to reconduct similar random-
ized experiments; what sort of observed coaching effects would we expect to see?
Since the schools are the same, and we would like to conduct experiments of the
same size, we fix (u;, ---, usg) and (Vy, ---, Vg) in the model monitoring, and
thus examine the distribution of (x;, - - -, xg) given (u, ---, ug) and (Vy, -,
Vs), averaging over the posterior distribution of (u,, -- -, us), i.e., averaging over
the distribution of (u;, - - -, us) given (Xiops, - - » Xsobs) and (Vy, ---, Vg). The
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normality of x; given (u;, V;) and the a priori exchangeability in the prior
distribution of the u; were considered reasonable for reasons given in Rubin
(1981). No strong a priori defense, however, could be made for the normal prior
for the u; given (u,, ¢%) nor for the uniform prior for (u,, ¢,). For any
exchangeable prior on the y;, the order statistics x), - - - , 2 with their associated
V., are sufficient, and hence functions of these order statistics are reasonable
choices for the monitoring statistics.

Figure 1 from Rubin (1981) plots 200 simulated values of x;,, V(;, where x
is the largest observed x; and V(;, is the variance associated with the largest x;.
The arrows point out the observed value of (x;, V1), which is typical of the
simulated (x), V). Figures for x), Vi;),j =2, - - -, 8 portray a similar story in
that they provide evidence that the assumed model generates order statistics for

17.6 -- *  kk kkkkk2 k%3 Kk k %2223kkQk k2 Kk kkk * H
16.3 -- kkk 3 k 2k22k k * *32% 2% * k ok c
LARGEST OBSERVED EFFECT
14.9 —- * Kk k% ***2*3'**23222*4** * kk Kk kkk * A
1/2
v SCHOOL
(1
11.4 —— * * Kk Dkk k kk kkQkk * F
11.0 -- 2 Ak kk 23kkk2 * X D
10.4 -- Kkk 2 3% R3x4 2%3 hk ) C
10.2 - * * khkkk  kk  kk * B
9.4 —— * *  kEhkD k2 % * E
+ + +
0 25 50 65

H(1)

FiG. 1. Joint distribution of largest estimated effect 4, and its associated standard error,
Vi3: 200 simulated values.
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TABLE 6
Summary of 200 simulations of the estimated effects for the eight schools
Number of times that i=1 2 3 4 5 6 7 8
ith largest estimated effect occurred in 41 25 18 19 24 23 30 27
the school with ith largest observed
effect
and
was larger than ith largest observed ef- 28 11 10 10 8 16 13 5

fect

the estimated effects quite similar to the observed effects; these figures are
summarized in Table 6.

Of course, other statistics could be examined, but the essential idea of using
model monitoring to detect inabilities of the assumed model to generate the
observed data in this example is conveyed.

5.6 Example 3—Fisher’s randomization test for experiments. The previous
two examples treated the unknown parameters of the study as fixed features of
the replications when calculating the monitoring distribution of statistics. In this
example, we fix part of the data and show that Bayesian model monitoring can
lead to Fisher’s randomization test.

The setup is as follows: Suppose there are 2N units, with x; = (y;, z;) where y;
is an outcome variable and z; indicates exposure to treatment 1 or treatment 0.
The model f(X | 8)p() being entertained assumes no treatment effect, and thus
under this model the observed value of y for the ith unit is the same whether it
received treatment 1 (z; = 1) or treatment 0 (z; = 0); the model f(X|6)p(d)
further asserts that the experiment was completely randomized in the sense that
Y=(y, ---,y~v)and Z = (z,, - - -, zy) are independent and

_JyE@) i $z.=N
Pr(Z) = lO N otherwise.

Consider the statistic that is the mean y for treatment 1 units minus the mean
y for treatment 0 units:

T(X) = (1/N) Z%N yizi — (1/N) Z%N yi(l — z).

The observed value of T'(X), Tops = T (Xops) is the observed difference of means.

Suppose that interest is on the fit of the model for these units at this time;
thus for monitoring purposes we fix the outcomes y;, which, since all y; are
observed, means fixing all y; in future replications at their current observed
values. Then the monitoring distribution of 7'(X) under f(X|6)p(6) is simply
the randomization distribution of T'(X) induced by Pr(Z) just as in Fisher’s
randomization test, and T.s is compared to the distribution of 7T'(X) given Y
just as in Fisher’s randomization test.

Thus, the Bayesian justification of Fisher’s randomization test is that it gives
the posterior predictive distribution of the mean treatment difference under a
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model of no treatment effect and fixed units with fixed responses. If the observed
mean difference is not typical of the monitoring distribution of differences (i.e.,
if a small p-value is obtained), then the null model is unacceptable and alternative
models should be investigated. Although the frequentist can stop with a rejection
of the null hypothesis, I believe that the Bayesian is obliged to seek and build a
model that is acceptable to condition upon.

6. Conclusions. The applied statistician should be Bayesian in principle
and calibrated to the real world in practice—appropriate frequency calculations
help to define such a tie.

The applied statistician, when recommending Bayesian procedures for general
consumption, should attempt to use specifications that lead to approximately
calibrated procedures under reasonable deviations from those specifications—
frequency calculations examining the operating characteristics of procedures are
the basis for such judgments, where the more conditional the calibration the

better.
The applied statistician should avoid models that are contradicted by observed

data in relevant ways—frequency calculations for hypothetical replications can
monitor a model’s adequacy and help to suggest more appropriate models.

All three of these types of frequency calculations can be both Bayesianly
justifiable and Bayesianly relevant. Such frequency calculations thus supplement
the standard inferential Bayesian tool kit of prior assessment and prior to
posterior calculation in a complementary way.
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