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ON THE OPTIMALITY OF SPRING BALANCE WEIGHING DESIGNS

By MIKE Jacroux! aND WiLLiamM Notz2

Washington State University and Purdue University

This paper deals with techniques for finding ®-optimal designs for weigh-
ing v objects in b weighings using a spring balance, The optimality functions
considered encompass a large class of functions. Results are applied to find
A-, D- and E-optimal designs and the optimal designs obtained are seen to be
related to certain types of well known block designs,

1. Introduction. This paper deals with the problem of optimally weighing v objects
in b weighings on a spring balance, b = v. An experimental design d in this setting is a plan
for deciding which of the v objects should be weighed on the ith weighing, 1 < i < b. Such
a design d can be represented by a b X v matrix X4 = (xq;,) having entries x4; = 1 or 0
depending upon whether the jth object is included or excluded on the ;th weighing. Thus
if we let D (v, b) denote the entire class of b X v matrices whose entries are 0 and 1, then
we can think of D(v, b) as the entire class of available weighing designs. We shall
henceforth use d and X, interchangeably when referring to some specific design. Assuming
that the observations are uncorrelated, have constant variance ¢ and that the weight of
the jth object is B;, then the total weight of the objects measured on the ith weighing is
Y91 x4:;8;. If X, has rank v, all of the B; are estimable, and the covariance matrix of their
best linear unbiased estimators is o?(X%X,) '. The matrix X4X,; = (Ag,) is called the
information matrix of X,. Here we consider the determination of optimal designs in
D(v, b).

A design is said to be optimal within a given class D (v, b) provided it is determined to
be “best” by some optimality function ®. Most optimality functions ® are real valued
functions of the covariance matrices corresponding to X; € D(v, b) and X; is optimal
provided ®(X;X;) is minimal over D (v, b). Some typical ® are the maximum eigenvalue
of (X4X4)™' (an optimal design is called E-optimial), the trace of (X2X;) ™" (an optimal
design is called A-optimal), and the determinant of (X2X,) ' (an optimal design is called
D-optimal).

Before proceeding, we note that each Xy € D(v, b) can be viewed as the incidence
matrix of a binary block design where the rows of X, correspond to blocks. The row and
column sums of X, give the size and number of replications of the corresponding blocks
and treatments. From time to time in the sequel we will refer to X, as the transpose of the
incidence matrix of a given type of block design. For definitions and a discussion of the
properties of any block designs referenced, the reader is referred to Raghavarao (1971),
Chapters 5 and 8. »

The main purpose of this paper is to obtain results which can be used to establish the
optimality of sofme previously unknown spring balance designs according to various ®. In
Section 2 we consider a general class of optimality functions ®, obtain some preliminary
results, and indicate how to obtain ®-optimal designs. The remaining sections of this paper
apply the results obtained in Section 2 to finding A, D and E-optimal designs.

2. Preliminary results. Suppose @ is a convex real valued function on the set of all
v X v positive definite matrices, such that if M is a v X v positive definite matrix with
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eigenvalues y; < ... < p, then ®(M) = ¢(p1, -+, o) where ¢ is a real valued convex
function which is descreasing in each of its coordinates when the others are held constant
and has the property that if (v — Dx1 + o= (V — Dy1 + y2, 0 = x1 < x2, 0 < y1 = y2,
x1 < y1, and yz < x2 then ¢ (x1, «+ -, x1, x2) = (1, *++, ¥1, ¥2). Following Cheng (1978),
call such a function @ a type 1 function on the set of all v X v positive definite matrices.

Additionally, let II be the set of all v X v permutation matrices. We shall denote by M,
the average of My = X4X, over all elements of I, i.e.

(2.1) Ma= Cpren P'XaXaP)/V\.

It is not difficult to see that M, = ayl, + Bad,, from some ag, Bz = 0. We now prove a
series of lemmas.

LEMMA 2.1. Suppose @ is a type 1 function on the set of all v X v positive definite
matrices. Let X4 € D(v, b) be such that it has exactly N=mb+p (0=m<v,0=p<
b) +1 entries. Furthermore suppose the first m columns of Xa consist entirely of +1
entries, the m + 1st column has +1 as its first p entries and 0 as its last b — p entries, and
the remaining columns consist entirely of zeroes. Then for any other X, € D(v, b) having
exactly N entries being +1, ®(May) < ®(My), assuming My, and M, are nonsingular.

Proor. First notice that if Ay, Aee € D(v, b) have exactly N entries being +1, if
Mgy = agl, + Bae,,, is the average of A;Ag; over IT for i = 1, 2, and if a1 = age and aa
+ UBa1 = gz + UBaz, then ® (M) < ® (M) assuming Md_l and Mg, are nonsingular. This
follows easily from the fact that the eigenvalues of oI + B¢/,,, are well known to be « with
multiplicity v — 1 and a + Bv with multiplicity 1 and the fact that N = tr(Ms) = (v — 1)aa
+ (agi + Baiv) fori =1,2.

Now for any X; € D(v, b) as stated in the lemma, N = tr X, X = tr M. Thus all the
diagonal entries of M; must be N/v. Suppose Q is the sum of the off diagonal entries of
X, X4. Then the sum of the off diagonal entries of M, is also @ and the off diagonal entries
of M, are @/v(v — 1). The lemma will now follow from the first paragraph of this proof if
we can show @ is minimized over all X; € D (v, b) having exactly N entries equal to +1, for
Xd = Xdla

Let T} be the £th row sum of X,. It is straightforward to verify that @ = Y3-, T% — N.
Since @ is convex in T}, it is minimized over T}, subject to Y, T = N and the T} being
nonnegative integers, when the T} are as nearly equal as possible. This occurs when p of
the T} have value m + 1 and b — p of the T} have value m. Since X4 has precisely these
values for its row sums, it attains the minimum value for @ over X, € D (v, b).

LEMMA 2.2. Suppose @ is a type 1 function on the set of all v X v positive definite
matrices. Suppose X1 € D (v, b) is as in Lemma 2.1 and X1 has exactly N entries of +1.
Then for any X4 € D (v, b) of rank v having exactly N entries of +1, ® (M4 ) = ®(X0Xa).

ProoF. This follows from Lemma 2.1 and the convexity of ®.

Lemma 2.2 suggests that when @ is a type 1 function, a ®-optimal spring balance design
may be found by comparing the values of ® (M, ) for various N, where My, is the average
over II of My = XinXa and Xy is as in Lemma 2.1 If the minimizing M, satisfies the
property that there exists Xy € D (v, b) with X,X, = My, then X, is a ®-optimal spring
balance design over D(v, b). In general, which My, (considered as a function of N)
minimizes ® depends on ®. However we can prove the following.

LemMMA 23. If®is a type 1 function on the set of all v Xuv positive definite matrices,
then an X4 € D (v, b) of the form in Lemma 2.1 yielding My which minimizes ® can be
found among the X4 with N=mb+p(0<=m =<v,0=<p<b) +1 entries and m = v/2.
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Proor. Suppose X4 € D(v, b) is as in Lemma 2.1 and Xg1as N=mb +p(0=m =v,
0 < p < b) +1 entries and m = (v — 2)/2. Notice

Mg = {(mb + p)/v — (bm(m — 1) + 2mp) /v(v — 1)}1,
(2.2)
+ {(bm(m — 1) + 2mp)/v(v — 1)},

and the eigenvalues of M, are
(2.3) a1 = {mb(v—m) +pv—1-2m)}/v(v—-1)
with multiplicity v — 1 and
(2.4) Aar = {bm* + p(2m + 1)} /v
with multiplicity 1.
Let X2 € D(v, b) be as in Lemma 2.1 with bv — N = (v — 1 — m)b + (b — p) entries of

+1. The eigenvalues of M, the average of X:X4. over I, by reasoning similar to that
used to get those of My, are

paz={(w—1—-mb—-{v—1-m}) +(b-p)v—1—-2{v—1-m})}/v(v—1)
={mb(v—m) +pv—1-2m)}/v(v—1) =
with multiplicity v — 1 and
Az={bv—1—-m)?>+ (b—p)2{v—1—m} + 1)}/v
= {bm® + p(2m + 1) + v(bv — 2mb — 2p)}/v = Aa1 + bV — 2mb — 2p

with multiplicity 1. Since m =< (v — 2)/2 we see bv — 2mb — 2p = 2(b — p) = 0 so
Adz = Aa1. Since @ is a type 1 function the above implies ® (M) < ®(Myy). Thus if X4, has
m < (v — 2)/2 there exists an X, as in Lemma 2.1 with m > (v — 2)/2 (since m must be an
integer we must in fact have m = (v — 1)/2 if v is odd and m = v/2 if v is even) which is at
least as good as Xy;.

To complete the proof, suppose v is odd and X is such that m = (v — 1) /2. Examination
of equation (2.3) shows that p is then independent of p and has the same value it would
have if m was (v + 1)/2 and p was 0. Further examination of (2.4) indicates that A4 is
increasing in both p and m. We therefore conclude that since @ is a type 1 function, hence
decreasing in the value of w4 and A41, there is a design Xq2 € D(v, b) as in Lemma 2.1 with
m = (v + 1)/2 (recall v is odd now) which has ®(M,;) < ®(M,1) where M, is the average
over I1 of X4 Xai, i = 1, 2. The lemma now follows.

These results will now be applied to some special type 1 functions ® of interest.

3. A-optimality. Suppose ®(X:X,) = tr((XiXa)™") = Y1 1/pai, where pa1 = faz
< ... < pa are the eigenvalues of X 4X,. Since },i-1 1/pa; is a type 1 function, we can apply
the results of Section 2 to find ®-optimal designs. Here @ corresponds to A-optimality.
Suppose b = v = 3 is fixed. If My, is the average of X 41 Xa over IT where Xa1 € D(v, b) is
as in Lemma 2.1 with N = mb + p entries of +1,

(M) = v(v — 1)/ {mbv — m) + p(v — 1 — 2m)}
3.1)
+ v/{bm® + p(2m +1)} = f(m, p).
From Lemma 2.3 we know that the minimum of f(m, p) is to be found among the integers
v/2=m=v,0=p<b,and mb+ p =< bu.
Now
of(m, p)/op = —v(v — 1)*(v — 1 — 2m)/{mb(v — m) + p(v — 1 — o2m))?

3.2)
—v(@m + 1)/{bm® + p(2m + 1))2
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Since {bm? + p(2m + 1)}2 = {mb(v — m) + p(v — 1 — 2m)}* and v(v — 1)’|v — 1 — 2m | >
v(@m + 1) for m = v/2 we conclude df(m, p)/dp > 0 for m = v/2. Thus the minimum of
f(m, p) is to be found among the integers v/2=m =v,p =0.

Next we notice

(3.3) df(m, 0)/dm = ({—(v — 1)*(v — 2m)/m*(v — m)*} — {2/m®})v/b.
Direct calculation shows that this has positive root
mo= {(v—3)(v+ 1) + V(v —3)%v + 1)* + 16v(v — 2)}/4(v — 2)

and df(m, 0)/dm < 0 for m < mo and df(m, 0)/dm > 0 for m > mo. A little additional
calculation shows that for v =3

(3.4) v/2<mo< (v+1)/2.

From (3.4) and the behavior of df(m, 0)/dm we conclude f(m, p) is minimized for
m=(@+1)/2, p=0ifvis odd and m = v/2 or (v + 2)/2 and p = 0 if v is even. Direct
calculation shows f(v/2, 0) < f((v + 2)/2, 0)) and hence we have the following.

LEMMA 3.1. tr(Mg}) is minimized for the following values m and p.
(i) If v is even, m = v/2,p = 0.
(i) Ifvisodd,m = (v+1)/2,p=0.

Application of Lemmas 2.2, 2.3, and 3.1 yields the following.

THEOREM 3.1. Any X, € D(v, b) for which
(1) XX = bv/4(v — 1)1, + b(v — 2)/4(v — 1), if U is even
(ii) X4X4 = b(v + 1)/4vl, + b(v + 1) /4vd.,, if v is odd
is A-optimal over D(v, b).

A direct consequence of this theorem is:

COROLLARY 3.1. Suppose X, € D(v, b) is the incidence matrix of a B.L.B. design with
parameters
(1) b, v, and r = b/2 if v is even
(ii) b, v, and r = b(v + 1)/2v if v is odd
then X4 is A-optimal over D(v, b).

4. D-optimality. Suppose ®(X5X,) = det(X 4Xa) 7t = [[%1 1/pa; where pg1 < --+ <
pa are the eigenvalues of X X,. Since [[%:1 1/pa is a type 1 function, we can apply the
results of Section 2 to find ®-optimal designs. Here ®-optimality corresponds to D-
optimality. Suppose b = v = 3 is fixed. If M, is the average of X 1 Xq1 over IT where Xa:
€ D(v, 1b) is as in Lemma 2.1 with N = mb + p + 1 entries,

det(May) ™" = ®(Ma) = (v(v — 1)/ {mb(v — m)
(4.1)
+pv — 1= 2m)})" v/ {bm® + p2m + 1)}).

Let

g(m, p) = ({mb(v —m) + p(v — 1 — 2m)}/v(v — 1)) 1({bm? + p(2m + 1)}/v)
4.2)
= 1/(I)(qul)

We seek values of m and p with 0 <m < v, 0 <p < b, and 0 < mb + p < bv which will
minimize, or equivalently, maximize g(m, p). Proceeding in a manner analogous to that
used in Section 3 to find the minima of f(m, p) one can here determine the values of m and
p maximizing g(m, p). The results are stated in the following lemma.
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LEMMA 4.1. det(My,)™ is minimized for the following values of m and p
A)m=@wW+1)/2andp=0,ifvisodd
(ii) m = v/2 and p = bv/2(v + 1) if v is even.

REMARK. In (ii) above, if bu/2(v + 1) is not an integer, det(#;) " is minimized by one
of the two integers closest to bv/2(v + 1).

THEOREM 4.1. Any X; € D(v, b) for which
(1) Xo2Xa=b(v+ 1)/4vl, + b(v + 1) /4ve,,, if v is odd.
(1) XaXs = b+ 2)/4(v + 1)1, + b(v + 2)/4(v + 1), If U is even
is D-optimal over D(v, b).

A direct consequence of this theorem is:

COROLLARY 4.1. Suppose X4 € D(v, b) is the incidence matrix of a B.1.B. design with
parameters b, v, and r = b(v + 1)/2v if v is odd. Then X, is D-optimal over D(v, b).

Suppose X, € D(v, b), v even, is of the form
Xa= (X:iIXIdZ e X:it)

where each X, is the incidence matrix of a B.I.B. design with parameters b;, v, and r;
satisfying Y/-1 b; = b, and Y{=1 r: = b(v + 2)/2(v + 1). Then X, is D-optimal over D(v, b).

REMARK. The v even version of Corollary 4.1 is interesting. One can verify that there
does not exist a B.L.B. design with parameters b, v, and r = b(v + 2)/2(v + 1) when v is
even, for this would require the block size & to be v(v + 2)/2(v + 1) which is not an integer
since v + 1 is relatively prime to both v and v + 2. However, one can piece together the
incidence matrices of several B.I.B. designs having differing block sizes to produce an
optimal design. For example, when v = 4 and b = 10, if we let X,; be the incidence matrix
of the B.LB. design with parameters v = 4, b = 6, and r = 3 and X4, be the incidence
matrix of the B.I.B. design with parameters v =4, b =4, and r = 3 then X = (X1 X 42) is
D-optimal for D (4, 10).

REMARK. Hedayat and Wallis (1978) show that a design X, corresponding to a B.I.B.D.
having parameters v =b=4t — 1, r =k = 2t and A = ¢ for ¢t = 1 is D-optimal in D(v, b).
Clearly such designs also satisfy Corollary 4.1. Thus the result given by Hedayat and
Wallis is a special case of Corollary 4.1.

5. E-optimality. Suppose ®(X,X, = maximum eigenvalue of (X,Xs)™' = 1/pa1
where pa1 = -+ < pa, are the eigenvalues of X4X,. Since 1/ug; is a type 1 function, we
can apply the results of Section 2 to find ®-optimal designs. Here ® corresponds to
E-optimality. Suppose b = v = 3 is fixed. If My, is the average of X ;X4 over Il where
Xa1 € D(v, b) is as in Lemma 2.1 with N = mb + p + 1 entries,

(5.1) O(Ma) = v(v — 1)/{mb(v — m) + p(v — 1 — 2m)}.
Let
(5.2) h(m, p) = mb(v —m) + p(v — 1 — 2m).

We seek values of m and p with0 =m < v,0 <p < b, and 0 = mb + p < bv which will
minimize ®, or equivalently, maximize A(m, p). Lemma 2.3 tells us that the maximum
value of A(m, p) can be found among the integers v/2 =m =v,0<p < b,and mb + p <
bu. In this range v — 1 — 2m < 0 so h(m, p) is decreasing in p, implying the maximum of
h(m, p) is among the values v/2 < m < v and p = 0. Examination of A(m, 0) shows the
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maximum occurs when m = /2 if v is even, and m = (v + 1)/2 if v is odd. Actually when
vis odd A((v — 1)/2, p) = A((v + 1)/2, 0) for all 0 = p < b. We therefore conclude:

LEMMA 5.1. The maximum eigenvalue of M ii* is minimized for the following values
of m and p.
(i)m=v/2and p =0, if vis even
G)m=@w-1)/2andany0=p<borm=(v+1)/2andp =0, if vis odd.

THEOREM 5.1. Any X, € D(v, b) for which
(1) XuXa=bv/4(v — 1)1, + b(v — 2)/4(v — 1)y, if U is even
(i) X2 Xe = b(v + 1)/4vl, + {b(v — 3) + 4p}/4vd,, for some 0 =p < b
: or
X4Xa= b+ 1)/4vl, + b(v + 1)/4vd,,, ifvisodd
is E-optimal over D(v, b).

A direct consequence of this theorem is:

COROLLARY 5.1. Suppose X4 € D(v, b) is the incidence matrix of a B.1.B. design with
parameters
(1) b, v, and r = b/2, if v is even
(ii) b, v, and r = {b(v — 1) + 2p}/2v for some 0 =p < borr = b(v+ 1)/2v, ifvis odd
then X, is E-optimal over D(v, b).

COROLLARY 5.2. For any X, € D(v, b)
(i) min. eignevalue of X'sXq < bv/4(v — 1), if v is even
(ii) min. eigenvalue of X 3 Xq < b(v + 1)/4v, if v is odd.

Corollary 5.2 can be improved upon slightly by a more careful argument. Letting [x] be
the greatest integer < x, we can establish:

THEOREM 5.2. Suppose b = v are such that
(i) bu/4(v — 1) = [bv/4(v —1)] + 1 —v/4(v—1) ifviseven
(ii) b(v + 1)/4v = [b(v + 1)/4v] + 1 — (v+ 1)/4v if v is odd.

If X5 € D(v, b) has its minimum eigenvalue ps1 = [bv/4(v — 1)], and if v is even, or
us1 = [b(v + 1)/4v], if v is odd, then X; is E-optimal in D(v, b).

PROOF. Since the proofs for v even and v odd are similar, we shall only give the proof
for the case v odd.

Let X, € D(v, b) be arbitrary with N=mb+p,0=m=v,0=<p<b,0=< N = by, being
the number of ones in X,. Let S, denote a v X 1 column vector with a +1 in the ith
coordinateé, a —1 in the jth coordinate, and zeroes elsewhere. If j14; represents the minimum
eigenvalue of X X then it follows from Rayleigh’s inequality that

1 1
M1 = E S;,X:deSy = 5 O\du + >\djj - 2>\dl])

where Ay is the Z, jth entry of X, X,. For X, to have pg; > ps; it must be true that if g
+ Agj; is even then

% (Aaii + Agjj — 2}\dij) =[b(v+1)/4v] +1
and if Agi; + Agjy is odd then

% (Aaii + Aagjj — 2Aay) = [b(v + 1) /4v] + 1/2.
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If we let v; and v, represent the numbers of columns in X,; with even and odd numbers of
ones occurring in them, then it must also be true that

1
5 Y1 Yo% i + Agjj — 2hai) = (U — DN — Y1 ¥hwi Aay

= {vi(v1 — 1) + va(ve — 1)}I{[b(v + 1)/4v] + 1} + 2v:{[b(v + 1) /4v] + 1/2}.

When v is odd the right hand side of this last inequality is minimal for v; = (v + 1)/2 and
vz = (v — 1)/2. Thus for X; to have pq; > ps1 we must have

% L1 Y% Aaii + Aajj — 2Aap) = v(v =1)[b(v + 1) /4v] + (Bv — 1)(v — 1) /4.
From Lemma 2.1 and its proof we see that
L1 S i Aaij= bm(m — 1) + 2mp.
Thus
W=1N =Y YoeiAaiy < (v—1)(mb + p) — bm(m — 1) — 2mp
=mblv—m) +pv—1-2m).

We have seen in the argument following equation (5.2) that mb(v — m) + p(v — 1 — 2m)
is maximized for m = (v —1)/2,0 =p < b, or m = (v + 1)/2, p = 0, and hence has
maximum value b(v* — 1)/4. Thus for ga > s to hold we must have

viv—1)[bv+1)/4v] + Bv— 1w —1)/4=< (v —1)N — ¥ &1 X% Aaij < b(v® — 1)/4
or
[b(v+1)/4v]+1— (v+ 1)/4v =< b(v + 1)/4v
which cannot hold by assumption. Thus X; cannot have ps1 > ps1 and so X; is E-optimal.
COROLLARY 5.3. Let v and b satisfy the conditions of Theorem 5.2. If X4 € D(v, b)

corresponds to the incidence matrix of a group divisible (GD) design having parameters,
v, br=5b/2, k =v/2 and A2 = A1 — 1, then X, is E-optimal in D(v, b).

ProOF. Suppose X satisfies the conditions given. Then psy =r — A2 — 1=r — A; and
it is easy to verify that

A =[b(v/2)(v/2 — 1)/v(v — 1)] = [b(v — 2)/4(v — 1)]= [(b/2) — (bv/4(v — 1))]
=b/2 — [bv/4(v — 1)] - 1

where the last equality follows from the fact that b/2 is an integer, b(v — 2) /4(v — 1) is not
an integer, and condition (i) of Theorem 5.2. Thus

par =1 — A1 = [bv/4(v — 1)]
and the result follows from Theorem 5.2.

CoMMENT. Takeuchi (1963) established the E-optimality of GD designs having A, =
A1 + 1 in a general block design experimental setting. Corollary 5.3 is the first general
result known to the authors concerning the optimality of GD designs having A, = A; — 1in
any experimental setting.

While Corollaries 5.1 and 5.3 characterize two well known classes of block designs which
can serve as optimal spring balance designs, many other do exist.

COROLLARY 5.4. Let v, b, and X, € D(v, b) satisfy the conditions of Theorem 5.2.



SPRING BALANCE WEIGHING DESIGNS 977

Suppose l} is such that
@) b+ b)v/4v—-1) <[bv/4v—1)]+1—v/4(v — 1) if v is even
(i) b+ b)(v+1)/4v<[b(v+1)/4v] + 1 — (v + 1)/4v if v is odd.
Let X; € D (v, b) be arbitrary. Then

& X,

%= (%)

Proor. Since XXy = X.X, + X4 X4, we have pg = pisy and the result now follows
from Theorem 5.2.

is E-optimal in D(v, b + b)

COROLLARY 5.5. Let v, b, and X, € D(v, b) satisfy the conditions of Theorem 5.2.

Suppose 0 is such that v — 0 and b also satisfy

1) bw—0)4v—-0—-1) <[bv/4v—-1]+1—(v—0)/4(v—D—1) ifvand v — 0 are
even

@2) bv—0+1)/4v—-D)<[bv+1)/4v]+1—(v—0+ 1)/4(v — D) ifvis odd and v —
0 is odd

3) bv—0+ 1)/4(v — D) <[bv/4(v—1)]+1— (v— 0 + 1)/4(v — D) if v is even and v
— Jisodd

4) bw—0)/4v—-0—-1) <[b(v+ 1)/4v]+1— (v—0)/4(v—0—1) ifvis odd and v —
0 is even. .

Then the design Xq € D (v — 0, b) obtained by deleting any O columns of X, is E-optimal

inD(v— 0, b).

ProoF. Since XX, is a principal submatrix of X;X; we have pa1 = ps1 and the result
now follows from Theorem 5.2.

ExamPLE 5.1. Consider the class of designs D(7, 7) and let X, € D(7, 7) correspond to
the B.LB.D. having parameters r = £ = 3 and A = 1. Then X, satisfies Corollary 5.1 and is
E-optimal in D(7, 7). Also, any design obtained by adding one or two rows to X, is E-
optimal in D(7, 8) and D(7, 9) by Corollary 5.4 and any design obtained by deleting &
columns from X; is E-optimal in D(7 — 0, 7) by Corollary 5.5 for ¥ = 1, 2, 3, 4.

6. Minimizing the maximum diagonal entry of (X, X,)™!. Suppose ®(X,2X,) =
maximum diagonal entry of (X,X4)™". Although ® is not of the form given in Section 2, it
is convex and permutation invariant in X, X, and hence it is possible to verify that Lemmas
2.1—2.4 still hold for ®. Since

(aly + Beo) ™ = (/&)L — B/ala + Bv)du,
it follows from Lemma 2.3 that we seek values of m and p with 0 =m < v, 0 <p < b, and
0 < mb + p =< bv which minimize
f(m, p) = 1/a(m, p) — B(m, p)/a(m, p){a(m, p) + B(m, p)v}
where
mb+p_bm(m—1)+2mp
v viv—1)

- 2
»  B(m,p)= br(m — 1) + 2mp
viv—1)

a(m, p) =

Since vf(m, p) = tr M3', minimization of f(m, p) is equivalent to finding the m and p
yielding an A-optimal design. We conclude that the A-optimal designs of Section 3 are also
the designs which minimize the maximum diagonal entry of (X;Xy) ! over D(v, b).
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