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INVARIANCE PRINCIPLES FOR RECURSIVE RESIDUALS"

By PrRaNAB KUMAR SEN
University of North Carolina, Chapel Hill

A general class of recursive residuals is defined by means of lower-
triangular, orthonormal transformations. For these residuals, some weak in-
variance principles are established under appropriate regularity conditions.
The theory is then incorporated in the study of robustness of some tests for
change of parameters occurring at unknown time points.

1. Introduction. Various types of recursive residuals are commonly encountered in
problems of inference about the change point of a sequence of random variables. In the
context of testing for constancy of regression relationships over time, Brown, Durbin and
Evans (1975) have considered some CUSUM tests based on suitably defined recursive
residuals; the corresponding location problem treated earlier by several workers is included
in their setup as a particular case. When the error components are assumed to be
independent and identically distributed (ii.d.) according to a normal distribution, these
recursive residuals are mutually independent and distributed according to a common
normal distribution, so the Brownian motion approximation can readily be incorporated
for the study of the properties of some CUSUM (or Cramér-von Mises type) tests based
on these residuals. The situation may differ considerably when the errors are not normally
distributed: these residuals remain uncorrelated but not necessarily independent or nor-
mally distributed. Several discussants of the Brown et al. (1975) paper have raised the
issues of incorporating more general forms of orthonormal transformations for generating
recursive residuals and establishing weak invariance principles for the related CUSUM
test statistics without imposing normality on the distribution of the errors.

The object of the present investigation is to study some weak invariance principles for
recursive residuals generated by a class of orthonormal transformations when the errors
are not necessarily normally distributed. Along with the preliminary notions, these or-
thonormal transformations are introduced in Section 2. Section 3 deals with the main
theorems and their proofs. Section 4 is devoted to applications of the main theorems to
some CUSUM procedures based on recursive residuals and relates to some of their
asymptotic properties.

2. Preliminary notions. Consider the regression model
(21) Yt=ﬁ;xt+et, t= 1, e, n,

where, at time ¢, Y, is the dependent variate, x; = (x;1, + -, x:2)’ (for some . = 1) is the
vector of regressors, B: = (B:1, -+, Bex)’ is the vector of regression coefficients and the e,
are the error components. For testing the null hypothesis

Hy: B: = B (unknown) for all ¢

along with the i.i.d. character of the e, i.e., the constancy of the regression relationships
over time, Brown, Durbin and Evans (1975) considered the regression residuals
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2.2) wr = (Y, = biox)/(1 + x; (X X)) 7%} % k+1sr=n,
where, for every r(=k, - -, n),
(2.3) X=X, ,%), Yr=(Y,..+,Y) and b, = XX )XY,

Their CUSUM test is then based on the statistics
(24) D; =maxe<r=n Wy/{sn(n — k)"?} and D, = maxe<r=a | W, |/{sa(n — k)"?},

where
25) W,=Yipuw, k+1=r=n and st =(n—k) (Y. —X,bn) (Y. —Xuby).

When the e, are ii.d. r.v.’s (random variables) with a normal distribution, the w; are
also i.i.d. r.v.’s with the same normal distribution, so that the Brownian motion approxi-
mation for the W, can readily be incorporated in the study of the distribution of D7 or D,.
However, when the e, are not normally distributed, the w, are not necessarily independent
nor normally distributed, and hence, invariance principles for these recursive residuals
remain to be explored. Note that by (2.1) and (2.2), for each r(> k), w, can be expressed
as a linear combination of e; (i < r) plus a nonstochastic component which vanishes under
H,. Keeping this in mind, we conceive of a sequence {U;, i = 1} of i.i.d. r.v.’s, assume that

(2.6) EU;=0 and 0<o’=EU} <,
let U, = (Ui, ---, U,), n=1, and define
(2.7) Vn = (Vm+1, crey Vn), = AnUn, n=m+ 1’

where m is a nonnegative integer, A, is an (n — m) X n matrix with row vectors a,; =
(aj, 0.-), m + 1 =j < n and the a,; satisfy the following orthonormality condition:

(2.8) AA=1,_,, ieaa/=1 for j=m+1,-..-.-,n.

The class of residuals V,,, generated by the class of lower triangular or trapizoidal matrices
A, in (2.8), contains the w, as a special case, where m = k. In view of the assumed
normality of the e;in (2.1), Brown et al. (1975) did not require any further condition on the
x,;. However, for the general case to be treated here, we may need some of the following
conditions:

(2.9 limy, o Maxn<k<n{n ™ (Tj= | @2 )’} =0,
(210) Supn>m{maxm<ksnmaxlsjzk(k I Qrj — (Skj |)} =c <o,
(2.11) SUPn>m{MaXi<i<n—11 | Xh=inyir+2(@ri — Qriv1)|} < €2 < o,

where &, stands for the Kronecker delta and ¢, c; are finite positive numbers. It may be
remarked that (2.10) implies (2.9), but not conversely. Also, for recursive residuals gener-
ally, the a,; are close to 1, az;, j > k are all equal to 0 and the a.j, j < k are close to 0.
These conditions are reflected in (2.9) through (2.11). The main results are presented in
the next section.

3. The main results. For every n > m, we introduce a stochastic process W, =
{W.(t), t €0, 1]} by letting V; =0, i = m and

(1) Wi(t) =Nisk0Vi/{o(n —m)"?}, k(@) =m+[(n—m)t], 0=t=],

where o and the V; are defined as in (2.6), (2.7) and (2.8). Then, W,, belongs to the D[0, 1]
space endowed with the Skorokhod «/;-topology. Also, let W = {W(¢), ¢ € [0, 1]} be a
standard Wiener process on [0, 1]. We are primarily interested in the following weak

convergence result:

(3.2) W, =4 W, in the J;-topology on D[0, 1].



RECURSIVE RESIDUALS 309

Towards this, we consider the following two theorems under different sets of regularity
conditions.

THEOREM 1. Under (2.6), (2.7), (2.8), (2.9) and vy = EU} < =, (3.2) holds.
THEOREM 2. Under (2.7), (2.8), (2.10) and (2.11), (2.6) insures (3.2).

Note that the 4th moment condition in Theorem 1 has been counter-balanced in
Theorem 2 by the extra conditions (2.10) and (2.11).

ProoF oF THEOREM 1. To establish (3.2), we need to show that the finite-dimensional
distributions (f.d.d.) of {W, } converge to those of W and that {W,,} is tight. For arbitrary
rl),0st<-..-.<t.<landA= (A, ---,A) #0.Onletting k. (t;) = kj, 1 <j<r, we
have

33 L= AWat) = {o(n —m)}7 Bjo A Tis Vi,
={o(n —m)"}' Y Qi N T4 aw) Ui = Y1 eniUifo,
say, where, conventionally, Y% as = 0 for 2 > r. Now, by (2.6) and (2.8), (3.3) has zero
mean and variance
Yo chi—> Y-t Xe=1 MA (G A tr) = E {351 W (8)) > 0.
Hence, to establish the convergence of f.d.d.’s of {W,,} to those of W, it suffices to show
that the right hand side of (3.3) has asymptotically a normal distribution. For this, we

appeal to a special central limit theorem in Hajek and Sidéak (1967, page 153), and thereby,
we require only to show that

(3.4) lim,,_,«max;<i=nCii = 0.
Since A’A < o, we obtain from (3.3) that for every i, 1 <i=<n,
(3.5) 2= rWAN Xk a0)?/(n —m) < {rn/(n — m)}AN) {7 (T5= | aai )*3,

so that (2.9) insures (3.4). To establish the tightness of {W,,}, note that for every (m=<)&,
< k2 < k3 (=n), by virtue of (2.7) and (2.8), we may write

(36) Sk V= L aUn = byUs, say (/=1,2)
where
(3.7 bajblj= (kjis1— k),j=1,2 and b,.b}2 =0, by (2.8).

Further, note that E (U, U,U,U;) = 0 whenever at least one of the indices i, iz, I3, is
occurs with multiplicity 1. Hence, we obtain by some routine steps that

E{(Z?ikl+l W)Q(Z?ikzid W)Z)/(04(n—m)2) < (n/o")(n — m) 2 (¥l b%i)(zj";l b3))
(38) + 3(n — m)2{(Bh1 b1 (T -1 b3)))
= {(V4/04) + 3} (ks — k) (k2 — kl)/(n - m)z‘

Since W, (0) = 0, with probability 1, (3.1), (3.8) and Theorem 15.6 of Billingsley (1968)
insure the tightness of W,. 0O :

ProoF oF THEOREM 2. The convergence of the f.d.d.’s of {W,} to those of W follows
as in Theorem 1, since (2.10) implies (2.9), and hence we need to establish the tightness
part only. For this, note that by (3.1),

W) = {o(n — m)"*}™! Sty @i Ui + {o(n — m)"*}7! Vishaior Dj<i @i Uj
= W.1(t) + W,a(t), t€[0,1], say.

(3.9

-1 n

Since the a;U; are independent r.v.’s and (2.10) insures that n »  a% — 1 and
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n~'{max<;<,a%} — 0, as n — oo, under (2.6) and (2.10), {W,1} converges weakly to W; see
Problem 1 on page 67 of Billingsley (1968) in this respect. This, in turn insures that {W,,}
is tight. Thus, it remains to establish the tightness of {W,.}.

Let Sp,=Ui+ :-- + Up, k=1 and Sp = 0. Then, by the Hajek-Rényi inequality, for
everyc>0,0=<=a<%andg=1,

3.10) P{maxiss(k/n)n™"?|S;|>0c) = c*{n7' Ti., (k/n)7%

q/n
=<c? f t72dt = (1 — 2a)'c%(q/n)"%
0

Also, U; = S; — S;—1,i = 1, so that for every q, m+1<g=n,
{o(n —m)"*} " (Tlom1 Yj=1 a5 Uy) .
= {(n = m)/nY [T {@nj + Biomez (@i — @i} (Sj/0n)
+ Zfome (@ + Biejaz (@i= aian)} (Si/o V)],
where, by (2.10), |ia;j|< e, V1<j=i-—1,i=m+ 1, while, by (2.11),
|7 Y ymyre (@ij — @) = ce, Vi=1l,g=m + 1.
Hence, from (3.10) and the above, we have for q‘= m+[(n—m)é]+1,0<é<1,
maxm<k=g{o(n — m)"*}7" | Yt Y5k U |

=cla+e){(n—m)/n}V2Y 17 (j/n)"
q/n

(3~11) = C(C] + CZ){(n _ m)/n}l/zf t—l+a dt

0
= c(a + e){(n — m)/n}"?aY(g/n)?,
with probability greater than
(3.12) 1—(g/n)"2c7%(1 - 2a)™".

Thus, for every ¢ > 0 and n > 0, there exist a 8, 0 < § < 1, and a sample size no = no(e, 1),
such that for ¢ = m + [(n — m)8] + 1, the right hand side of (3.11) is bounded from above
by ¢, while (3.12) is bounded from below by 1 — 7, for every n = n, i.e.,

(3.13) P {suposs=s | Waa(t)| > €} <, V n=ne.
On the other hand, defining %.(s) = % and k. (t) = ¢, for § = s < ¢t =< 1, we have by (2.10),
E{Was(t) — Waz(s)Y* = {o*(n — m)} 'E[{T{2) Qfonyin@i) Ui}’
=(n-m)"' Y QClpyinai)’
(3.14) =(n—-m) Y@= ki) Tipin 0k
scin—m)7 k(@ = &) XioprJ 2 + Lo (@ = ) T iS5
=cid (g - k)/(n — m)}2

Hence, using Theorem 12.3 of Billingsley (1968, page 95) along with (3.14), we conclude
that for every ¢ > 0 and n > 0, and & > 0 defined by (3.13), there exist a p:0 < p <1 and a
sample size ny, such that for every n = ng,

(3.15) P{Supsss<15s+psl I Wha(t) — Wn2(s)| > e} <.
Then, (3.13) and (3.17) insure the tightness of {W,}. O
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4. Some applications to CUSUM tests. We shall discuss the role of Theorems 1
and 2 in the context of some CUSUM tests considered in the literature.
Consider first the simple location model, where, in (2.1), £ = 1, and x; = 1, V £. In this

case,b,=Y,=r'Y_1 Y;,r=1and

@) w= (Y. - Y )1+ -)Y={r-DY, -2 Y}/ {rr =1} r=z2
Thus, we have here m = 1 and for every j = 2,

(4.2) aj=0-j N ai=-(jG-D}" 1=si<j-L

Now (4.2) insures (2.10), while (2.11) holds with ¢, = 0. Thus, by our Theorem 2, we
conclude that (3.2) holds under (2.6). Also, s, — o in probability under (2.6); see Sen and
Puri (1970). Hence for the CUSUM test for a shift in location, under Ho, and (2.6),

(4.3) D;; -y supo=<1W(t) and D,—g SUPo=t=1 | W@)|.

A similar result holds for the Cramér-von Mises type statistic based on the recursive

residuals in (4.1). This explains the robustness of the CUSUM tests against non-normality

of the distribution of the errors; finiteness of the second moment of the e; suffices.
Consider next the general regression model in (2.1). First, assume that for some A > %,

(4.4) maxi<;<X;(Xi-1Xn-1) X, =0(n™), Vo=m+ 1

Then, by (2.2) and (2.3), for every j = m + 1,

(45) aj; = {1 + x}(X}_IXj_l)_lxj}‘l/z,
(4.6) aji = X}(X}_IX}_I)_IX,/{I + x}(X}_lxj_l)_lxj}l/Z, i=1.--,7—1,
so that

@47 ak= XX Xm) %) = XXX o) XXX X o) T'xe= 07,
for every i:1 <i=<j— 1andj=m + 1. Further, by (2.9) and (4.7),
maxn<k=n{n (Xf= | @i |)?} < maxmarzn {(n7'(n — k) Tjk aji)
(4.8) < maxm<r=n{n'(n — k)(@} + X rr1 ar)}
< max,<= {1+ 0E >} =0(Q),

as A > %. Hence, (2.9) holds, so that Theorem 1 holds under (4.4) and »4 < o0.
Next, we proceed to relax the condition that », < . Note that

49) | @i— @] =&)X, )7 — xi)} /{1 + XX X;-1) 7%,

= | X XaXm) X - x|, V1Isisj—-2, jzm+ 1l
Thus, if, foreveryj=m+ land 1<=i<j — 2,
(4.10) [(x; — Xi+1) (Xj1 Xj-0) %5 | = O 72),

then, (2.11) holds, while (2.10) holds when (4.4) holds with A = 1. As a result, Theorem 2
holds when (4.4) holds with A = 1 and (4.10) holds. Under these extra conditions on the a;,
we do not need that », < «. As a simple example, consider the classical polynomial
regression model, where x; = (1, ¢, - - - , t”), for some p(=0),t =1, - - -, n. In this case, (4.4)
holds with A = 1 and (4.10) holds, so that Theorem 2 applies under (2.6). For this simple
model, some alternative tests are due to MacNeill (1978). However, his test statistic is
based on the residuals Y; — b,x;, i =1, -- - , n (which are not the recursive ones) and the
invariance principles (considered by him) follow more easily by an appeal to the existing
results in Billingsley (1968). By contrast, our results do not follow directly from such
theorems. Thus, the current Theorem 2 provides the robustness picture of CUSUM and
related tests for polynomial regression models based on the recursive residuals.
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We conclude this section with some discussion on some related tests and their robustness
properties. For the normal theory location-change model, some CUSUM tests (not based
on recursive residuals) are discussed in Sen and Srivastava (1975), while MacNeill (1974)
has considered some CUSUM tests for some exponential distributions. Invariance princi-
ples for these test statistics follow by more direct applications of the existing results in
Billingsley (1968). The same conclusion applies to the CUSUM types tests considered by
Schweder (1976): tests based on recursive residuals can be constructed for the shift model
and for the asymptotic distribution theory, one need not confine to normal distribution of
the errors. For some nonparametric procedures, see Bhattacharya and Frierson (1981), A.
K. Sen and Srivastava (1975) and P. K. Sen (1977, 1978).

We have considered the invariance principles without any specific rates of convergence
for finite or moderately large sample sizes. Such a rate of convergence depends on the
particular design matrix A, as well as the underlying distribution of the errors. Any
uniformity result over a class of A, and/or a class of error distributions may be quite
difficult to obtain.

So far, we have considered the case where the null hypothesis H, holds, i.e., the U, all
have expectation 0. If U; = & + e;, where the e, are iid r.v.’s and we define y; = ) j<i§;a:j,
i = m + 1, then, for the V; — u;, i = m + 1, Theorems 1 and 2 apply. Hence, whenever
{(6(n — m)"*) s ), t € [0, 1]} converges to a smooth function y = {y(¢), t € [0, 1]}, the
asymptotic power of the CUSUM tests can be expressed in terms of the boundary crossing
probability of a drifted Wiener process W + y. A smooth vy arises typically in the context
of Pitman type local alternatives. In general, y is not so simple as to allow an algebraic
expression for this probability. However, the recent results obtained by DeLong (1980) (in
a different context) present excellent prospects for an adequate simulation study.
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led to some deeper discussion in Section 4.
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