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A STOCHASTIC APPROXIMATION BY OBSERVATIONS ON A
DISCRETE LATTICE USING ISOTONIC REGRESSION!

By H. G. MUKERJEE

The University of Iowa

A new non-parametric stochastic approximation procedure for estimating
the roots of a non-decreasing regression function is described. The observa-
tions are taken on a discrete lattice and the estimation is based on the roots
of the sample isotonic regression function fitted to the observed values.
Asymptotic properties of the estimator are proven. When specialized to the
bio-assay case it gives asymptotic results similar to those obtained by Derman
for his up-and-down method but under weaker assumptions than Derman
required.

1. Introduction. Let R denote the real line, N the positive integers, and I the set of
all integers. For each x € R let H(-|x) be a distribution function and let m(x) =
Jy dH(y|x) define the corresponding regression function. m is assumed to be unknown;
however, the experimenter is allowed to take unbiased observations from H(- | x) for any
x. Suppose @ is a root of the equation m(x) = a. The object is to estimate 6.

When 6 is unique, Robbins and Monro (1951) suggest taking x; as an arbitrary initial
estimate of § and generating future estimates by Xn+1 = X» — @x(y» — @) for n > 1, where
the conditional distribution of y, given the past is H(- |x.) and {a,} is a fixed positive
sequence. Typically a, = a/n for some a > 0. This procedure and its many variations have
been studied extensively. The convergence of x, to 6 in different modes has been studied
as have the asymptotic normality of x, and some optimal properties. The book by Wasan
[6] contains an extensive bibliography. From a practical viewpoint there are two difficulties
with this procedure. It may be that the stimulus (the variable x) can be changed only by
integral multiples of some unit. Secondly, “sample preparation” at “odd” values of x may
be difficult, impossible, or expensive. For these cases it may be desirable or necessary to
take observations at points of some lattice L = L(do, h) = {d; = do + ih : i € I} for some
do € R and h > 0.

For many experimental situations it is reasonable to assume that the regression function
m is non-decreasing. Under this assumption we fit an isotonic regression function [1, 2] to
the observed values taken on some lattice L and base our estimate on the solution of 7 (x)
= a, where 77 is the sample isotonic regression function. A similar procedure can be used
with antitonic regression functions when m is assumed to be non-increasing. In the
Robbins-Monro procedure the estimates {x,} of § are Markovian in nature. After n steps
the entire influence of the past is contained in the estimate x,+1 = %, — @n(yn — a). This
makes the estimate vulnerable to one or more “bad” observations (x. going the wrong
direction) near the end. Using isotonic regression it is reasonable to expect that the
“weights” of positive observations on the right and negative observations on the left will
“soften the blow” of occasional “bad” observations.

In the bio-assay problem of response-no response to various dosages of a treatment, the
regression function is a distribution function, m(x) being the probability of response
(indicated by the value 1) and 1 — m(x) being the probability of no response (valued 0) at
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dosage x, x € R. Dixon and Mood [4] approximate 6 in this case using the so-called up-
and-down method by observations on a lattice. The results proven for this procedure and
its many variations [7] depend on the parametric assumption that the regression function
(or one obtained by a suitable transformation of the variate) is a normal distribution
function. Intuitively, observations far away from 6 contribute to the knowledge of @ via
this parametric assumption. Thus the results are globally dependent on this model
assumption which may not be very good. Derman [3] describes a non-parametric up-and-
down method and derives a result concerning the asymptotic properties of his estimate.
Our method specialized to the bio-assay case gives similar results under weaker assump-
tions. It is also argued that in a sense this procedure is asymptotically more efficient.

2. Model and procedure. For notational convenience we assume a = 0 from now
on.

(1) We assume that m is a real valued function, that y and § are real numbers with y
= §, that sup.<; m(x) <0 for each ¢t < y and inf,~, m(x) > 0 for each ¢ > §, that m(y) <0 and
m(8) = 0, and that m(x) = 0 if y < x < §; y and § may be equal.

Let L = L(dy, h) (as defined in Section 1) be an arbitrary lattice of observation points
for some dy € R and A > 0. We wish to estimate m~' {0} by a point using a stochastic
approximation procedure, the estimate after n steps being denoted by 6,. We initially take
“observations” yi, ---, y, at “observation points” x;, ---, xx (respectively), fixed or
random, in L. At the n-th stage (n > 1) we take either one or two observations in a manner
to be indicated later. It is assumed that the conditional distribution of an observation y
given any value of the corresponding observation point x is given by H(-|x) and is
otherwise independent of the past and any other observation in the present.

After n stages (through time n) let (xi, y1), -+, (xx,, Y&,) be the ordered pairs of
observation points x, and observations y; where k&, is the total number of observations
taken through time n written in increasing order in time; the ordering among the
observations taken at any given time (stage) having more than one observation will be
given later.

Let I4(-) be the indicator function of the set A.

For r < s, both in L, let

n(r, s) = 3y Ina (%),
let
An(r, 8) = 38 Iy (x)/n(r,s)  if n(r, s) #0,

and let A,(r, s) = 0if n(r, s) = 0. We define the estimate of m restricted to {x;, x2, - - -, xs }
to be the sample isotonic regression function m, defined by

m,(x) = max,<, mine, A,(r, s), x € {x1, X2, -, Xn }.

It is the least squares fit of the observed values subject to the constraint that the fitted
values define a non-decreasing function on {x;, x2, -+ -, xz,} in the order of the reals. See
the book by Barlow et al. [2] for an extensive discussion on the theory and applications of
isotonic and antitonic regression functions. Although isotonic regression functions are
usually used to estimate isotonic functions we do not need to assume that m(-) is monotone
to get our results. Let x,, and x.» be the smallest and the largest values, respectively, of
the observation points x;, - - -, x, through time n. Retaining the same symbol, we extend
m, to a function on R by connecting adjacent points on the graph of m, by straight line
segments, and by defining m,(x) = m,(x,x) for x > x.a and m,(x) = Mmy(xXnm) for x < xXpm.
The function m, thus defined is a continuous polygonal non-decreasing function on R.

From the definition of m, we note that only the following cases can occur:

a) my(x) > 0 for all x;

b) m,(x) < 0 for all x;

¢) m;'{0} N [Xum, Xnar] is a single point or a non-empty finite closed interval: call it
[a, b].
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Then in the corresponding cases above, 6, is defined by:

a) 0, = xum — h;

b) 0. = x.m + h;

c) 6, = %(a + b).
The observation point(s) for (n + 1)st stage, given the preceding stages, are defined as
follows:

i) if 6, € L we set kn+1 = ko + 1 and xp, 11 = 0,;

ii) if 6, & L we set kue1 = Ry + 2, Xp+1 = max{d € L : d < 6.}, and x; +» = min{d €
L:6,<d).

3. Asymptotic results. We assume all events and random variables are defined on
some appropriate probability space (2, X, P).

Notation. Equality (inequality) between random variables implies a.s. equality (in-
equality) only. All convergences are a.s. convergences. In definitions and other statements
phrases such as “for each (or all) n € N” and “as n — «” will be frequently omitted when
these implications are obvious. Expressions containing an empty sum as a multiplicand
will be assumed to be zero.

Let 0o = o(x1, - - -, x,) and let o, = o(x1, + -+, Xp415 Y1, * -+, V&), where o(-) indicates the
o-fields generated by the random variables within the parentheses. Note that even though
the ordering of the x/s is arbitrary when multiple observations are taken at some stage,
the conditional distribution of y. given o, is still given by H(.|x:) because of our
assumption of independence of observations in the present conditioned on the past.

Let 2, = yr — m(x:) and let P,(-) and E.(-) denote conditional probability and
expectation, respectively, given ;. Note that

(2) E;1(z:) = 0.
If X is a random variable having distribution function H(. | x), let Fy(¢) = P{| X — m(x) |
= t}. Define F(t) = sup.F.(t). This implies P,_1(| zx | = t) =< F(¢) for all ¢ = 0. We assume

3) Ft) -0 as t— and j t|dF(t)| < .
0

Note that (3) implies
3" f F(t) dt < .
0

Let m = max{i € I : m(do + ih) < 0} so that d,, = max{d € L : m(d) < 0}. Similarly let
M = min{i € I : m(d, + ith) > 0} so that dyy = min{d € L : m(d) > 0}. Note that d,. and
dy are well defined from our assumptions about m.

If A, is a sequence of events (sets), the notation “A, eventually” will mean that A,
happens for all n sufficiently large, i.e., “A, eventually” is lim inf A,.

THEOREM. Under assumptions (1) and (3)

(A) P[d, = xr < du eventually] =1 and

(B) Pldn = 0, < du eventually] = 1
for the procedure described in Section 2.

We first give two lemmas, the second of which contains the only result we need in the
proof of the theorem from our distributional assumption (3).

Let B be any Borel subset of R. Let ng = Y%, Ig(x,) and let o = lim,_.., ng, finite or
infinite. Note that np and g are random variables (possibly extended). Note also that
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Ig(x;) and np are both o, ;-measurable, facts we will use frequently without explicit
reference.

(*) A sequence {z:}, adapted to an increasing sequence Y of sigma-algebras, will be
said to satisfy (*) if there exists a non-increasing function F on [0, ) having F(0) = 1,
satisfying P[| zx+1| = t| Yx](w) = F(t) a.s. for each &, and satisfying (3).

LEmMmA 1. If {27} is adapted to Y., satisfies (*) for F, and satisfies E[z}.1| Y ](w)
= 0 for each k, then

1
E Z:;l Z,*—) 0 a.s.

ProorF. When {z,;} an independent sequence, the result is well known. The proof in
this case is similar to the proof in the independent case.

LEMMA 2.

1
. Y1 2idp(x,) > 0  as. on [ng— »].
B

ProoF. If wg(w) = & let z}(w) = 2z,(w) where i is the kth positive integer for which
x(w) € B. If wop(w) < k let z;(w) = 0. The sequence {z;} adapted to the appropriate
sequence of sigma-algebras satisfies (for £ = k) the conditions of Lemma 1. The conclusion
of Lemma 2 follows immediately from that of Lemma 1.

PROOF OF THE THEOREM. Let € > 0 be arbitrary. From the way m,, was defined, m,,()
= Mmp(Xnar) = MaXe<y , An(r, Xnar). Thus m,(0) = An(dy, xnm) = An(dy, ) if there is any
observation in [dy, ») after n stages. We note that in case (b) we have xp.1m = xx ,, = Xnn
+ h and that x,+1.m = X.um otherwise. Thus m,() < 0 i.o. if and only if x,, — oo, which in
turn implies n(da, ) — .

From Lemma 2, on [n(dy, ) — ],

1
n(dM, ) Zf:nl ZiI[dM’W}(xi) = A"(dM’ ) _m Zfél m(xz)I[dM,m)(xi) — 0 a.s.
and
1
n(d, ) Tezy m(x) gy (%) = m(dar) >0

for all n large enough so that A, (da, ») > 0 for all n large enough. Thus
P[m,() < 0i.0.] = P[m,(®) < 01i.0., Xnpyr — ®]
(4) =< P[my(x) <010, n(dy, ) > »]
= P[m.(%) =< 0 i.0., n(du, ©) — ]
=< P[A.(dwm, ») = 01i.0., n(duy, ®) > ] =0.

Similarly, one can show that P[m,(—) > 01i.0.] = 0.
Since Xpm < Xi < Xnpr for by < i < kns1 if Ma(Xam) < 0 and m,(xn0r) = 0, there exists no
€ N such that if

F = [dn-n, = xn =< dpsn, for all n € N]

then P(F) =1 —e.
Let F, = [x, = dy+r1.0.]for k=0, 1, - - -, no. We will prove that

(5) P[F N FpN {ma(duer) <0i0}]=0 for k=0,1, -, n,.
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Now P[F N Fr N {m.(dm+r) < 01i.0}]
= P[F N F; N {minzp+rAn(dasr, d)) <1i0.}]
= Zf‘g{;ﬁk P[F NF,N {A,,(dM+k, d,) =0 10}]

and, using the same argument used in proving (4), we see that the last expression is zero,
proving (5).

We now show that if &’ is the largest integer % such that x, = dur i.0. then Pk’ = 1]
= 0. Let

F = F — Mocten, [Fr N (ma(daer) <010} ]

By (5), P(F) = P(F). We will show that Fn {¥ =1} is empty. Suppose not. Since x, =
dyra 1.0., mn(dar+r) < 0 only finitely often on F. But according to our procedure if m,(dazx)
> 0 and we take an observation at du.+ at the (n + 1)st stage, then m,(dp+r-1) <0, xp +1
= dpew-1, and xp +2 = dprr. Thus x, = dpyrer -1 i.0. and m, (dy+r-1) = 01.0. on Fnr =
1]. This is a contradiction. Hence, P[k’ < 0] = PIFN{k¥=0)]=P(F)=P(F)=1-ce
Since € > 0 was arbitrary we have shown that P[lim sup, x, < dx] = 1. Similarly, one can
show that P[lim inf, x, = d] = 1, thus proving (A). According to our procedure if §, is
outside of [dm, dy] then x +1 Or xx 42 or both are outside of [dr, di] and thus (A) implies
(B). This completes the proof of the theorem.

4. Remarks. A) It is clear from the proof of the theorem that a variety of strategies
can be employed in the first few stages of the experiment without affecting the asymptotic
results. In applications it might be advisable to start with a coarser grid L’ C L and have
enough observation points sufficiently spread out to cover m™ {0} with a reasonable degree
of certainty. It is also possible in cases a) and b) to choose the next observation point more
than one unit (of 4) farther than the appropriate extreme observation point. Moreover,
this could be subjectively based on the shape of m,.

B) Suppose m™' {0} is some unique point 6, § & L, and m is linear between d, and dx.
Since d,, < x. < du eventually with probability 1 we expect m,' {0} = 6, & L frequently.
In this case it is possible to improve on the estimate of § by taking approximately
| Mn(xk,+1) |/[Mn(xk,+2) — Mn(x,+1)] proportion of the observations at xz+2 and
| man(xr,+2) |/[Mn(xr,+2) — Ma(xk,+1)] proportion of the observations at x;,+1 (n + 1)st at
the stage whenever m;,' {0} = 6, € L. As a matter of fact any procedure for choosing one
or more observations and observation points when 6, & L will give the conclusion of the
theorem provided only that x, = d, i.0. and x, = di:1 i.0. whenever 6, € (d,, d.+1) i.0. For
instance one could take a single observation by an appropriate randomization procedure
like tossing a coin.

C) For the bio-assay case Derman [3] obtains

P[lim sup, 6, <60 + h,liminf, 6, =60 — h] =1

for his procedure under the assumptions that m™' {0} = 6 and that m is strictly increasing
in the interval [# — h, 8 + h]. Our procedure applies to a fairly general class of regression
functions and gives results similar to those obtained by Derman for the bio-assay case, but
our model assumptions are weaker than Derman’s.

D) In all up-and-down methods {x.} is an irreducible Markov chain where all states
are recurrent and non-null [3]. Thus with probability 1 some fraction of the observations
is taken far away from the root as n — . In the non-parametric case this amounts to a
(possibly large) loss of efficiency not incurred in our method.
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