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INVARIANT TESTS FOR MEANS WITH COVARIATES!

By JOHN MARDEN AND MICHAEL D. PERLMAN
University of Illinois and University of Chicago

We consider the problem of testing a hypothesis about the means of a
subset of the components of a multivariate normal distribution with unknown
covariance matrix, when the means of a second subset (the covariates) are
known. Because of the possible correlation between the two subsets, informa-
tion provided by the second subset can be useful for inferences about the means
of the first subset. In this paper attention is restricted to the class of procedures
invariant under the largest group of linear transformations which leaves the
problem invariant. The family of tests which are admissible within this class is
characterized. This family excludes several well-known tests, thereby proving
them to be inadmissible (among all tests), while the admissibility (among
invariant tests) of other tests is demonstrated. The powers of the likelihood ratio

test LRT, the D2, — D2 test, and the overall T? test are compared numeri-

cally; the LRT is deemed preferable on the basis of power and simplicity.

1. Introduction. Tests for the equality of the mean vectors of two multivariate
normal populations when covariates are present have received considerable atten-
tion (e.g., Cochran and Bliss (1948), Rao (1946, 1949), Olkin and Shrikhande
(1954), Stein (1952), Giri (1961, 1962, 1968), Cochran (1964), Subrahmaniam
(1971), Subrahmaniam and Subrahmaniam (1973), Koziol (1978)). By considering
the difference of the two sample mean vectors and the pooled covariance matrix,
the problem can be studied in the following one-population form: observe (X, S),
independently distributed, where X: (p + ¢) X 1 and S: (p + q) X (p + g) have
the multivariate normal and Wishart distributions, respectively, i.e.,

X~N,_,(p,Z) and S~ W, (» 3).

r+q pt+gq
Assume n > p + ¢ and I nonsingular, insuring that S is nonsingular with probabil-
ity one. Partition p and = as

_(Hl) _(En 212)
= s =
103 30 Zn
where ;i p X 1, uyi g X 1, 2111 p X p, 2,5t ¢ X g, and partition X and S similarly.
Consider the problem of testing
Hy py =0, p, =0, X unspecified
(1.1 versus
H;:p, #0, p,=0, = unspecified,
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26 JOHN MARDEN AND MICHAEL D. PERLMAN

based on (X, S). The components of X,, having known means, are covariates.
Define the statistics L and M and the parameter A by

- , — -1 —
L = (Xl _ :glezz 1Xz) (Sn - S12S22 lS21) (Xl - S12S22 le)
1+ X}85'X, ’
M = X2IS2;1X2,
, — -1
A= “‘1(211 - 23122221221) 14T

The range of the pair (L, M) is (0, 0) X (0, c0), while 0 < A < o0. Since u, = 0,
the joint distribution of (L, M) is given by

() :
(12) M~ LMy K
X, Xn—g+1
where
(1.3) v, =p, v,=n—p—q+1,

x,, (A/(1 + M)) denotes a noncentral chi-squared variable (with noncentrahty
parameter A/(1 + M)) independent of the central chi-squared variable x,, , and x2 "
and x2_ o+1 are independent central chi-squared variables. Thus, the joint dlstnbu-
tion of (L, M) depends on (u, =) only through the value of A, and M is an
ancillary statistic. Under H,, L and M are independent.

For the testing problem (1.1), Rao (1946) and Cochran and Bliss (1948) proposed
the “conditional” test, which rejects HO when

(1.4) L > F"‘

vy, ¥2?

where F, is the upper a point of the Fa, » distribution. For each fixed value of M,
this test is the uniformly most powerful conditional level a test for testing A = 0
versus A > 0 based on the conditional distribution of L given M. In the notation of
Rao (1949) and Subrahmaniam and Subrahmaniam (1973), the “conditional” test
rejects H, for large values of (D2, — DX(Q + D2)~', where Q is a constant
depending on sample size. Rao (1949, pages 352, 357-359) noted that in some
situations the estimate of A based on D? qu is slightly more efficient than that

Ptq
based on (D2, — D2)X(Q + D})™', and therefore suggested that a test of H, based
on D2 , — D}? may be more powerful than the “conditional” test. In our notation,

the test suggested by Rao rejects H, when

(1.5) L1+ M) >d,

where 0 < d, < oo is a constant. The values of the a-level critical points 4, have
been tabulated by Subrahmaniam and Subrahmaniam (1973). (It is not always the

case that if a statistic 7, is a more efficient estimator of a parameter A than T, then
a test of Hy : A = A, based on T, must be more powerful than one based on T}; for
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examples, see Sethuraman (1961) and Sundrum (1954). In fact, our results in
Sections 3 and 4 indicate that for the present problem, test (1.4) is preferable to
(1.5).)

A second alternative is to ignore the information that u, = 0 under the alterna-
tive and to treat the variates and covariates alike, i.e., to replace (1.1) by the
problem of testing

H,:p=0, Zunspecified
(1.6) versus
Hi:p#0, Z unspecified.

The overall Hotelling 72 test appropriate for (1.6) rejects H, when

(7)) X'STX=(1+L)(1+M)—1> 7:—-’;’—%5“+q,,,_,,_q+,.

In the notation of Rao and the Subrahmaniams, X’S ~'X = (constant) Dpz+ -
Olkin and Shrikhande (1954), Stein (1952), and Giri (1961) studied this

problem from a decision-theoretic viewpoint, exploiting the invariance of the

problem (1.1) under a group G of linear transformations. Let G be the group of

(p + 9) X (p + ¢) nonsingular matrices of the form

A= Ay A ’
0 4,

where 4,; :p X p and 4,, : ¢ X q. The group G acts on the sample space via
A4 : (X, S) > (4AX, ASA’) and on the parameter space via 4 : (p, Z) -
(Ap, AZA’). The maximal invariant statistic is the pair (L, M), and the maximal
invariant parameter is A. Restricting attention to G-invariant tests, the problem
(1.1) reduces to that of testing

(1.8) Hy:A=0 versus H :A>0

based on (L, M). Olkin and Shrikhande (1954) and later Giri (1961) showed that
the “conditional” test (1.4) is in fact the likelihood ratio test (LRT) for (1.1). (See
also Giri (1962).) Giri (1961) also stated, and verified for a few specific values of
(n, p, 9), that no uniformly most powerful (UMP) invariant level a test exists.
(Note that since ¢ > 0, the maximal invariant statistic is two-dimensional whereas
the maximal invariant parameter is one-dimensional. By contrast, when g = 0, the
usual Hotelling 7% problem obtains, in which the maximal invariant statistic and
the maximal invariant parameter are both one-dimensional, and a UMP invariant
level a test does exist.)

Stein (1952) and Giri (1968) described the locally most powerful (LMP) invariant
level a test for alternatives A — 0, which rejects H, when

v, — v,

(1.9) (1+ L)1+ M) > Cao
where c, is a constant satisfying —»,/», <c¢, < 1. Stein (1952) and Giri (1968)
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also stated that the overall 72 test (1.7) is the asymptotically most powerful (AMP)
invariant level « test for alternatives A — oo (see Subsection 3.2). Note that the
tests (1.4), (1.5), (1.7) and (1.9) are mutually distinct (unless & = a*—see Subsec-
tion 3.4).

Cochran (1964) numerically compared the powers of the LRT (1.4) and the
overall T? test (1.7) using, however, an inaccurate approximation for the power of
the former. Subrahmaniam and Subrahmaniam (1973) gave a detailed numerical
comparison of the powers of the LRT and the D2 , — D2 test (1.5). They
compared the unconditional power of the test (1.5) to the conditional power of the
LRT, conditioning on the value of the ancillary statistic M, for various fixed values
of M. For all values of M except those in a neighborhood of zero, they found the
conditional power of the LRT to be much smaller than the unconditional power of
test (1.5), and concluded that “the unconditional procedure (test (1.5)) is vastly
superior to the Cochran and Bliss conditional test (LRT).” Unfortunately, this
comparison of conditional power to unconditional power is misleading, since M
assumes values in the above-mentioned neighborhood of zero with probability
greater than %, usually about 0.7. Furthermore, conditionally on M the two tests are
based on the same test statistic (L), and each rejects H, for large values of L (as
must any reasonable test for problem (1.8)—see the second sentence following
(2.4)). Conditionally, the two tests differ only in the way the conditional level
depends on the ancillary M. For the LRT, the conditional level is fixed at «
regardless of the value of M, while for test (1.5) the conditional level is a strictly
increasing function of M whose expectation with respect to M is a. Thus, the two
tests have different conditional levels for almost every value of M, so it is not
appropriate to compare their conditional powers. A power comparison can be
based only on unconditional power, i.e., on the expectation (with respect to M) of
the conditional powers.

In this paper we present results which clarify and complement the decision-
theoretic work of Olkin and Shrikhande, Stein, and Giri and the numerical work of
Cochran and the Subrahmaniams. We attack the problem (1.1) by restricting
attention to G-invariant tests only, i.e., those based on (L, M), thereby reducing
(1.1) to (1.8). By closely examining the likelihood ratio

(1.10) Ry(I, m)= ’}28 Z; ,

where f,(/, m) is the joint density function of (L, M) when A obtains, in Section 2
we present a necessary and sufficient condition (Theorem 2.1) for admissibility of
tests for problem (1.8), which then leads to several useful necessary conditions. The
latter enable us to conclude in Section 3 that the test (1.5) is inadmissible for
problem (1.8), and a fortiori inadmissible for the problem (1.1). The overall T2 test
(1.7), being the unique AMP test for (1.8), is admissible for (1.8) (which does not
necessarily imply admissibility for (1.1)>—however, see subsection 3.6). The be-
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havior of the LRT (1.4) is rather curious. We show in subsection 3.4 that there
exists a level a* (0 < a* < 1) depending on (»,, »,) such that for a* < a < 1, the
level &« LRT is inadmissible among invariant tests, whereas for 0 < a < a*, the
level a LRT is admissible among invariant tests (in fact, coinciding with the LMP
invariant test when a = a*). Specific examples of Bayes tests and other admissible
tests are also presented in Section 3.

In Section 4 we present (unconditional) power comparisons for the LRT,
D}, — D} test, and overall 7?2 test—(1.4), (1.5), and (1.7), respectively—which
improve and clarify the tabulations of Cochran (1964) and Subrahmaniam and
Subrahmaniam (1973).

Since the AMP and LMP invariant level a tests are both admissible among
invariant tests, and are distinct, it is clear that a UMP invariant level a test cannot
exist. In Section 5 of Marden and Perlman (1977), we point out the stronger fact
that for all (n, p,q) and for each fixed A;,, 0 < A; < oo, the most powerful
invariant test of A = 0 versus the simple alternative A = A, depends nontrivially on
A,, which was shown by Giri (1961) only for two specific values of (n, p, q).

Finally, the proof of Theorem 2.1 is given in Section 5 of the present paper. This
theorem both relies on and partially extends previous work of Farrell (1968) and
Ghia (1976). A brief exposition of Ghia’s work is included in this section.

2. Necessary and sufficient conditions for admissibility in problem (1.8). For
the remainder of this paper unless otherwise stated, consideration is restricted to
the family of invariant tests for problem (1.1), i.e., the family of tests based on the
maximal invariant statistic (L, M). Our results are based on Theorem 2.1, proved
and discussed in Section 5, which characterizes the class of admissible tests for
(1.8). Recall that a test function ¢ = ¢(/, m) is simply a measurable function of
(1, m) satisfying 0 < ¢ < 1.

THEOREM 2.1. A test ¢ is admissible for problem (1.8) if and only if it is of the
form

o(,m)y=1 if (1+ DA+ m)>wy'!

2.1) 1 if fAX[(Ry — 1)/A]7%(dA) + [¥ Rym'(dD) > ¢

=0 otherwise

for a.e. (I, m) [ Lebesgue], where R, = R,(l, m) is given by (1.10), |c| < 00, 0 < w,
< 1, #° is a finite measure on [0, 1], and 7' is a locally finite measure on [1, ), (i.e.,
7! assigns finite mass to every compact set).

ReMARk 2.2. It is shown in Lemma 5.3(d) that (R, — 1)/A is uniformly
bounded in (4, /, m) for 0 < A < 1, so the first integral in (2.1) is always conver-
gent.
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ReEMARK 2.3. The expression (2.1) can be rewritten as

o(hLmy=1 if (1+ D)1+ m)>w;!

22) R=1 if y%RAA=O+ J3[(Ra = 1)/A]7%(dA) + 2 Rym'(dB) >

=0 otherwise,

where y = 7%({0}). Thus, if 7#°((0, 1]) = 7'([1, 00)) = w, = 0, (2.2) reduces to the
LMP invariant tests (1.9) (see also subsection 3.1), whereas if y = #%(0, 1]) =
7'([1, ©)) = 0 and 0 < w, < 1, (2.2) reduces to the AMP invariant tests (1.7) (see
also subsection 3.2).

REMARK 2.4. We adopt the terminology of Ghia (1976) (see also Theorem
7.1 of Farrell (1968), and our Section 5) and refer to tests of the form (2.1) and
(2.2) as truncated generalized Bayes tests. The measures 7° and #' determine a
(possibly improper) prior distribution for A over (0, 0); the value of y = #°({0})
determines a prior mass assigned to “local alternatives,” ie., A ~0. The sets
{(l,%)l(l + 1)1 + m) < wy''} are called truncation sets; the value of w, de-
termines the (exponential) rate at which the power function of ¢ approaches 1 as
A — oo (see Subsection 3.2) and may be thought of, roughly, as indicating the
magnitude of the prior mass assigned to “distant alternatives,” i.e., A ~ co0. (Note:
Farrell and Ghia require that the alternative space be topologically separated from
the null hypothesis. Their definition of a truncated generalized Bayes test, applied
in the present problem, would replace the two integrals in (2.1) by /&% R,7(dA) for
a locally finite measure 7. As Theorem 2.1 shows, this definition is too restrictive
and would exclude interesting admissible tests—see Section 3 for examples, and
also Remark 5.8)

In the remainder of this section, Theorem 2.1 will be used to obtain several
useful necessary conditions for admissibility of tests for (1.8)—see Theorem 2.5.
Since the integrals appearing in (2.1) are linear in R,(/, m), monotonicity and
convexity properties of R,(- , -) for fixed A are inherited by the acceptance regions
of admissible tests and thus determine necessary conditions for admissibility (the
truncation sets in (2.1) are easily handled separately, although actually they may be
ignored—see the proof of Theorem 2.5 and Remark 2.8). We proceed to examine
R,.

Since M is an ancillary statistic and is independent of L under H,, the likelihood
ratio R, of (1.10) can be written as

(23) Ry(l,m) =

Salllm) [ A w Gk Al k
IZ0) _ep[ 2(l+m)] k'°k![2(l+l)(l+m) ‘
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where
o(3)r(5=+ 4
0 RTEEaRERy

and »,, », are given in (1.3). The infinite sum in (2.3) is a confluent hypergeometric
function of type ,F,—see Abramowitz and Stegun (1964), Chapter 13. It is
apparent that R,(/, m) is increasing in / for fixed m, so that by Theorem 2.1 (or by
a simple direct argument based on the conditional monotone likelihood ratio of L
given M), any admissible test for (1.8) must be monotone in / for fixed m, i.e., the
acceptance region must be of the form / < g(m) for some function g. This
approach does not seem fruitful, however, since it is difficult to determine neces-
sary conditions which must be satisfied by the function g to yield an admissible
test; this difficulty is due to the fact that R,(/, m) does not admit a factorization in
which the variables / and m appear separately. Instead, we shall consider several
homeomorphic transformations of the pair (/, m) to new variables, in terms of
which R, admits simple factorizations with interesting monotonicity and convexity
properties. Although most of the transformations we consider are natural, they
were selected in an ad hoc manner—there may well be other transformations
which would lead to further necessary conditions for admissibility (see also
Remark 2.9). We do not yet have a systematic procedure for selecting such
transformations, which would be applicable to other testing problems such as those
treated by Marden (1977).

The following four homeomorphic transformations of (/, m) will be considered:

(I, m) & (v, u)
(2.5) _ ! _ 1
0_(1+l)(1+m)’u_l+m’

(I, m) & (v, w)
(2.6) e 1 .
YEET YT O D+ m)

{ (1, m) & (v, w)

2.7) v’ = log v:

28) { (I, m) & (v*, u)

*
v*=10",
where the constant r* = r*(»,, »,) is defined as follows:

(2.9) 7* = inf, o[ Var,(K)/E,(K)],
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where K denotes an integer-valued random variable with probability mass function

Sk &
_ k%
(2.10) P{K=k)=p(k)=—2—v0, k=012

J
® —.'—Z"

It will be shown in Lemma 2.11 that max (3,7,/(»; + 7)) < r* < 1. From
(2.5)-(2.8), R, in (2.3) can be rewritten in four equivalent ways:

o Av
3o (3)
\ew Ok [Av)F
Jowo( =522 (51)

Ae” \aw  C [Ae”\¥
)e"p 2 JFe=opa\ T2 )

w G| AT
) k-oﬂ’ D) .

Denote the ranges of (v, u), (v, w), (v, w), and (v*, u) by @, A, A, and A*,
respectively:

(2.11) R,(v, u) = exp| —

(2.12) Ry(v, w) = exp(
(2.13) R,y(v',w) = exp(

ng ng ng Nl:>

(2.14) Ry(o*, u) = exp(

(2.15) Q= {(o,w)|0<v<u<1}

(2.16) A={(o,w)w>0,0>0w+0<1);
(2.17) N={(,wo<w<1-—e");

(2.18) A* = {(v*, w)0 < ()" <u < 1};

(see Figures 2.1-2.4). For each subset 4 C A, let A'(C A’) and 4*(C A*) be the
images of 4 in A’ and A* under the transformations (v, w) — (v, w) and (v, w) —
(v*, u), respectively, i.e., 4" = {(v, w)|(e"', w) € A}, etc. Define the partial order-
ing << on A as follows: (vg, wo) S (v, w) iff (v, w) — (v, W) is in the convex cone
C determined by the frame vectors e, = (—1, 0) and e, = (1, »,/»,) (see Figure
2.2). Let @ denote the collection of all relatively closed subsets A C A which satisfy
the following three conditions:
(i) A is monotone with respect to <, i.e., if (vg, wg) € 4 and (vy, wp) S (v, W)

(€A), then (v, w) € 4;

(ii) A’ is a convex subset of A’;

(iii) A* is a convex subset of A*;
see Figures 2.2-2.4. Condition (i) implies that the “lower boundary” of 4 is a
well-defined function of v, i.e., 4 is of the form {(v, w) € A|lw > h(v)} for some
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Acceptance Region o Rejection
40 Region

Y

F1G. 2.1. The space Q.

function A. Condition (ii) or (iii) implies that 4 is continuous (the homeomorphic
image of a convex function). Furthermore, (i) implies that /4 is nondecreasing and
can have slope no greater than »,/»,. Conditions (i)-(iii) do not imply that 4 or its
complement A — A is convex—see Subsection 3.6.

We remark that in the presence of condition (i), the convexity conditions (ii) and
(iii) are independent: there exist acceptance regions 4 which satisfy (i) and (ii) but
not (iii), and others which satisfy (i) and (iii) but not (ii). Examples are given by
Marden (1977).

Let @, be the collection of all test functions ¢, = ¢,(v, w) for problem (1.8) of
the form

o, (o,w)=I,_,(o,w)=0 if (v,w) EA
(2.19)
=1 if (v,w)EA—-A4

as A ranges over @ (Ip denotes the indicator function of the set B). Let ® (D ®,)
be the collection of all test functions ¢ on A such that ¢ = ¢, a.e. [ u] for some
¢, € ®,, where u denotes Lebesgue measure on A. The next theorem, our second
main result, states that conditions (i), (ii), and (iii) are necessary conditions for
admissibility of a test with acceptance region 4.
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Slope 0

FI1G. 2.2. The space A.

V! ——t—

F1G. 2.3. The space A'.
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V¥ ——

F1G. 2.4. The space A*.

THEOREM 2.5. @ is a complete class for the testing problem (1.8). This result
implies that for any test ¢ & ® there exists ¢ € ® such that ¢ strictly dominates ,
ie.,

(2.20) ra(9) < ry(¥), 0< A< oo,

with strict inequality for at least one value of A, where the risk function ry(¢) is
defined by

ra@)=1-Eg if 0<A<oo
=Eg¢ if A=0.

(Throughout this paper admissibility is defined with respect to the usual 0 — 1 loss
function.) It will be shown in (5.20) that in fact strict inequality obtains in (2.20) for
allA > 0.

The proof of Theorem 2.5 is based on Theorem 2.1 and Lemma 2.6, which
presents the needed monotonicity and convexity properties of R, for fixed A.
Before presenting the lemma, we develop several identities which will be useful for
its proof. For z > 0 let

(2.21) 1(z) = log[ f_(,% k].
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Differentiating,

¢ -
2f=okﬁzk ! .
t'(z) = —-———?k—- =z EZ(K)
f—oﬁzk
(2.22) :

o ck+1 k

k=07 2
.1 Ry
) &zk ‘ Cx
k=0 k!

where K is the random variable introduced in (2.9) and (2.10). For future use we
note that from (2.4),

_ ck+1=vl+v2+2k v1+vz=
(2.23) CO = l < Ck = ” + 2k Vl = Cl
for all k=0,1,2,- - -; for k > 1, the last inequality is strict. Therefore, from
(2.22),
_ v, + v, +2K
(2.24) E,(K) = zEz( y+ 2K
Next, differentiating (2.22),
Ck Sk 2
P ok(k — l)7c—'z"—2 ‘;f_okﬁz""
r'(z) = = - — c = z_z[Varz(K) - EZ(K)]
o _&zk o _k_zk
k=0 1 k=01
(2.25) ,
0 Cr+2 z" 0 ck+l zk
_ k=01 | TR0k =E(CK+2)_ E(CK+1)2
w Sk _k w Sk k| T\ ek \ ek '

k=071 % k=077 %
LeMMA 2.6. Fix A > 0.
(a) Ry(v, w) is strictly monotone decreasing in (v, w) on A with respect to the
partial ordering < . ,
(b) R,(V', w) is a convex function of (v', w) on A’.
(©) Rp(v*, u) is a convex function of (v*, u) on A*.

ProOF. (a) It suffices to show that R,(v, w) is strictly decreasing in the direc-
tions of the two frame vectors (—1, 0) and (1, »,/»,) of the convex cone C which
determines < . This is equivalent to showing that R,(v, w) is strictly increasing in v
for fixed w, and that R,(v,(»,/»,)v + d) is strictly decreasing in v for fixed d. By
(2.12) and (2.21), the former assertion is equivalent to showing that

(2.26) f)=Hz) -2
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is strictly increasing for z > 0. However, by (2.22) and (2.23),

(2.27) f@)=ﬂu)—l=E45§i)—l>0

K
as claimed. Next, from (2.12) and (2.21) and the fact that »,/», = ¢, — 1,

log R,(v, (vy/v))v + d) = t(%Ao) - %A(c,v + d),

SO

—z-d[log Ry(v, (y/v)o + d)]/dvo = t’(%Av) -

Cx+1
=Ez( . )_cl
Ck

by (2.22) and (2.23), where z = -;—Av > 0.
(b) It suffices to show that log R,(v’, w) is convex in (v’, w). From (2.13),
(2.28) log R,(v', w) = f(38e”) — 34w,

where f is given by (2.26), so it must be shown that f(e®) is convex in v’. By (2.27),
(2.22), and (2.23),

df(e®)/adv’ = z[1'(z) — 1]

w _ % N Sk+1 k4
k-o(l ck+l) K ©
= ¢
f—oﬁzk
2.29
(2.29) o (k+1) Chtl _ k+1
_n k=0\ k + a (k + 1)
2 w C
k=07c‘%zk
)i
e\ ra 1)k’
2 w ’
k-o'k‘%zk

where now z = e” and a =3(», + »,) > 1. If a = 1 then (2.29) yields

1

Ck
o0
im0y 2

2 if(e”y/dv' =1 - :
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which is strictly increasing in z =e?. If @ > 1 then (2.29) yields

drstz)i
2 o, E\T g 1)K _ K
(230) V—zdf(e )/dD = = % —Ez(m)
K=oy ?

Since p,(k) in (2.10) has a strictly monotone likelihood ratio and k/(k + a — 1) is
a strictly increasing function of k, we conclude that (2.30) is strictly increasing in
z = e” (cf. Lehmann (1959), page 74). Hence f(e®) is strictly convex in v'.

(c) We shall show that log R,(v*, ) is convex in (v*, ©). From (2.14) and (2.21),

(2.31) log Ry(v*, u) = t(3A(v*)"/"") — 1Au,

so we must show that #((v*)"/”") is convex in v* > 0. Differentiating,
(2.32) di((v*)"/")/dv* = (r*) "'z 7" (2),

where now z = (v*)!/”". However, from (2.22) and (2.25),

(2.33) d[z'_"t’(z)]/dz =z7"[z2"(2) + (1 — r)?(2)]

= z7""![Var(K) — r*E,(K)],
which is nonnegative by (2.9), the definition of 7*. Thus #((v*)"/”") is convex in v*.

REMARK 2.7. The proof of Lemma 2.6(c) shows that #(v) = #((v")"/") is convex
in v” for every r € [0, r*] (for r = 0, replace v” by log v = v’; note that log v =
lim,_o(v” — 1)/r) but is concave in v” on some nondegenerate interval for every
r > r*. (Alternatively, for the convexity part note that if #(x) is nondecreasing and
convex in x > 0, then g(x) = h(x""/") is also convex in x for r > r*))

ProOOF OF THEOREM 2.5. Suppose that ¢ = ¢(v, w) is an admissible test func-
tion defined on A for problem (1.8). By Theorem 2.1, ¢ = I, _, a.e. [u] where
A=A4,N A,

4, = {(0 WIS [(Ry = 1)/A]n%db) + [ Rymw'(db) < c},
4, = (0, Wlw > wy).

Since the integrals defining 4, are linear in R,, Lemma 2.6 implies that 4, € @. It
is easy to see that the truncation set 4, € @ also. Since @ is closed under
intersections, 4 € @, so ¢ € P as claimed.

REMARK 2.8. Theorem 2.5 does not require the full power of Theorem 2.1 for its
proof. Instead, the technique introduced by Birnbaum (1955) and applied by
Matthes and Truax (1967) and Eaton (1970) can be used. First, since any proper
Bayes test for problem (1.8) has acceptance region of the form
{(v, w)|f& Rym(dA) < ¢} a.e. [p] for some finite measure 7, Lemma 2.6 implies
that B C @, where B is the class of all proper Bayes tests. Theorem 5.8 of Wald
(1950) guarantees that % is an essentially complete class, where % denotes the
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closure of % under weak* convergence (see Definition 5.1). Next, using the
techniques of Birnbaum (1955) and Matthes and Truax (1967), it can be shown that
6, C ®. However, clearly & C (T)l, so & = 5,, hence @ is closed under weak*
convergence. Thus B C®=>d, so ® is an essentially complete class. Since the
family of distributions of (L, M) is not complete, further argument is required to
show that ® is a complete class (see Theorem 5.10).

REMARK 2.9. Although ® is a complete class of tests for (1.8), it is probably
larger than the minimal complete class described by Theorem 2.1. Conditions
(i)—(iii) impose necessary conditions on the first and second derivatives (if they
exist) of the functions w = h(v) which determine the boundaries of admissible
acceptance regions. Closer examination of R,, however, might yield necessary
conditions on higher derivatives, which would lead to smaller complete classes than
®, perhaps even to the minimal complete class. Still, ® is sufficiently small to
exclude several popular tests, thereby proving them inadmissible. This is demon-
strated in Section 3.

REMARK 2.10. Regarding the necessary condition (iii), Theorem 2.5 and Re-
mark 2.7 show that the acceptance region (AR) of any admissible test for (1.8) is
convex in (v”, u) (up to a null set) for all r € [0, r*]. Also, if r > r*, there exist
admissible tests whose AR’s are not convex in (v”, ©): by (2.11) and (2.21) the most
powerful (MP) test of A =0 vs. a simple alternative A = A, has AR {#(34,0)
< 3Au + ¢} which, by Remark 2.7, fails to be convex in (v”, ) for sufficiently
large A,. Next, regarding the necessary condition (ii), we show now that if » > 0
then there exist admissible tests whose AR’s are not convex in (v", w). By (2.12)
and (2.26), the MP test of A = 0 vs. A = A, has AR {f(34,0) <3Aw + c}. For
r > 0let x = v” and consider the function f(x!/") = #(x'/") — x'/". Differentiat-
mg,

df(xV")/dx = r'lz'_’[ r(z) — 1]

where z = x'/”. From (2.27), the monotone likelihood ratio property of p,(k), and
the fact that ¢, ,/c, is decreasing in k, we see that #(z) — 1 is decreasing in z.
Hence for r > 1, df(x'/")/dx is decreasing in x, so f(34,0) is concave in v" and the
rejection region of the MP test above is convex, hence the AR is not convex. For
0 < r < 1, first note that by the proof of Lemma 2.6(b),

1 .
%z[t'(z)—l]=l———ck—k if a=1
2 f—oﬁz
K .
= E(ga,oy) f e>

so z[t'(z) — 11> »,/2 as z — oo (we use the fact that K — oo in probability as
z — o0, which follows from the fact that p,(k) >0 as z —» oo for all fixed k).
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Therefore z' ~’[#'(z) — 1] must be decreasing for some sufficiently large values of z,
hence f(x!/") must be concave on some nondegenerate interval. Therefore, for all
0 < r < 1 the AR of the MP test above fails to be convex in (v”, w) for sufficiently
large A,.

This section concludes with a discussion of the constants r* = r*(v,, v,) defined
in (2.9). These constants also appear in problems other than that treated here. For
example, Marden (1977) describes a complete class of combination procedures for
the problem of combining independent noncentral F-tests; the constants r* occur
in the description of this complete class. The reader may wish to proceed directly to
Section 3.

LEmMMA 2.11.  max{3,p,(r; + v) '} <r* < L.

PrROOF. By (2.22) and (2.25),

. ck+lzk o Ck+2 _k
Var,(K) k=0"F1 k=0"f1
(2.34) o] — - -
E,(K) o Sk k o Skl i
=01 k=0 g}

As z|0, the term in square brackets approaches (c,/cy) — (c,/¢;), which is strictly
positive by (2.23). Hence from (2.9), r* < 1.

Next, in the proof of Lemma 2.6(b) it was shown that z[#'(z) — 1] is strictly
increasing in z > 0. Therefore, from (2.22) and (2.25),

0<d{z[t(z) — 1]}/dz

z2t'(z) + ¢'(z) — 1

=z '[Var(K) — E(K)] + z7'E,(K) — 1
z7!'Var,(K) - 1.

(2.35)

Hence,

Ez(K) Ez(K) - 4] +2K Yy + V)

by (2.24) and (2.23). Therefore r* > v,/(v, + »,).
Finally, in view of Remark 2.7, to show that r* > % it suffices to show that log
R, is convex in (v'/?, u). We shall show that

Var,(K)> z _{Ez(v,+v2+21()}‘l v

o Ck 1 k © 2172
(2:36) £ope(52) = (constant= e 5(y) b,
where
(2.37) gy) =/ [R"yIe I dy, dyy - - - @,

and y = (y,* - *,»,)- The log convexity of R, in (v'/2, u) now follows from
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(2.11) by noting that
d 2
3(z1/?)?
where Y, denotes a random variable with density

e g(1)/ 120”8y,

with respect to Lebesgue measure. We prove (2.36) by finding two equivalent
expressions for E(X”?), where X ~ x}(z). Since the distribution of X can be
represented as a Poisson mixture of central x”s, i.e.,

X|Ky~x2 12k, Ko~ Poisson(z/2),

log [® 4e” " g(y,)dy; = Var(¥}) >0,

we have
v [ v2/2
E(x"/?) = E[ E{(x.42x)" Ko} |
(2.38) F(%(vl + v, + ZKO))
= E| 22/?
1’(%(1}1 + 2K0))

r(%(vl + v2+2k)) S
I,(l ) (E) k!

5(1}1 + 2k)

= 2v2/2e —z/22 ;c.o-O

Also, letting Y ~ N, ((z'/%,0,- - -, 0), I),
E(X”/*) = E(|Y|"?)
(2.39) = QM) fpeT T e Ty gy -

= @m) ez e ().

Hence, by definition of ¢, (2.36) follows by equating the final expressions in (2.38)
and (2.39).

41

REMARK 2.12. In subsection 3.6 we exhibit specific admissible tests whose
acceptance regions are not convex in (v, w), hence not convex in (v, ). In view of
Remark 2.10, this provides an alternate proof that r* < 1.

Next, we show that

(2.40) (v, 2) =[n(r, + 2)]'* = »,.
When », = 2 we have that ¢, = 1 + 2»; 'k, so by (2.34)
(2.41) Var,(K)/E(K) =1—z[(z+ b) ' = (z+ b+ 1)7"],
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where b = »,/2. Thus
d[Var,(K)/E,(K)]/dz = (z* = b* — b)(z + b) X (z + b + 1),
which is negative to the left of [b(b + 1)]'/2 and positive to the right. Hence, (2.41)
attains its minimum at z = [b(b + 1)]'/2 and this minimum is given by (2.40).
In Table 2.1 we have used an iterative routine to calculate r* for several values of

v, and »,. As a partial check, the values for », = 2 agree with those given by (2.40).
It is interesting to note that the empirical approximation

(2.42) ,*é%[H( v, )'+s—]

Ll )

is accurate to within .004 for all values in the table, while the simpler approxima-
tion

1
1 12 2
* =
(2.43) r 2[1 +("1 T "2) ]

is accurate to within .017 when », > 4. (We thank Kent Bailey for assisting with
this observation.)

TABLE 2.1
Values of r*(v,, vy)

¢)

" 2 4 10 20 40
2 82843 75647 66945 61960 58366
4 .89898 84029 75072 68784 63650
10 95445 91929 84828 78242 71724
20 97618 95544 90636 85094 78559
40 98780 97645 94662 90731 85525

3. Admissibility or inadmissibility of specific tests.

3.1 The locally most powerful (LM P) invariant test. The level a LMP test (1.9)
for problem (1.8) was discussed by Stein (1952) and Giri (1968). It is the essentially
unique level a test which maximizes the slope of the power function at A = 0, and
is easily found by using the Neyman-Pearson lemma to be the test which rejects H,
for large values of

]
A TAazo
In terms of the variables (v, w), the lower boundary in A of the acceptance region
of the level « LMP test (see (1.9)) is given by the straight line

1
= E(c,v - u).

(3.1) w=2p- .
7

As it is the essentially unique LMP level a test for (1.8), this test is admissible
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among invariant tests for the original problem (1.1). Note that the slope »,/», of
the boundary line (3.1) is exactly the upper bound imposed by condition (i); any
greater slope would imply inadmissibility.

3.2 The asymptotically most powerful (AMP) invariant test. A level a test ¢* is
the (essentially unique) AMP level a test for problem (1.8) if for any other
essentially different level a test ¢ there exists A(¢) < oo such that E,¢* > E,¢ for
all A > A(¢). An AMP test is admissible for (1.8), hence admissible among
invariant tests for (1.1). Stein (1952) and Giri (1968) stated that the overall T2 test
(1.7) is the level a AMP test for (1.8). In terms of the variables (v, w), the lower
boundary in A of the acceptance region of this test is given by the straight line

-1
(32) W= wp = (F’E‘%’T"}“+qm-x’-q+l + 1) ,
i.e., the acceptance region is just a truncation set. Note that this straight line has
slope 0, which is exactly the lower bound imposed by condition (i); any lesser slope
would imply inadmissibility.

Starting with expression (2.12) for the likelihood ratio R,, Theorem 1 of Nandi
(1963) can be applied to show that the T test (1.7) is indeed AMP. Rather than
showing that the conditions of Nandi’s theorem are satisfied in our problem, we
will give a more informative, direct proof based on the relationship

33) limA__m%log(l — E,¢) = —ess inf{w|p(v, w) < 1},

valid for every test function ¢ defined on A such that Eg < 1. (In (3.3) and
elsewhere the essential infimum is taken with respect to Lebesgue measure p on A.)
This relationship shows that if the region {(v, w)|¢ < 1} is bounded away from the
line {w = 0} in A, then the power function E,¢ approaches 1 at an exponential
rate as A —» o, i.e,

34 Ep~1-— exp[ - —g—ess inf{w|p(v, w) < 1}}

From this it immediately follows that the overall level a T2 test, with acceptance
region determined by (3.2), is the essentially unique AMP level a test for (1.8).
To obtain (3.3), first note from (2.4) that if », is even then

P<a= r((prl(:l/pzz;/z)(%““ (G +1eh) (52144

for all £ > 0, while if », is odd then

1<ck<—r«ff:l/3/2)(g+k)(g+1+k)...(__.._._”1+;2+1_1+k)

for all kK > 1 (in fact, for all k > O unless »; = v, = 1). Thus there exists a
polynomial F(k) of degree »,/2 or (v, + 1)/2 such that 1 < ¢, < F(k) for all
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k > 0. Hence there exists another polynomial G(x) of the same degree as F(k) and
with positive coefficients such that
(3.5) e* < 2?_0%)6" < G(x)e*

for all x > 0. (Alternatively, we could appeal to 13.1.4 of Abramowitz and Stegun
(1964).) Therefore, from (2.12),

(3.6) e~28% Ry(v, w) < G(%Av)e‘%"” < G(%A)e‘%““’
since v < 1 on A. Thus, for any test function (v, w) we have
JIA(L = @)e™22, do dw < [[,(1 — )Ry fy do dw
< 6(3A)11a01 = 907, do av,

where f, = fy(v, w) is the density of (¥, W) when A = 0. From this and the fact
that f, > 0 on A it follows that if

1> Ewp = [[rdfodvodw =a,
then

. 2 . 2 _law
hmA—mKlOg(l — Epp) = hmA—»ooKIOg{ffA(l — ¢)e~ 7 fo dv dw}

= lim, ., 3108{(1 ~ @) "'7/,(1 = $)e~ 1%, do d)

= log[limA_m{(l = @)™ [1a(1 = $)e %%, do dw) J

= log[ess sup{e™"|¢(v, w) < l}]
= —ess inf{w|¢(v, w) < 1}.

3.3 The D}, ,— D? test. Let 4,(C A) be the acceptance region corresponding
to the level a D},z+ .= qu test (1.5). The lower boundary of A4, is determined by the
equation

—v+ (v* + 4vda")%

5 s
where 0 <v <d,(1 + d,)”!, (which restﬁction guarantees that (v, w) € A), and
has slope

w =

W _ v+ 2d! _l>0-

2[(v + 2471 - 4d;2]% 2

From this, it is seen that the lower boundary is a concave increasing function of v
whose slope approaches oo as 0|0, so that 4, violates condition (i) for all
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0 <a < 1. Thus test (1.5) is not a member of ®, hence, by Theorem 2.5, is
inadmissible among invariant tests for problem (1.1). In addition, this test violates
condition (ii) for certain values of a—see Marden and Perlman (1977).

3.4 The likelihood ratio test (LRT). From (1.4), the level a LRT is given by

(3.7) Gulow) =1 it < !

2 = (o),

Vi v2

7
=0 if %>m@

The lower boundary of 4,(C A), the level a acceptance region corresponding to ¢,,
is given by the straight line w = B(a)+. For levels a such that B(a) > (v,/7)), ie.,
F} , <1, the slope of the line exceeds »,/7,, so that 4, violates condition (i).

Hence, by Theorem 2.5 the LRT is inadmissible among invariant tests for (1.1)
whenever a* < a < 1, where a* = a*(»,, »,) is determined by

(38) Fe, =1.

(Representative values of a* are given in Table 3.1.) Therefore, when a* < a < 1,
even though the LRT is conditionally UMP level & among invariant tests for each
fixed value of the ancillary M, unconditionally it is inadmissible.

When a = a*, by comparing (3.1) and (3.7) it can be seen that c.. = 0 and the
level a* LRT coincides with the level a* LMP invariant test, implying the former is
admissible among invariant tests.

For 0 < a < a* we will apply Theorem 2.1 to show that the level « LRT is
admissible among invariant tests for (1.1). It is convenient to work with the

variables (v, ) = (v, w + v), so rewrite (3.7) to express the level a« LRT as
* = 1 P. —l =
(3.9 o, u)=1 if ” > I+ B(a) =x(a)

=0 if 2<x(a)
u
As a increases from 0 to a*, B(a) increases from 0 to »,/»,, so x(a) decreases from

1 to »,/(v, + v,) = c; !. We shall show that for each x € (¢j ', 1), there exists at

TABLE 3.1
Level a* below which the LRT is admissible and above which it is inadmissible

"1

v, 1 2 4 8 20
2 42 50 56 59 61
4 37 44 50 54 57
8 35 41 46 50 53

16 33 39 44 47 51

50 32 38 42 45 48

© 32 37 41 43 46
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least one point y = y(x) € (0, 1) such that

(3.10) JE[(Ry = 1)/A]— >0 if =>x
<0 if Z2<x
u
This shows that for 0 < a < a* the level a LRT is of the form (2.1) with
Cc = f?oA_l_y dA = 'Y_l, WO = 0, WO(dA) = A_YI(O’ l)(A)dA,
Wl(dA) = A_Y_II[L oo)(A)dA;
hence, is admissible for (1.8).

To deduce (3.10), start from (2.11) and use an integration by parts to obtain that
for any v € (0, 1),

(3.11)
LR = /M) = S o3 ) e i - 150 - e i S
u\Y v 1
- (3)ra-fs(z)-1]

where
(3.12) £(x) = ?_l%ﬁ’;:z))xk

is a power series in x whose radius of convergence is |x| = 1. The function S (x) is
jointly continuous in (v, x) for 0 <y, x <1 and is strictly increasing in x.
Furthermore, since

1<c¢ <¢ <cf k>2

and

© r(k_Y) =l
E=lpir(1—y) v

(expand [1 — (1 — x)”]/y in a Taylor series about x = 0 and evaluate at x = 1) we
have that

fler) < % < %f,(l) < oo.

Therefore, for each y € (0, 1) there exists a unique point x = x(y) € (¢; ', 1) such
that

(3.13) S (x(y)) = %
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The function x(-) is continuous for y € (0, 1). Also (3.12) and (3.13) imply that

1 1

—<Xx < —,

cl (v) Py
S0
(3.14) lim,y x(y) = ¢ "
Lastly, suppose that x(y) were bounded away from 1 in a neighborhood of y = 0,
say x(y) € y < 1. Then from (3.13),

o I'(k — Y) k

= lim, o £,(x(v)) < lim,, ZF_; 2y A=y’ = se, ky < oo,

a contradiction, so we deduce that

(3.15) lim sup, ox(y) = 1.

From (3.14), (3 15), and the continuity of x(-), it follows that x(y) assumes every
value in (c;', 1) as y ranges over (0, 1). Thus, given x € (cY, 1), there exists at
least one point y = y(x) € (0, 1) such that

(3‘16) 'y(x)( ) Y(X)

From (3.11) and (3.16) we conclude that (3.10) holds with y = y(x), as claimed.

ReEMARK 3.1. From (3.10), we may think of the level a LRT for 0 < a < a* as
essentially a Bayes test with respect to the improper prior 7(dA) = A~!~7 dA. Since
this prior assigns infinite mass to every neighborhood of A =0, it might be
expected that the LRT is relatively powerful against local alternatives. Indeed, the
power tables in Section 4 indicate that the LRT is more powerful than the
Dpz,,q — qu test against alternatives A in a quite wide interval of the form (0, A*)
(depending on n, p, g, a).

To illustrate the scope of Theorem 2.1 it is of interest to point out that because of
the presence of local alternatives in (1.8), the level « LRT (0 < a < a*) cannot be
expressed as a generalized Bayes test in the sense of Farrell (1968) and Ghia (1976)
(cf. also Remark 2.4). That is, for 0 < a < a* there exist no locally finite nonzero

measure 7 on (0, 00) and no constant ¢ < oo such that
% > B(a) & [FRy(v, w)m(dA) <c  forae.(v,w) E A,

where B(a) is defined in (3.7). This is demonstrated on pages 30-32 of Marden and
Perlman (1977) by using the uniqueness of the Laplace transform. Hence, Theorem
5.1 of Farrell (1968) cannot be used to prove admissibility (among invariant tests)
of the level « LRT (0 < a < a*).

3.5 Some further admissible Bayes tests for problem (1.8). Proper Bayes tests
corresponding to the gamma priors

(3.17) 7(dA) = e *2A"'dA 5,t>0
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are easily obtained. From (2.11), these tests reject H, when

2 t
(3.18) (m) 0 ! I‘(t + k)( 25 + u ) >b,.
If we take ¢ = »,/2, then (3.18) reduces to the simple form
(3.19 (s + w + 0)*Q2s + w)" D25 b

A family of improper Bayes tests can be obtained by taking s = 0 in (3.17) and
(3.18). If in addition we set ¢ = »,/2, then from (3.19) we obtain the improper
Bayes test which rejects H, when

(3.20) (w + v)”z/2w—(v|+v2)/2 > b,
or equivalently, when
(3.21) a+i1n> b’;(l + m)_”l/("l"'"’z).

By Theorem 2.1, or by Theorem 5.1 of Farrell (1968), these improper (=
generalized) Bayes tests are admissible for problem (1.8). By comparing (3.21) and
(1.7), it is seen that these tests are similar in form to the AMP test, which is to be
expected since the improper prior distribution obtained by setting s = 0 and
t = »,/2 in (3.17) assigns infinite mass to any neighborhood of 0.

Another improper prior distribution which leads to an admissible test for (1.8) is
given by m(dA) = dA/A on (0, o0), obtained by setting s = ¢z = 0 in (3.17) or by
setting y = 0 in Remark 3.1. Since this prior assigns infinite mass to neighborhoods
of both 0 and oo, it may be expected to yield a test that is relatively powerful
against a broad range of alternatives; however, we have not yet carried out the
necessary numerical calculations. To derive the test corresponding to this prior, we
cannot simply set s = ¢ = 0 in (3.18), since the left-hand side becomes identically
+ o0, as I'(0) = c0. Put another way, [’R,dA/A = 0, as R, = 1, so the prior
dA/A does not lead to a generalized Bayes test in Farrell’s sense. Nor can we
substitute ¥y =0 in (3.11), since [°dA/A = co. Instead, we compute the test
obtained by setting wy = 0, 7%(dA) = Iy ,(A)dA, and 7'(A) = A™'I}; (8)dA in
(2.1). Since

fA[(Rs = 1)/A)dA + [7R, S
= 3p ookl 5 ) e 4 e - D 4 preie
(3-22) 2ia1g ( ) J§/(e™ = 1)_ + Jupe y%
k=1 (%) .‘,ﬁ + [o/H (e - 1)7 + f;jze-yiy‘b—’

o v
k=1 ( u) — log u + (constant),
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this test rejects H, for large values of
o Sk / k
(3.23) . ( — 1) + log(1 + m),
hence is similar to the LRT which rejects H,, for large values of /. It would be of
interest to compare the powers of these two tests.

3.6 Remarks. Thus far we have shown that the following tests are admissible
for (1.8): the LMP and AMP tests, the level a LRT for 0 < a < a*, the proper
Bayes tests (3.18) and (3.19), the improper Bayes tests obtained by setting s = 0 in
(3.18) (which includes (3.20)), the test based on (3.23), and the most powerful (MP)
test for testing Hy: A = O vs. a simple alternative A = A; > 0 (see Remark 2.10).
Each of these tests has the property that its rejection region is convex in (v, w), so
one might ask whether all admissible tests have this property. It is easy to see that
the answer is no: truncate any of the above tests (except the AMP) with a
truncation set {w > w,} where 0 <w, < 1.

An important open question, beyond the scope of the present paper, is to
determine the class of invariant tests which are admissible within the class of al/
procedures for problem (1.1). In particular, is the level « LRT (0 < a < a*)
admissible for problem (1.1)? Only one such admissible test, the overall T2 test, is
known at present—see the following paragraph. Kiefer and Schwartz ((1965), page
762-763) point out that the noninvariant test which rejects H,, for large values of
X{S;;'X, is admissible for problem (1.1), since it is proper Bayes with respect to a
prior for (u, =) under which X, = 0 with probability 1. The statistic X;S,;'X, is
simply the T2 statistic based on the first p variables, so

Xl'Sﬁlxl ~ X,%(A*)/Xj—pn

where A* = yi=;'s, < A. For fixed p;, =,,, and Z,,, however, A*/A can be
arbitrarily small if 2, # O, so this test can be substantially less powerful than those
we have considered (e.g., the LRT and overall T? test). In applications, it might be
wise to obtain a preliminary estimate of the magnitude of the canonical correla-
tions between X, and X,, and apply the test based on X;S,;'X, only if these are
sufficiently small.

By utilizing the exponential structure of the distribution of (X, '), the method of
Stein (1956) and Schwartz (1967) can be applied to show that the overall T2 test is
admissible for problem (1.1). The joint density of (X, S), expressed as an exponen-
tial family, is of the form

fux(x.s) = (& DA(Jexp{ — 3t T 1 + x),

where T'= 27! ¢£¢=3"!4, and ¢t = s + xx’". The testing problem (1.1) can be
restated as

H,:((,T)€E0Q, vs. H,:(,T) €0,
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where
0, = {(0, I')|T" positive definite},
®, = {(& T)IT positive definite, ([~'¢), # 0, (T~¢), = 0},

and where (I"'¢), = p,;, (T7'), = u,. Since (£, T) € ©,= A& AT) € O, for all
A > 0, the theorem of Stein (1956) implies that for any subset ©, C ©,,

{(x, 9)lsup ryee,(—3tT ¢ + x¢) < c}

is an admissible acceptance region (AAR) for problem (1.1). In particular, if G is
the group of (p + q) X (p + ¢) matrices introduced above (1.8) in Section 1, then

(3.24) {(x, s)lsup,cg(—3trd’dt + x'A’e) < c}

is an invariant AAR for (1.1), where e = (1,0, - - ,0) : (p + g) X 1. Now, we
can choose 4y € G such that Aytdy = I and Aox = (v'/%], (1 — u)'/%}), where
e=(,0,---,0:pX1, e=(,0---,0:9X1, and u, v are defined in
(2.5) (note that x't~'x = v + (1 — u)). Since G is a group,

sup(—Ltr A’A1 + x'A’€) = sup e~ Ltr AgA’AAgt + X' ApA’e)

= supAeG[ —str A4 + (0%}, (1 - u)l/zeg)A’e]

—_ _1gp+q 2 1/2 _ 1/2
= supAEG[ 2254 a; + ayv 2 + ay,p41(1 — u)

= sup‘,,,ml[—%a2 -1+ 002+ (1 - u)l/2]

=3[v+ (1 -w)]

Since u — v = w, the AAR (3.24) is thus equivalent to {(x, s)|w > ¢,}, which by
(2.6) and (1.7) is exactly the acceptance region of the overall T test. (Although this
test has now been shown to be admissible for problem (1.1), the numerical results
in Section 4 show that its power tends to be low for most alternatives, even in
comparison to other invariant tests.)

4. Power comparisons. Table 4.1 compares the (unconditional) powers of the
LRT (14), the D2, — D2 test (1.5), and the overall T test (1.7) for a =.10;
n=18,38; p = 1,5, 11; and g = 2, 6. The relative performances of the three tests
are summarized in Tables 4.2-4.4. Initially, the power of the LRT exceeds that of
the D2, — D? test, but then eventually drops below as A increases. Table 4.2 gives
the power value at which the crossover occurs. Tables 4.3 and 4.4 were obtained by
examining the differences in powers of the tests for the values of A considered in
Table 4.1, except for the three asterisked numbers, which are based on additional
computations. The dashes in Table 4.4 represent cases for which the LRT has
greater power than the T2 test for all values of A considered.

From these tables and similar computations carried out for a = .05, we find that
among the three tests the LRT is most powerful for small or moderate values of the
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alternative A, while the D‘,2+ = qu test is most powerful for large values of A.
Although the T? test is AMP, its asymptotic optimality is obviously of no practical
significance. From Tables 4.2 and 4.3, it appears that the performance of the LRT
relative to the D2, — D? test tends to improve as p increases. However, the
differences in power between these two tests are small. Therefore, the LRT is
preferable since its critical points are simply those of the standard F distribution
(see(1.4)), whereas those of the D2, , — D72 test are more difficult to obtain. The

overall T test is substantially less powerful than the other two tests (confirming

TABLE 4.1a
Powers of three invariant tests (p = 1, a = .10)
A
(n, 9) Test .5 1.0 20 3.0 4.0 70 100 160 200 250 350

LRT .1764 .2500 .3859 .5044 .6048 .8107 .9148 .9847 .9954 .9990 1.0000
— D? .1761 2495 .3853 .5038 .6043 .8107 .9151 .9850 .9956 .9991 1.0000

T2 .1430 .1876 2788 .3690 .4550 .6707 .8157 .9511 .9815 .9949 .9997

LRT .1679 .2337 .3567 .4661 .5612 .7672 .8824 .9726 .9900 .9972 .9998
(38, 6) Dp2+q — D2 .1671 2323 .3546 .4639 .5593 .7668 .8831 .9736 .9907 .9976 .9998

T2 .1244 1503 .2054 .2636 .3232 .4981 .6493 .8513 9229 .9685 .9957

LRT .1688 .2353 .3594 .4695 .5650 .7704 .8843 .9727 .9898 .9970 .9997
— D} .1677 2334 .3566 .4665 .5623 .7697 .8852 .9742 .9909 .9976 .9998

T? .1388 .1789 .2609 .3427 .4216 .6263 .7736 .9277 .9687 .9897 .9991

LRT .1513 2013 .2967 .3845 .4642 .6543 .7816 .9146 .9540 .9782 .9945
— D? .1480 .1954 .2870 .3730 .4523 .6462 .7793 .9194 9599 .9833 .9970
T2 1192 .1392 .1814 2257 .2712 .4091 .5379 .7413 .8333 .9081 .9753

(38,2) D2

(18,2) D2

(18,6) D2

TABLE 4.1b
Powers of three invariant tests (p = 5, a = .10)
A
(n, 9) Test 1.0 4.0 80 120 160 200 240 300 400 500 100.0

LRT .1596 .3577 .6013 .7766 .8841 .9434 9737 .9922 .9991 .9999 1.0000
— D2 .1590 3558 .5993 .7755 .8839 .9436 .9740 .9925 .9992 .9999 1.0000
T2 .1503 .3232 .5519 .7315 .8513 .9229 .9621 .9880 .9985 .9998 1.0000

LRT .1519 .3243 .5453 .7178 .‘8352 9081 .9505 .9814 .9966 .9994 1.0000
- qu 1502 3185 .5383 .7129 .8330 .9080 .9515 .9826 .9972 .9996 1.0000

T? 1354 2595 .4404 .6070 .7406 .8376 .9028 .9582 .9912 .9984 1.0000

LRT .1456 .2954 .4921 .6556 .7769 .8604 .9149 .9608 .9897 .9973 1.0000

(18,2) D2 _— D2 .1438 .2894 .4838 .6484 .7724 .8585 9150 .9624 .9913 .9981 1.0000
+q

T2 .1392 2712 4535 .6146 .7413 .8333 .8961 .9515 .9878 .9972 1.0000

LRT .1299 2265 .3589 .4829 .5913 .6817 .7548 .8363 .9177 .9585 .9979
— D2 .1263 2125 .3351 .4549 .5640 .6584 .7371 .8272 9190 .9640 .9996
T? .1223 .1958 .3027 .4110 .5134 .6057 .6858 .7825 .8888 .9464 9992

(38,2) D2

(38,6) D2

(18,6) D2
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TABLE 4.1c
Powers of three invariant tests (p = 11, a = .10)
A
(n, q) Test 30 60 120 200 300 400 500 600 1000 3500 1000.0
LRT .2072 .3312 .5746 .8068 .9422 .9854 .9967 .9993 1.0000 1.0000 1.0000
(38,2 D,’,, e~ qu 2058 .3285 5712 .8049 .9420 .9857 .9969 .9994 1.0000 1.0000 1.0000
T? 1999 .3167 .5526 .7884 .9338 .9829 .9961 .9992 1.0000 1.0000 1.0000
LRT .1902 2940 .5062 .7332 .8949 .9634 .9882 .9964 1.0000 1.0000 1.0000
(38, 6) Dpz.,, " qu .1862 2865 .4952 .7248 .8925 .9639 .9892 .9970 1.0000 1.0000 1.0000
T2 .1759 2650 .4570 .6826 .8636 .9496 .9834 .9950 1.0000 1.0000 1.0000
LRT .1528 .2100 .3297 .4833 .6447 .7652 .8492 .9051 .9865 1.0000 1.0000
(18,2 Dpz.,_ e qu 1511 2067 3238 4756 .6375 .7602 .8466 .9044 9830 1.0000 1.0000
T2 1505 2055 .3214 4722 .6336 .7565 .8435 .9020 .9874 1.0000 1.0000
LRT .1173 .1343 .1673 .2093 .2586 .3048 .3479 .3883 .5253 .8953 .9961
(18,6) D2 . qu 1165 .1327 .1642 2045 .2520 .2968 .3388 .3784 5143 .8961  .9981
T2 .1165 .1327 .1641 .2043 .2518 .2965 .3386 .3781 .5139 .8958  .9981
TABLE 4.2
Power value at which the power functions of the LRT and Dpz,,q - qu test cross (a = .10)
p

(n, 9) 1 5 11

38,2 .81 94 96

(38, 6) 81 91 95

(18,2 .82 91 92

(18, 6) .82 91 .88

TABLE 4.3
(a =.10)

Maximum [ power of LRT—power of (D2, — D}) test]
(Maximum [ power of (D2, , — D2)test—power of LRT])

p
(n, 9 1 5 11
.0006 0020 .0034
(38,2) (.0003) (.0003) (.0003)
0022 0070 0104*
(38, 6) (.0010) (.0012) (.0010)
.0030 .0083 .0077
18, 2) (.0015) (.0016) (.0015)
0119 0280 .0110
(18, 6) (.0059) (.0055) (.0042)*




INVARIANT TESTS FOR MEANS 53

Table 4.4
(a =.10)
Maximum [ power of LRT—power of T? test]
(Maximum [ power of T? test—power of LRT])

p
(n, 9) 1 5 11
.1498 .0494 0220
(38,2) (=) =) (:0000)
2691 .1108 0506
(38,6) --) (.0000) (.0000)
.1441 0410 0111
(18, 2) (--) (.0000) (.0009)
.1930 0779 0114
(18, 6) () (.0013) (.0041)*

Cochran’s (1964) findings) except when p is large and n and q are small (see Table
4.4), in which case all three tests have small differences in power. Thus, on the basis
of these computations and the results of Section 3, use of the LRT is recommended
in all cases.

5. Proof of Theorem 2.1; truncated generalized Bayes tests. Our starting point is
Theorem 5.8 of Wald (1950), which implies that the set of all weak* limits of
sequences {¢,} of proper Bayes tests for problem (1.8) is an essentially complete
class of tests. We follow the approach of Ghia (1976, Chapter 3) to show in
Theorem 5.7 that any such weak* limit must be of the form (2.1). Further argument
is required to show that tests of the form (2.1) form a complete class (Theorem
5.10) and are admissible (Theorem 5.11).

Theorem 5.7 goes farther than the comparable result in Chapter 3 of Ghia
(1976), for his Assumption 2.5 applied to our problem (1.8) would require that the
null and alternative hypotheses be topologically separated in the parameter space.
This is obviously not the case in (1.8) since “local alternatives” (A — 0) are present
—see Remark 5.8. (Chapter 3 of Ghia (1976) treats one-parameter families of
distributions, whereas Chapter 4 deals with certain multiparameter families; in
each case local alternatives are not permitted. Marden (1977) has extended all of
these results to testing problems where local alternatives may be present.)

To begin our development toward Theorem 5.7, suppose that ¢,, ¢ are test
functions for problem (1.8) defined on A, i.e., measurable functions of (v, w) such
that 0 < ¢,, ¢ < 1.

DEFINITION 5.1.  We say ¢, converges to ¢ in the weak* sense, written ¢, —,,.0,
if
I aJSondp — 5 f du
for all bounded measurable functions f on A, where p is Lebesgue measure on A.
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Any proper Bayes test ¢, is of the form
(5.1) o= o, W) =1 i [FRy(v, w)m,(dB) > 1
=0  otherwise aefp],

where 7, is a finite measure on (0, o0) and R, is given by (1.10) and (2.12). Note
that

(52) w{(v, W)|J&- | Rym(dD) = d} =0

for any 0 < d < oo and any nonnegative measure # on [0, co) which assigns
positive mass to (0, o). This follows from the fact that for A > 0, R (v, w) is
strictly increasing in v for each fixed w (see the proof of Lemma 2.6(a)), and an
application of Fubini’s theorem; alternatively, (5.2) follows from (2.11) and the
uniqueness of the coefficients of a power series.

The next lemma together with (5.1) shows that in order to determine the form of
the weak* limit of a sequence {¢,} of proper Bayes tests, it suffices to study the
limiting behavior of [R,7,(dA).

LemMA 5.2 (Ghia (1976), Theorem 2.1). Let y,, Y be test functions on A with y,, of
the form

Y, (v, w) =1 if H,(v,w)>1
=0 otherwise,

where {H,} is a sequence of real-valued measurable functions on A. If {, — . and
H, — H a.e. [ ), where H is an extended real-valued measurable function on A, then
Y is of the form

Y(o,w) =1 if H(o,w)>1
= x(v, ) if H(vo,w)=1
=0 if H(v,w)<1 ae. [ p]

for some measurable function x with 0 < x < 1.

ProoF. Let B = {H < 1} C A. Clearly y,, - 0 on B, so [y, du — 0. By Defi-
nition 5.1, however, [y, dp — [z¢ dp. Thus, since 0 <y < 1, ¢ =0 a.e. on B.
Similarly, ¢ = 1 a.e. on {H > 1}.

The following elementary properties of the functions R, will be applied often in
subsequent arguments without explicit references.

LemMMA 5.3.
(@) R,(v, w) is strictly positive and is jointly continuous in (A, v, w) for 0 < A <
0, (v, w) € A.
(b) For each fixed (v, w) € A,
(D) Ry(v, w) =1,
(2) Ry(v, w) >0 iff A — oo,
(3) sup{Ru(v, w)|0 < A< o0} < oo,



INVARIANT TESTS FOR MEANS 55

@) {A|Ry(v, w) > a} is compact for each a > 0.
(c) For each fixed (v,, w;), (v, W,) € A,
(1) lim,_, [RA(v), w))/Rp(03, w1 =0 if w, >w,,
(2) 0 < limy, o[RA(v1, wp)/ Ry(0, wy)] < o0 if wy=w,
() S(o;, wi; vy, W) = sup{R,(v;, w;)/ Ra(v, w))|0 < A < o} <o if
wy 2 W,
(d) Extend the definition of (R, — 1)/A to A = 0 by continuity, i.e.,

R, 1{»,
[(RA('-’) w) I)A]A_o D8 |amo E(Zv - w).

Then for any a < oo, (Rpy(v, w) — 1)/A is uniformly bounded for (v, w) € A, 0 < A

<a.

PrOOF. Parts (a) and (b)(1) follow directly from (2.12), while (b)(2) follows
from (3.6). These in turn imply (b)(3) and (b)(4). Parts (c)(1) and (c)(2) follow from
(2.12) and (3.6); more precisely, either 13.1.4 of Abramowitz and Stegun (1964) or
(2.36) and (2.39) show that the limit in (c)(2) equals (v,/v,)"*/2. Part (c)(3) follows
from the preceding and the fact that for all N < oo and all (v, w) € A,

(5.3) inf{ Ry(v, w)J0 K AN} >0.
To prove part (d), we have from (2.12) that for all (v, w) € Aand 0 < A < g,

%A(u+ w) _ 1

A ,+2""kv(0)k“_'

2 1)k k-1
+ k-lk'(z)a
<oo,

Ry(v,w) — 1 e~
A "

since0<v+w=u<l.

DEFINITION 5.4. A nonnegative measure 7 on [0, o0) is said to be locally finite if
[& gdm < oo for all continuous functions g on [0, co) with compact support. If
{m,} is a sequence of nonnegative measures on [0, oo) and 7 is locally finite, we say
that =, converges vaguely to =, written 7, — m, if

o> gdm, — [ gdn
for all such g.

LemMA 5.5 (Ghia (1976), Lemma 2.2). Let {,} be a sequence of nonnegative
measures on [0, o0). Then either
(5.4) lim sup,_,,,7,([0, N]) = o0

for some N < oo, or there exists a locally finite measure w (possibly the zero
measure) on [0, c0) and an increasing subsequence {j(n)} C {n} of the positive
integers such that w;,, — 7 (or both). In the former case, there exists a subsequence
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{i(n)} C {n} such that
(5.5) Jo= Ry(0, W) y(dA) — o0 V(v, w) € A;
the subsequence {i(n)} does not depend on (v, w).

ProOOF. If the limit superior in (5.4) is finite for all N < oo, then we can apply
the Cantor diagonalization process to find a subsequence {j(n)} such that
Tm([0, N]) converges to a finite limit for all rational N € [0, o). It follows from
the standard theory of weak convergence of distribution functions on the real line
(cf. Loeve (1963), pages 179-180) that 7, — 7 for some locally finite measure .
Finally, if (5.4) holds, then (5.5) follows from (5.3).

LemMA 5.6 (Ghia (1976), Lemmas 2.3, 3.1, 3.2, 3.3). Let m,, m be nonnegative
measures on [0, o), with = locally finite, such that T, =7 Let (v, w), (v, w)),
(v, wy) denote points in A, and let {k(n)} C {n} denote an increasing subsequence of
the positive integers.

@) Ifw, >w, then

limn—-»oofto)o—RA(vl’ wl)'”k(n)(dA) =00 = limnewf(‘:)o—RA(OZ’ w2)ﬂk(n)(dA) = 0.
In particular, for each w € (0, 1) either
lim supn-»oof(‘;o—RA(v’ W)ﬂ”(dA) =
Jor all v or for no v.

(b) There exists wy € [0, 1] and an increasing subsequence {I(n)} C {n} such
that

(5.6) lim, , . /3> Rp(v, w)mmy(dA) = oo ifw <wg
(5.7) lim, /6> Ry(v, w)7,(dB) = [& Ry(v, w)m(dD) < 0 if w > wy;
the subsequence {I(n)} does not depend on (v, w).

PRrOOF.

(a) Immediate from Lemma (5.3)(c)(3) and the inequality
(5.8 JRy(vy, w)7(dD) < S(vy, wy; 0, wy) Ry(vy, wp)m(dD).

(®) By (a),

sup{w|lim sup, ., /6> R(v, w)m,(dA) = o}

= inf{wllim sup,_, /&> Rx(v, w)7,(dA) < o0} = wy;
clearly 0 < w, < 1. To prove (5.6), assume that w, > 0 (otherwise (5.6) is vacuous),
choose a sequence {w,} such that 0 < w,Tw,, and let v, be any point such that
(v, W) € A. For each n, we may choose an integer /() large enough that
(5.9)
f(a)o—RA(vn’ Wn)ﬂl(n)(dA) >n: max{l, S(D,,, Wn; vn—l’ Wn—l)’ Tt S(D,,, Wn; vl’ wl)}'
From (5.8) and (5.9),

Jor Ry(v,, W)y (dD) > n, 1<r<n,
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so for each fixed r,
(5.10) lim, , /6> Ra(v, w,)ma)(dB) = oo.
Since w,Twyg, (5.6) follows from (5.10) and part (a).
To prove (5.7), assume that w, < 1 and fix (v, w) € A with w > w,, First, if N is
a continuity point of 7 (i.e., #({ N }) = 0) then
Jo-Ra(v, w)m(dd) = lim,_, . [§_ Ra(v, w),(dD)
< lim inf, [ RA(v, w),(dA),
which is finite. Let N — oo to obtain
(5.11) & R,(v, w)m(dA) < 0.
Next, choose (v;, w;) € A such that wy, < w; < w. Then
wRa(0, w)m,(dB) < Sy [ Rp(vy, wy)m,(dD)
where
Sy = sup{ Ra(v, w)/R(vy, w))|[N < A < o0}
Thus,
(5.12) lim sup,_, . [ wRA(v, w)m,(dA) < Sylim sup,_,..[&> Ra(vy, wy)7,(dA) —> 0
as N — oo, by Lemma 5.3(c)(1). Finally,
/8- Ra(v, w)m,(dB) — [52 Ra(v, w)m(dD)|
< |3 Ra(o, w)m,(dB) — f5_R (0, w)m(db)|
+ /¥RA(v, w)m,(dB) + [FR,(v, w)m(dD).

Let n — oo, then N — o0, and apply (5.11) and (5.12) to obtain (5.7). (Note: it
could happen that [ R,(v, w)m(dA) < oo for some w < wy,.)

THEOREM 5.7. If ¢ is the weak* limit of a sequence of proper Bayes tests {¢,}
defined on A, then ¢ is of the form (2.1). Thus, the set of all tests of the form (2.1) is
an essentially complete class for problem (1.8).

Proor. Each ¢, is of the form (5.1) for some finite measure 7, on (0, o). If we
were to apply Lemmas 5.5 and 5.6 directly to the sequence {=,}, thereby obtaining
(in one case) a subsequence {w,} converging vaguely to some locally finite
measure 7 on [0, o) and satisfying [ R,7,(dA) — [ R,m(dA), it could happen that
@ is the probability measure degenerate at A = 0. In that case, (R ,7(dA) =1 for
all (v, w), so Lemma 5.2 would provide no information about the form of ¢
(however, see Remark 5.8). To circumvent this difficulty, rewrite the inequality in
(5.1) so that ¢, = 1 if

(5:13) Jo~ (Ry — D, (dB) + [P Rym,(dD) > 1 = [y ~m,(dD).
Define
5, = [0~ Am,(dB) +|1 = [ m,(db)|,
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and note that 0 < s, < oo for all n. Divide both sides of (5.13) by s, so that ¢, = 1
if

(5.14) a,fo” [(Ry = 1)/A]m(dB) + [ Rymy(dB) > c,
where ‘
a, = 57 [0 Am,(dD) if 7,(0,1)>0
=0 if 7,(0,1)=0,
7%(db) = a; 57 AL (W, (dh) i (O, 1)) >0
(5.15) = 7*(dA) if 7,(0, 1)) =0,

ma(dB) = 5,7 Iy, ) (D)7, (dD),

Cn = Sn_ 1(1 - fO_'”n(dA))’

and where 7* is an arbitrary, fixed probability measure on (0, 1). Note that a, > 0,
a, + |c,| =1, and #? is a probability measure on (0, 1).

Apply Lemma 5.5 to the sequence {,}. Either (a) there exists a subsequence
{i(n)} C {n} such that (5.5) holds with =, replaced by vr,'(,,), or (b) there exists a
subsequence {j(n)} C {n} and a locally finite measure «' (possibly the zero
measure) on [1, co) such that le(,,) —,7'. In case (a), the first integral in (5.14) is
bounded (see Lemma 5.3(d)) and the second integral (with n replaced by i(n))
approaches oo, while ¢, is bounded. Therefore, Lemma 5.2 implies that ¢ = 1 a.e.
[ 1], which is of the form (2.1) with wy, = 1.

In case (b), Lemma 5.6 states that there exists w, € [0, 1] and a subsequence
{{(m)} C {Jj(n)} such that (5.6) and (5.7) hold with =, =,, and = replaced by w,'(,,),
T and 7', respectively. Furthermore, since {a,} and {c,} are bounded real
sequences, and since {77} is a sequence of probability measures on a compact set,
there exist a subsequence {k(n)} C {/(n)}, real numbers a and ¢ with a > 0 and
a + |c| = 1, and a probability measure 7° on [0, 1], such that g, — a, ¢,y — ¢,
and 7g,, — 7° weakly. Return to (5.14) with n replaced by k(n), and invoke
Lemma 5.2 to conclude that in this case,

¢ =1 if w<w,

(5.16) =1 if afgX[(Ry = 1)/A]n%db) + [? Ry7'(db) > ¢
O =xew) i afiT[(R =~ D/A]T(AY) + S Ryr'(at) = ¢

=0  otherwise ae. [ ],

for some measurable function x with 0 < x < 1. However, the functions (R,(v, w)
- 1)/A, A €10, 1], and R, (v, w), A € [1, o0), are strictly increasing in v for fixed
w (see Lemma 2.6(a) and 5.3(d)). Thus, unless @ = 0 and 7' = 0, an argument
similar to that leading to (5.2) yields
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(517)  p{(v, w)|afsX[(Ry — 1)/A]7%dD) + [{° Ry7'(dA) = ¢} =0,

so that (5.16) reduces to (2.1). If a =0 and #' =0, then either ¢ = 1 and
¢ = Icnae. [pl,orc = — 1 and ¢ = 1 a.e. [ u]. In either case, ¢ is of the form
(2.1). This completes the proof of Theorem 5.7,

ReMARK 5.8. If “local alternatives™ were not permitted in problem (1.8), e.g., if
the alternative hypothesis A > 0 were changed to A > a for some a > 0, then the
measure 7 mentioned in the second sentence of the preceding proof would assign
all its mass to [a, o), and so could not degenerate at A = 0. In that case = would
satisfy (5.2) with d = 1, so the most general form for a weak* limit ¢ of a sequence
of proper Bayes tests would be

o=1 if w<w,
(5.18) =1 if [ Rum(dA) > 1, w > w,
= (0 otherwise a.e. [ ,u];

in fact, Theorem 2.1 would hold with (2.1) replaced by (5.18). This is the type of
result obtained by Ghia (1976) and Farrell (1968); Ghia refers to (5.18) as a
truncated generalized Bayes test. The presence of local alternatives in our problem
(1.8) opens the possibility of admissible tests more general than (5.18), namely (2.1).

Since the family of distributions of (L, M) in problem (1.8) is not complete (in
the sense of Lehmann (1959), page 131) as M is ancillary, we cannot immediately
conclude that the set of all tests of the form (2.1) is a complete class, i.e., that any
test not of the form (2.1) is inadmissible. This conclusion will be reached in
Theorem 5.10, however, by appealing to the strict monotone likelihood ratio of the
conditional density of L given M to show that any test randomized on a set of
positive measure is inadmissible for (1.8). This argument, similar to several in
Brown, Cohen, and Strawderman (1976), was suggested to us by L. D. Brown. We
shall need the following lemma, which is a modification of Lemma 2(iii) and
Problem 10(iii) in Lehmann (1959), pages 74-75 and page 112 (see also Brown,
Cohen, and Strawderman (1976)).

LEMMA 5.9. Let Y be a positive random variable with density fy(y) with respect to
v = Lebesgue measure on (0, o), where 8 is a real parameter. Assume that 0 < fy(y)
< oo for all y >0, 8 > 0, and that fy(y) has a strictly monotone likelihood ratio.
Suppose that ¢(y) is a test function for testing 0 =0 versus 8 > 0. Choose Yo
(0 < yo < o0) such that the test function ffb defined by

é(») =0 if y<y,
=1 if y>»

has the same level as ¢, ie., Eqi( Y) = Eg(Y). If {y|6(y) # (»)} has positive
Lebesgue measure, then E,p(Y) > Eu¢p(Y) for all 0 < 8 < o0.
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THEOREM 5.10. The set of all tests of the form (2.1) is a complete class for
problem (1.8).

ProoOF. It must be shown that if ¢, is not of the form (2.1) then there exists
some ¢ of the form (2.1) such that ¢ strictly dominates ¢,. By Theorem 5.7, there
exists ¢, of the form (2.1) such that ¢, dominates ¢, i.e., 7,(¢,) < ra(¢,) for all
0 < A < o0, but not necessarily strictly. Let ¢ = 3(¢, + ¢,). Since the risk function
ra(+) is linear, r,(¢) < r(¢,) for all 0 < A < oo. Also, ¢, and ¢, must differ on a set
D of positive Lebesgue measure. Hence 0 < ¢ < 1 on this set, so that ¢ is a
randomized test function.

For each 0 < m < o0, define

a(m) = Eo[ ¢(L, M)|M = m];

a(m) is the conditional level of the test ¢ given M = m. (In this proof, we express
all test functions in terms of (/, m).) Define the test function ¢ by

&,(l’ m) =( if /< Fo_l(l - a(m))
=1 if I>F;7'(1- a(m)),

where F is the cumulative distribution function of L when A = 0. From (1.2), Fy is
the cumulative distribution function of a (nonnormalized) central F variate, so Fy !
is well defined and continuous. Hence ¢ is measurable, and

Eo[é(L, M)|M = m] = a(m)

for each 0 < m < o0, i.e., ¢ and ¢ have the same conditional levels. However, the
conditional density of L given M, being a noncentral F density, has a strictly
monotone likelihood ratio in (/, A). Therefore, Lemma 5.9 implies that

(5.19) E\[$(L, M)|IM = m] > E[¢(L, M)IM =m], 0<A< oo,

for all points m € (0, o) such that {/ |$(l, m) # ¢(I, m)} has positive Lebesgue
measure. The set of all such points m must itself have positive Lebesgue measure,
since 6) is nonrandomized whereas ¢ is randomized on the nonnull set D (apply
Fubini’s theorem). Therefore, from (5.19), unconditionally

(5.20) E,$ > E,$, 0< A< oo,

while E(,& = E,¢. Thus ¢ strictly dominates ¢, hence strictly dominates ¢,. Finally,
Theorem 5.7 implies that there exists a test ¢ of the form (2.1) which dominates ¢,
hence strictly dominates ¢,.

To complete the proof of Theorem 2.1 it remains to show that all tests of the
form (2.1) are admissible, hence comprise the minimal complete class for problem

(1.8).
THEOREM 5.11. Any test of the form (2.1) is admissible for (1.8).
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Proor. It suffices to show that if  is any test such that
(5.21) JIadhodp = [[rdfodp = a,

r({¥ #* ¢}) >0,
then
(5.22) ra(¢) <ry(¢)  forsome A € (0, ).

Here f, = fy(v, w) denotes the density of (¥, W) when A = 0. Two cases must be
considered. First, if

f"({‘l’ < 1} n {w <W0}) >0,

where w;, is the constant determining the truncation set for ¢ in (2.1), then (3.3) or
(3.4) implies that r,(¢) < r,(¢) or all sufficiently large A.
Second, suppose that

(5.23) p({y <1} N {w <wp}) =0.
For 0 < ¢ < 1 define the measures 7 and «, on (0, o) as follows:

w(dB) = A~ I o, y(A)7%(dD) + Iy, o)(B)7'(dB) + pb,(dA),
7(dB) = ve~'8,(dB) + I, .-n(8)(db),

where p = #%{1}), y = #%{0}), and §, is the probability measure degenerate at x.
We shall show that for any level a test ¢ = (v, w),

(524) - oo < lim, o [ra(¥)m,(dB) — (1 — @)[;Zm,(dB)]
= [Ia(l = W){/oX[(Ry — 1)/A]7"(db) + [ Rym'(dA)} fodp.
< o0.
By Fubini’s theorem,
Jra(¥)m,(db) = f[ffA(l = ¥)R, fo d!‘]”;(dA)
= ffA(l - ‘I’)[fRA‘”e(dA)]fo dp,
so the left side of (5.24) may be written as
(5:25) lim, of[a(1 = W)[/:Z(Ry — D)7, (dB) + [ Rym(dD)] fo dp
= lim, of /(1 = W){¥[(R, = 1)/e] + [T [(Ry — 1)/A]7%(dB)
+ [{_Rym(dD)} fo du.
By the monotone convergence theorem,
(5:26) lim, of f5(1 = W)[ /" Rym(dB)] fo(d)
= [/a(1 - ‘P)[ITO—RA”(dA)]fO dp < oo.

Furthermore, by Lemma 5.3(d) the dominated convergence theorem may be
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applied to show that
(5-27) limHoffA(l - tP){Y[(R, - 1)/3] + f:;[(RA - 1)/A]7’0(dA)}fo dp.

= [/,(1 — ‘P){fo: [(RA - 1)/A]‘”O(dA)}fo dp.
which is finite. Together, (5.25)-(5.27) yield (5.24). Now, note that when y = ¢,
(2.1) implies that the right side of (5.24) is < oo, hence is finite. Therefore, for any
test ¢ of the same level as ¢

(528) —oo <lim,of[ra(¥) — ra(¢)]7.(dD)
= [1a@ = V){/o2[(Ry — 1)/A]7%(dD) + [ Rym'(dD)} fy dp

< 0.
If this expression = oo, then (5.22) is immediate. If it is finite, then (2.1), (5.21),
and (5.23) imply (5.22).

Acknowledgments. We wish to thank L. D. Brown for several useful sugges-
tions, and for calling our attention to the important work of Ghia (1976). Also, we
appreciate the referee’s careful reading of the manuscript.

REFERENCES

[1] ABRAMOWITZ, M. and STEGUN, 1. A. (1964). Handbook of Mathematical Functions. Dover, New
York.
[2] BIRNBAUM, A. (1955). Characterizations of complete classes of tests of some multiparametric
hypotheses, with applications to likelihood ratio tests. Ann. Math. Statist. 26 21-36.
[3] BRowN, L., CoHEN, A. and STRAWDERMAN, W. E. (1976). A complete class theorem for strict
monotone likelihood ratio with applications. Ann. Math. Statist. 4 712-722.
[4] CocHrAN, W. G. (1964). Comparison of two methods of handling covariates in discriminatory
analysis. Ann. Inst. Statist. Math. 16 43-53.
[5] CocHRAN, W. G. and BLiss, C. I. (1948) Discrimination functions with covariance. Ann. Math.
Statist. 19 151-176.
[6] EAToN, M. L. (1970). A complete class theorem for multidimensional one-sided alternatives. Ann.
Math. Statist. 41 1884-1888.
[7] FARRELL, R. H. (1968). Towards a theory of generalized Bayes tests. Ann. Math. Statist. 39 1-22.
[8] GHIA, G. D. (1976). Truncated generalized Bayes tests. Ph.D. dissertation, Yale Univ.
[9] Gry, N. (1961). On tests with likelihood ratio criteria in some problems of multivariate analysis.
Ph.D. Thesis, Stanford Univ.
[10] Giri, N. (1962). On a multivariate testing problem. Calcutta Statist. Assoc. Bull. 11 55-60.
[11] Gri, N. (1968). Locally and asymptotically minimax tests of a multivariate problem. Ann. Math.
Statist. 39 171-178.
[12] KIiEFER, J. and SCHWARTZ, R. (1965). Admissible Bayes character of 72 —, R2 — , and other fully
invariant tests for classical multivariate normal problems. Ann. Math. Statist. 36 747-770.
[13] KozioL, J. A. (1978). Exact slopes of certain multivariate tests of hypotheses. Ann. Statist. 6
546-558.
[14] LenMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
[15] Lokve, M. (1963). Probability Theory (Third edition). Van Nostrand, New York.
[16] MARDEN, J. 1. (1977). Complete class theorems for invariant tests in multivariate analysis. Ph.D.
dissertation, University of Chicago.
[17] MARDEN, J. I. and PERLMAN, M. D. (1977). Invariant tests for means with covariates. Technical
Report No. 45, Depart. Statist., Univ. Chicago.
[18] MarTHEs, T. K. and Truax, D. R. (1967). Tests of composite hypotheses for the multivariate
exponential family. Ann. Math. Statist. 38 681-697.



INVARIANT TESTS FOR MEANS 63

[19] Nanp1, H. K. (1963). On the admissibility of a class of tests. Calcutta Statist. Assoc. Bull. 12 13-18.

[20] OLKIN, I. and SHRIKHANDE, S. S. (1954). On a modified T2 problem (Abstract). Ann. Math. Statist.
25 808.

[21] Rao, C. R. (1946). Tests with discriminant functions in multivariate analysis. Sankhya 7 407-413.

[22] Rao, C. R. (1949). On some problems arising out of discrimination with multiple characters.
Sankhya 9 343-366.

[23] Rao, C. R. (1966). Covariance adjustments and related problems in multivariate analysis. In
Multivariate Analysis (ed, P. R. Krishnaiah.) 87-103. Academic Press, New York.

[24] ScHwWARTZ, R. (1967). Admissible tests in multivariate analysis of variance. Ann. Math. Statist. 38
698-710.

[25] SETHURAMAN, J. (1961). Conflicting criteria of ‘goodness’ of statistics. Sankhya 23 187-190.

[26] STEIN, C. (1952). Letter to I. Olkin dated 15 September 1952.

[27] StEN, C. (1956). The admissibility of Hotelling’s T2-test. Ann. Math. Statist. 27 616-623.

[28] SuBrRAHMANIAM, K. (1971). Discrimination in the presence of covariables. South African Statist. J. 5
5-14.

[29] SuBrRAHMANIAM, K. and SUBRAHMANIAM, K. (1973). On the distribution of (DI,Z+ = qu) statistic:
percentage points and the power of the test. Sankhya Ser. B 35 51-78.

[30] SuNDRUM, R. M. (1954). On the relation between estimating efficiency and the power of tests.
Biometrika 41 542-544.

[31] WALD, A. (1950). Statistical Decision Functions. Wiley, New York.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS
UNIVERSITY OF ILLINOIS UNIVERSITY OF CHICAGO
URBANA, ILLINOIS 61801 5734 S. UNIVERSITY AVE.

CHICAGO, ILLINOIS 60637



