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A GLOBAL MEASURE OF A SPLINE DENSITY ESTIMATE
By KEH-SHIN LiII

Northwestern University

A spline density function estimate is considered. Limit theorems are
obtained for a quadratic norm of the normalized deviation of the estimate
from its expected value. Results obtained can be used in a test of goodness
of fit. Some of the commonly used boundary conditions for the spline
function are considered. It appears that in some situations certain bound-
ary conditions are undesirable.

1. Introduction. Let f(x) be a continuous density function on [0, 1]. Suppose
that X, X,, ---, X, are independent, identically distributed random variables
with density f. Consider

yi = Fu(k/N) k=0,1,...,N=1/h

where F,(x) is the sample distribution function and # = 1/N is the bin size. Let
Sy(x) be the cubic spline interpolator of F, with knots at the points x; = j/N,

j=0,1, ..., N. The derivative of S,(x) which is given by (see [1])
2 2
Soxy = — M. Ki =X g =X)Ly =y My — M,
v (%) -1 o7 + M; >k -+ 7 <
when xe[x; ,,x;], j=1,---, N,
with M, =S,"(x;), j=0,1,..., N,

will be used as the estimator of f{(x).

The continuity requirements at the knots imply that

h 2h h 1 .

Mt T M+ e M= Gin = +y0) =1L N—1L.
We need two more conditions to determine the N 4 1 unknown M,’s for j =
0, ..., N. We consider a few such conditions here:

(I) Specify the second derivative at the boundaries
My=5.(0) = ", My = S$,/(1) = y,".
(II) A special case of (I):
My=0=M,.
(IIT) Specify the derivative at the boundaries
SYO) =y =f(0), /(1) =y = (1)
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SPLINE DENSITY ESTIMATION 1139

We remark that the periodic spline is not realistic here. If we use boundary
condition (IIT) and solve the system of linear equations we get
M; = 20 A5,
where A7} is asymptotically equal to
6"“=9/(2 + o) to the first order with ¢ = 3! — 2 when

M, is a fixed distance away from the boundary,

and dj = 3(yj+1 - 2)’, +_yj—l)/h2’ _]: 13 M) N—' 13

“= <y1 T °')
6 , — Vuo
do= g (o = )

(see [1], [5]). The precise asymptotic behavior of the bias and covariance of
S,'(x) in the interior of the interval was obtained in [5]. The estimator is shown
to be asymptotically normally distributed there.

2. A quadratic measure of deviation. Our main object is to get a global meas-
ure of how good s5,’(x) is as an estimate of f(x). In particular, the asymptotic
distribution of the functional

i [s¥'(x) = f(X)T dx ,
fx)
with proper normalization, is our main concern. The basic technique in obtain-
ing the results is that of approximating the normalized and centered sample
distribution function by an appropriate Brownian motion process on a convenient
probability space by using a result due to Komlds, Major and Tusnady [4].
Rewrite s,/(x) for x e [x,_,, x;], as

, 1
sy'(x) = W (Vs — yic1) + 5 Z’v G ;d; + —(Ci,odo + Ci vdy)
where
Ciy=A2,G — (1 =) + 4557 = 3)
fori=1,2,...,N,j=0,1, ..., N, alnd r = (x — x,_;)/h. Usually the values
of y, and y,’ are not known. If one uses a simple and rather crude estimate of
yo and y,/,
2.1 t =N "o, t— Iy = vt
(2.1) Yo 7 Vy 7
then
dy=d,=0.
We will need a better estimate later and will come back to this point. Boundary
condition (2.1) is used just for convenience. All the following derivations will
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go through if we replace (2.1) by any of the boundary conditions mentioned
earlier. Now

, 1 h _
sy'(x) = 7 (i — yi-1) + 5 i1 G ,d;

_ 1 h N-1 (O 3 2
=7 (Vs — i) + > 21 G W (Vi1 — 2p; + y;0)

1 i i—1 1 _ i+ 1 j
) - 5] () ()

h N N + o i Da N N

where
Di,j = _%Ci,l if j: 0
= 3(Ci; — Cisn) if j=1,2,...,N-2
3C; v if j=N-—-1.

To simplify the notation further we set AF, ; = y;,, — y,; then

’ 1 -
sy'(x) = — DI E, AF, ;

- =

Yo Wi(x, y) dF.(y)
where
E,,=D,, if j#i—1
and the step function
Wy(x,y) = W, ; v(xs 1, y) = E; ;
when ye[x;, x;,,], xe€[x,_;, x,] and r = (x — x,_,)/h.
REMARK 1. Let D(x, y) = cell distance of x and y; i.e.,
D(x,y)=d if x and y are not knots
=d-—2 if x or y areknots
where d = |i — j| if x € [x;, x;;;] and y € [x;, x,,,]. Then
(1) Wy(x, y) is a step function of y for each x.
(2) Wa(x, y) is a continuous differentiable function of x for each y if we let
D(x, y) be constant.
(3) [Wy(x, y)| < k0" for some positive constants k;, k, from the expres-
sion of A7} (see [1]).
We would like to make the following assumptions:
Al: The density function f(x) e CI[0, 1].
A2: F'(x) = f(x) #+ O on [0, 1] and f is bounded.
For convenience, we introduce the following notation:

Zt) = n¥{(F *(t) — 1)
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where F,* = F,(F~) is the sample distribution of F(X)), - - -, F(X,). Z,%(t) will
be approximated by Z°(r), the Brownian bridge, given by
Z%t) = Z(1) — tZ(1), te[0, 1]
where Z is a standard Wiener process on [0, 1]. Let
Y1) = (Af(0))7* §a W2, y) dZ,X(F(y))
= (rhf7(0)}(sy/(1) — Esy'(1)) -
This process is central to our discussion. We also introduce the following
approximations.
oYu(t) = (Bf(0)7F §o Wi(t, y) dZ°(F(y)) -
Yu(1) = (Bf(0)7 G W(t, y) dZ(F(y)) -
Y1) = (B(0)7F o Walt, )fH() d2() -
All the integrals with respect to dZ°(F(.)), dZ(F(-)), dZ(+), and dZ*(+) are taken
in the L?sense. For convenience, suppose all our processes are realized as random
elements taking their values in the space D[0, 1] (cf. [3]).
For x € D[0, 1], let
Xl = supys,<t X(2)] -

Notice that ,Y,(7) and ,Y,(¢r) have the same covariance structure.
Our approximations start with the following theorem of Komlo6s, Major and
Tusnady [4].

THEOREM 2.1. There exists a probability space (2, A, P) on which one can con-
struct versions of Z,° and Z° such that

1Z,0 — Z% = Op(n~* log n) .
From this we can derive the following lemma.

LeMMA 2.1. If the processes Z,° and Z° are constructed as above and A2 holds,

then
||Yn - OYn” = OP(h—ﬁn—% 10g n)

as nh — oo, h — 0.

PRrOOE.
Y.(1) = (Bf(1))72 S Wy(t, y) dZ,X(F())
= (hf(t))_i Z;’V:_o1 Ei,j S[j/N,(j+l)/N) dZ”O(F(y))
and
oYa(t) = (Bf(1))F I Ei s Stirw,iganm 4ZF(y)) -
Hence

1Y) = oYu(O] = (Af(0)72 - 2 B35 |11 — 21
= Op(h~tn~tlogn)
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since
Pl |E”| < 16 in any case.
LEMMA 2.2. If A2 holds then
(2.2) Y — 1Yl = Op(h?) .
Proor.
Y1) =1 Yu(0)] = [ZDIAEA)HT Walt, YY) D
< 1Z(L)|(Rf(2)) 2 200 E: 4 S[J'/N,(.’i+1)/N)f(y) dy.

Since
S[:i/N,(j+1)/N)f(y) dy = O(h) ’

(2.2) follows.
For convenience, we further introduce the following functionals:
T, = nk §[sy/(x) — E(sy/(x)Ta(x) dx
= {3 L,X(x)a(x) dx
where L, = f!Y, and a(x) is a bounded piecewise smooth function. Set
L, = f1,Y,, i=0,1,2.
From now on, we assume Al and A2 hold through this section.
LemMma 2.3. If
(2.3) h=n? with 6 < %
then
T, — §b oLa’(x)a(x) dx| = o,(h*) .
ProoFr.
T — §boLa¥(x)a(x) dx| = (3 f(X)[Ya(x) — oY (x)]a(x) dx
< sup, | f(x)|sup |Y, — (Ya|sup [Y, + oY, {3 |a(x)] dx
= Op(h~tn~%log n(log N)}),
because
oYa(t) = (MO D75 Ees Stsm,igenim Z%E (D))
and I
Sirvagrnm GZAF(Y) = Stiw,Geom 4Z(F()) + Z(1) Syw, 40w 4F(Y) -

The variance of
Stima o AZ(F(Y))

() - r(4) o

is

Thus
max,g;<y_y {Sti/m,i+0im dZ(F())} = O,(h¥(2 log N)})
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and it is obvious that
Z(1) Sijw,0540m dF(y) = O(h) .

Therefore

LYa(1)] = O0,((21og N)?) .
By Lemma 2.1, we have |Y,| = O,((2 log N)}). Hence

T — §hoLa(x)a(x) dx| = O,(h*n~4log n - (2 1og N)Y)
= Op(hQ)

if

h=n-? with 0 < §
or

n~*log n(2log N)* = o(h).

LEMMA 2.4.
1§86 GLA*(x) — oLa'(x))a(x) dx| = o,(h?).
Proor.
188 GLa*(x) — oLa(x))a(x) dx|
= ()Y (%) — oYa¥(x))a(x) dx|
= [SGSFTH(So Walx, y) dZ°(F(y)))!
— (§o Wy(x, y) dZ(F(y)))"]a(x) dx]|
= R SH{(Z(1) §5 W(x, 1)) dy)?
— 2Z(1) §o Wy(x, y) dZ(F(y)) §s Wy(x, Y)(y) dy}a(x) dx|
< R Z(1)[" §5 |a(x)] dx[§5 Wy(x, )A(y) dyl*
+ 207 Z(1)[O(R)[§5 §5 Wa(x, y)g(x) dZ(F(y))a(x) dx|
where
hg(x) = §s Wy(x, »)[(y) dy + o(h)
and clearly g(x) is bounded in view of Al and Remark 1, (3).
[§0 §6 Wi(x, y) dZ(F(y))g(x)a(x) dx|
= |0 215 E S[j/N,(j+ll)/N) dZ(F(y))g(x)a(x) dx|
(2.4) = | 25 2550 St v Stiw v By 9(x)a(x) dx dZ(F(y))|
= | 2750 St v 2050 Sty Ei ; 9(x)a(x) dx dZ(F(y))|
= | 235 Stiw.inum 9(¥) dZ(F(y))|
= 1559(y) dZ(F())|
where
() = 25 Stow, v Ei j9(x)a(x) dx
is of order A. Also

Var (§59(y) dZ(F())) = G §* () dy = O(F*) .
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Hence (2.4) equals to O,(k). Obviously,

$o Wa(x, Y)(y) dy = O(h) .
Therefore the right-hand side of the inequality in the proof is O,(k) = o,(h?).
Hence the result follows.

LeEMMA 2.5. If (2.3) holds then
T, = Na.La*(x)a(x) dx| = o,(h) ,
T, — NooLa'(x)a(x) dx| = o, (%) .
ProoF. These are just simple corollaries of previous results. Now
WLa(X) = B85 Wy(x, ) f4(1) dZ(1) -
For 0 < x, y < 1, xe[i/N, (i + 1)/N], ye[k/N, (k + 1)/N]and d = |i — k|,
Cov (oLa(X)s sLa()) = Cov [A7F T35 §ij v Eiy SH(0) d2(1) 5
B S5 Stw e B SAO) AZ(0)] = 70 2550 S gaoiw B B,y f(2) At
= 2NN B f(R) + O(h) IS EE s -
But we know that

! ! 1 — 1 -
Cov (sy'(x), $5'(¥)) = Cov (7 S Eo;AF, 5 - DI E,M.AFM>

= % LY E, E, ;Var (AF, ) + o<_'11->

! o\ h 1
= 5 2=t Ei,jEk,jf(]h)7 + 0 <7>
1 v, , . 1
= h =0 Ei,jEk,jf(]h) + 0<7> .
Hence
Cov (,Lu(X), 3. La(1)) = 1(x, y) = 14115 1)
(2.5) = nh Cov (5,/(x), 5,(¥)) + o(h)
= f(x)By(r1, o) + o(h)

asymptotically by Theorem 3 in [5].
The following lemma, due to Bickel and Rosenblatt [2], enables us to determine
the characteristic function of a quadratic functional

(2.6) Z = § Y*(x)a(x) dx
of a Gaussian process Y(x), under certain conditions.

LEMMA 2.6. Let Y(x), EY(x) = 0 be a Gaussian process with bounded, uniformly
continuous covariance function r(x, y). If a(x) is a piecewise smooth integrable func-
tion, the quadratic functional (2.6) has characteristic function formally given by

(2.7) E(e?) = exp{ Y5, 2571(it)*C, [k}
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with

Co= 1§ - §r(xy, X)r(xy, x3) -+ - r(x,, X)a(xy) - - - a(x,) dx, - - - dx, .
The representation (2.7) is valid for |t| < 1/2K where K = ||r||§ |a(¢)| dt and
(k — 1)1 2¥-1C, are the cumulants of (2.6).

REMARK 2. The simple estimate of the derivative at the endpoints from (2.1)
is too crude to give a uniform estimate of order of magnitude sufficiently small
for the bias on the interval [0, 1]. We know that boundary conditions (I), (II),
and (III) will give a uniform estimate of order of magnitude for the bias on
[0, 1] although we do not have asymptotically precise information in the imme-
diate neighborhood of 0 and 1 [5]. The same situation occurs for the covari-
ance, i.e., B,(r,, ) in (2.5) is not known if x or y is close to the boundary. In
the following derivation, we will use boundary condition (III) which specifies
the derivatives at the endpoints. In the proof of Theorem 3 in [5] we see ob-
viously that the order of magnitude is uniform on [0, 1] for variance and co-
variance.

LemMma 2.7.
E(§a,L.}(x)a(x) dx) = § B(x) dx {5 f(x)a(x) dx + o(h?)
where B(x) = By(r,, r,).
Proor. Set $ < ¢ < 1. Then, asymptotically, (2.5) is true for x, y in [A7,

1 — A?]. For convemence we extend (2.5) to [0, 1] formally. The error is of
smaller order of magnitude. Then from Lemma 2.6 and Remark 2, we have

E(§o,Ly*(x)a(x) dx) = {3 /(x)B(r)a(x) dx 4 O(h) + O(h*)
= YN SEr fx)B(r)a(x) dx + O(h?)
= 25 fUha(jh) §57" B(x) dx + O(h)
= DY f(jh)a(jR)k (5 B(x) dx + O(h9)
= 3B(x) dx - {3 f(x)a(x) dx + o(h).
One should keep in mind that r = (1/h)[x — x,] if x € [x,, x,,,]. Also, it is un-

derstood that the error term is carried through each step implicitly. Similarly
we have

LemMa 2.8.
Var (§3,L,%(x)a(x) dx)
= 2h {5 fA(x)a¥(x)dx - 5o §b 8 BA(xy, X,) dx, dx, + o(h) .
ProOF.
Var [§},L,}(x)a(x) dx]

= 2 (5 $oS(x0)f(x5)By(ry, 1) By(rys 1y)a(xy)a(x,) dx, dx, + O(h*)

=2 30 25 Bt G fa) f(x)a(xn)a(x,) Bi(ry, 1) dxy dx, + O(R*)

=2 275 [ UR@ (IR D5 §o §5 B (X1, X,) dxy dx, + O(h*)
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(since By(r,, r,) damps out exponentially asd — co we can use this approximation)
= 20 §§ fA(x)a(x)dx - 35 §5 §8 B (X1, X,) dx, dx, + o(h)
to the first order. Similarly, the kth cumulant of { ,L,*(x)a(x) dx is to the first
order
(k — 1)1 2k=1pk=1 (1 fE(x)a*(x) dx - V¥ + o(h*?)
where
VE = 2iay 24 S e Bdl(xv Xz)de(Xz, Xg) - e Bdk(xk’ X)) dx, - - dx, .

As a result, we have the following theorem.

THEOREM 2.2. Let Al, A2 hold and suppose that a(x) is integrable piecewise
smooth and bounded. Suppose further that (2.3) holds. Then
hAT, — §o B(x) dx §; f(x)a(x) dx]
is asymptotically normally distributed with mean zero and variance
2 §5 f(x)a’(x) dx T §o §o B'(X0s X;) dxy dx,
The statistic
T, = nh {3 [s,/(x) — f(x)Pa(x) dx
probably is of greater interest than T,

Before we go on to discuss the statistic T, we make a further comment on
the boundary condition. In many practical situations the “true” derivatives
yJ and y, at the endpoints are not known. To compute a spline estimate, one
would either set certain boundary conditions based on some a priori knowledge
or estimate boundary conditions as well as possible from the collected data.
The estimates in (2.1) are known to be too crude. In order to maintain a bias
error, in terms of order of magnitude, as small as in the interior, we look at
the following estimates:

1
(2.8) Yo = Gys — 83 + 30— )
1
yyt = " (lglyN — 3yyq + %)’N—z - %yzv—s) .
Then
Ey* — f(0)
1

= —- [3F(3h) — 3F(2h) + 3F(h) — 3 F(0)] — /(0)

W
= |3 (FO) + GRF©) + JGRF0) + 57 (BBPF(0) + O())
— 3 (FO) + GHF(©0) + JRHPF"(0) + 37 APF"(0) + O(K))

+3 <F(0) - hF(0) + Lh*F(0) + 3L' WF"(0) + 0(/14)) oy F(O)] — f(0)

= F'(0) — f(0) + O(K) = O(F?) .
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Similarly
Eyy* — f(1) = O(R) .

Hence the bias b,(x) has the same order of magnitude for every x € [0, 1] under
the “boundary conditions” (2.8). The order of magnitude for the variance ot
s,/(x) with (2.8) is uniform also as can be seen easily.

THEOREM 2.3. Assume Al, A2 hold. If
(2.9) - h=o(n") and  n¥(logn)(log N)} = o(h)
as n— oo, then
h=3nh §5 [s/(x) — flix)Pa(x) dx — §i f(x)a(x) dx §; B(x) dx]
is asymptotically normally distributed with mean zero and variance
2 Diemw §5 50 By (x0, X,) dxy dx, §5 f3(x)a(x) dx
as n — oo where a(x) is a piecewise smooth integrable function.
Proor.
T, = nk §i[sy/(x) — f(x)Fa(x) dx
= nh{§; [sy'(x) — Esy'(x)Pa(x) dx
+ 2 50 [s5'(xX) — Esy'(0)][Esy'(x) — fix)]a(x) dx
+ $o[Esy'(x) — f(x)Pa(x) dx}
= T+ 2nh §5 [sy/(x) — Esy/(x)][Esy'(x) — flx)]a(x) dx
+ nh §o [Esy'(x) — fix)[a(x) dx .
Since Var (s,'(x)) = O(1/nk) and bias b,(x) = O(k®) are uniform on [0, 1] (see
(5D
2nh (3 [s,/(x) — Esy'(x)][Esy'(x) — f(x)]a(x) dx

is asymptotically normal with mean zero and variance

(nhy: - O <;lz> . (O(K)): = O(nk?) .
Also
nh §3 [Esy'(x) — f(x)]a(x) dx = nhO(h®) = O(nh")

if we require nh'* — 0 as n — oo then 44T, — T,] = 0,(1). This and Theorem
2.2 yield Theorem 2.3.

REMARK. The statistic in Theorem 2.3 has an obvious application in the test
of goodness-of-fit.

We can test H: f = f, at a given level a by calculating T, for f = f, and reject
H when T, = d(a) where by Theorem 2.3

d(a) = § fy(x)a(x) dx | B(x) dx + H®-Y(1 — a)/SD
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where SD = [2 317 ., {§ B (xy, x,) dx, dx, § f)(x)a’(x) dx]t. If we can take a(x) =
fo~}(x) then this is distribution free. The rounded off numerical values of mean
and variance can be obtained from

13 B(x) dx = 1.166
2 Yo VA BA(xy, X,) dxy dx, = 2.7434
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