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GOOD AND OPTIMAL RIDGE ESTIMATORS

By R. L. OBENCHAIN
Bell Telephone Laboratories

In generalized ridge estimation, the components of the ordinary least
squares (OLS) regression coefficient vector which lie along the principal axes
of the given regressor data are rescaled using known ridge factors. Gener-
alizing a result of Swindel and Chapman, it is shown that, if each ridge
factor is nonstochastic, nonnegative, and less than one, then there is at
most one unknown direction in regression coefficient space along which
ridge coefficients have larger mean squared error than do OLS coefficients.
Then, by decomposing the mean squared error of a ridge estimator into
components parallel to and orthogonal to the unknown true regression
coefficient vector, new insight is gained about definitions for optimal
factors. Estimators of certain unknown quantities are displayed which
are maximum likelihood or unbiased under normal theory or which have
correct range.

1. Introduction. Generalized ridge estimators for the unknown coefficient
vector, B, in a multiple linear regression model utilize ridge factors, d,, - - -, 0,
which rescale the components of the least squares vector, b°, along the principal
axes of the given regressors. Specifically, with ¢ denoting these components and
with 7 denoting the corresponding true components of 8, the estimator of 7, is
d;c; for i =1, ..., p. The mean squared error computations which will be
made here assume that each 4, is nonstochastic; the ridge estimator is then a
linear estimator of §.

Attention is focuced upon characterizations of two types of nonstochastic
ridge factors which are unknown because they are functions of (8, ¢%). First,
a set of nonstochastic ridge factors is said to be “good” for a fixed (B, ¢%) if the
corresponding linear ridge estimator dominates least squares in every mean
squared error sense. Secondly, a set of nonstochastic ridge factors is said to be
“optimal” for a fixed (B, ¢?) if the corresponding linear ridge estimator achieves
minimum possible mean squared error in one specific (univariate) sense.

Normal theory inferences are also considered in which stochastic ridge factors
result from inserting estimates for (8, ¢ into the formulas which characterize
good or optimal nonstochastic factors. No attempt is made to estimate the exact
mean squared error matrices of the resulting nonlinear ridge estimators.

Section 2 presents all necessary notation and definitions. The observations
made in Section 2 illustrate the basic concepts which are used to establish
the ridge function theorem of Section 3 and the optimal factor theorems of
Section 4.
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1112 R. L. OBENCHAIN

2. Notation, definitions, and known results. The notation of Obenchain (1975)
will be utilized. Thus, given an (n X p) matrix of regressors X and an (n X 1)
vector of the corresponding responses y, assume that sample means have been
removed from the data (so that 1’X = 0’ and 1’y = 0), and write the standard
multiple linear regression model as E(y|X) = X8 and D(y|X) = oI — 11'/n),
where B is a (p x 1) vector of unknown regression coefficients (8’8 < o) and
¢? > 0 is the unknown error variance. The singular value decomposition of X,
Rao (1973), page 42, will be denoted by

(2.1) X = HAG’

where At is the diagonal matrix of ordered singular values of X, 4} > ... > 4%
Assume that 2, > 0 so that B is estimable, and let b® denote the ordinary least
square estimator of 8; b’ = X*y, where the superscript + denotes the Moore-
Penrose inverse. Then, as in Obenchain (1975), b° = Gc¢ where the vector ¢ =
A-iH'y contains the uncorrelated components of b°, and E(c|X) = G'8 =7,
the unknown true components of .

The ith element of ¢ has the form

(2.2) c; = (Yy/A)tr,

where r,; is the correlation coefficient between y and the coordinates of the
regressors along their ith principal axis, and the normal theory F-statistic for
Ti = 0 is

(2.3) F,=r(n—p— 1)1 —RY,
where R* = r?, + ... 4 r2 . In the conditional distribution theory of interest,
X (and thus H) is given, so the principal correlations, r,,, - - -, r,,, are not then

distributed as correlation coefficients. The unknown noncentrality of F; is
$2 = 7 4;[o% but it is clear from (2.3) that F; does not depend in any known
way upon 4;.

Generalized ridge estimators result from utilizing d;c; as the estimator of y;

fori =1, ..., p, where g, is a realizable (fixed or stochastic) ridge factor. The
estimator of 8 is thus

(2.4) b* = GAc

where A is the diagonal matrix with elements 6,, - - -, 6,. 1fd,, ---,d,are non-

stochastic given X, then the mean squared error matrix of b* as an estimator
of B is GIMSE (Ac)]G’ where

(2.5) MSE (Ac) = o’A’A~" + (I — A)yy'(1 — A)

is the mean squared error matrix of Ac as an estimator of 7.
A weighted, univariate measure of the mean squared error of b* as an esti-
mator of 8 is given by

(2.6) wmse (b*, W) = E[(b* — BYW(b* — B)],
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where W is any p by p, nonnegative definite, nonstochastic weight matrix. An
often considered special case of (2.6) is that in which W = I, Hoerl and Kennard
(1970); the resulting wmse (b*, I) = trace [MSE (b*)] is called the summed mean
squared error of b*. As another example, if @ is a unit vector (a@’a = 1), then
wmse (b*, aa’) = a'[MSE (b*)]a = MSE (a’'b*) = MSE (—a’b*) is the mean
squared error of b* parallel to +a in p-dimensional Euclidean space, i.e., the
mean squared error of @’b* as an estimator of a’8. :

A matrix measure of the mean squared error of b* relative to b° is given by
EMSE (b*) = MSE (b°) — MSE (b*), which will be called the Excess MSE
matrix. Note that EMSE (b*) is not MSE (b° — b*).

DEFFINITION. b* of (2.4) is said to be a “good” generalized ridge estimator
of B iff the following three equivalent properties hold:

(2.7.1) EMSE (b*) = MSE (b’) — MSE (b*)
is a positive definite matrix, or

(2.7.ii) MSE (a’b") > MSE (a’b*)

for every unit vector a, or

(2.7.iii) wmse (b°, W) > wmse (b*, W)

for every positive definite weight matrix W. (Theobald (1974), Theorem 1,
proved the equivalence of (2.7.i) and (2.7.iii).)

Necessary and sufficient conditions are given in Section 3 for a b* with non-
stochastic ridge factors on the range 0 < 6, < 1 fori =1, ..., p to be good in
the above sense for fixed (B, ¢?). These conditions are generalizations of the
results of Swindel and Chapman (1973), who considered only the one “‘parameter”
family of factors 6, = 4,/(4, + k) fori =1, ..., p and k > 0. Furthermore, if
a b*with nonstochastic 0 < d;, < 1 is not good, it is shown that there exists an
unknown direction &* such that MSE (a’b’) > MSE (a'b*) for every @ orthogonal
to a* but such that MSE (a’b’) can be smaller than MSE (a’b*) when a’a* = 0.

No realizable (stochastic or nonstochastic) d,, ---, d, are good for every B
and ¢?; this point is clarified by Theorem 1 for the case of nonstochastic (d)’s,
and the case of stochastic (9)’s is treated by Brown (1975) and Bunke (1975a, b).
For example, the Stein-type b* estimators which dominate b® in wmse (b, X’X)
for every (8, o?) when p = 3, Efron and Morris (1976), equation (4.1), are not
good since, as suggested by Stein (1962), page 267, MSE (a’'b’) < MSE (a'b*) is
possible when a is parallel to the unknown vector (X'X)!8 = GAly. As a
second example, the choice d; = 1,/c;, considered by Vinod (1976) and Kennard
(1976) when ¢; # 0, yields zero error but is clearly not realizable.

Linear (b*)’s with 0 < d; < 1 are admissible estimators of 8 because they are
Bayes with respect to some proper prior on 8 (e.g., Lindley and Smith (1972));
b° is admissible in the matrix mean squared error sense even though it is Bayes
with respect to an improper prior on 8. However, Thisted (1976) shows that
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heuristic rules for choosing among linear ridge estimators for a particular prob-
lem can yield inadmissible (nonlinear) estimators.

Section 4 considers “optimal,” unknown nonstochastic choices of 9, ---, 4,
which mimimize MSE (a’b*) for given @ or which minimize wmse (b*, W) for
given W. For example, the unknown 4, which minimizes the mean squared
error of §,c; as a linear estimator of 7, Hoerl and Kennard (1970), is

(2.8) 0. = ¢7)(1 + ¢/)

where ¢, = 7,22;/0® is again the unknown noncentrality of F;, (2.3). Then, as
observed in Obenchain (1975), §, = ¢;*® for i =1, ..., p is the unknown,
optimal set of ridge factors with respect to any criterion which depends only
upon the diagonal elements of MSE (Ac). Two such examples are the wmse (b*, I)
of Hoerl and Kennard (1970) and the scaled, predictive mean squared error =
1 4+ o~* wmse (b*, X’X) of Mallows (1973). Restricted and unrestricted maxi-
mum likelihood estimation of § M5, ... § YSE js considered in Obenchain (1975).
The most interesting new results of Section 4 correspond to minimizing
MSE(a’'b*) by choice of 9,, - - -, d, when a is either parallel to or orthogonal to
the unknown true S.

The generalized ridge estimator for shrinkage toward an arbitrary known

point 8, is
(2.4 b* = GA(c — 7,) + B,

where 7, = G'B, is also known. Then MSE (b*) = G[MSE(Ac + (I — A)7,)]G’,
so it is only necessary to replace 7 by (7 — 7,) in (2.5) and in the following to
consider this generalization. Another generalization occurs when the original
linear model was E(z|W) = p¢1 + Wg and D(z| W) = ¢*V for a known positive
definite covariance structure V. Writing @ = QV~il, y = (I — weo*)QV-iz,
and X = (I — w@*)QV~*W for any n by n orthogonal matrix Q, a correspond-
ing linear model is E(y|X) = Xg and D(y|X) = ¢%(I — ww*) where @'y = 0and
®'X = 0’. The principal components analysis terminology of Obenchain (1975)
is not strictly appropriate unless @ is proportional to 1, but this can be made
to be the case by choice of Q. (For example, take Q = Q,Q,’ where Q, and Q,
are any orthogonal matrices whose first columns are proportional to 1 and V-1,
respectively, so that @ = 1(1'V~'1/n)t.) Whatever be , the normal distribution
theory and (2.3) are unchanged.

3. Good ridge factors. Let {, = ... = {, denote the ordered eigenvalues of
EMSE (b*), (2.7.i). Then b* is good if and only if {, > 0. Define a scalar valued
function, RF(A), of 9,, - - -, d, to be
(3.1) RF(8) = 12, [02%(1 — 0)]/I(1 — 0.5)(1 + 4)]

= 22, 641 — 8))(1 + 8y)

where §,¥F is the unknown shrinkage factor of (2.8). The following theorem
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gives necessary and sufficient conditions for certain (b*)’s to be good and displays
the eigenvector a* of EMSE (b*) corresponding to £, when {, < 0.

THEOREM 1 (ridge function theorem). If (B, %) are fixed parameters such that
6> 0and B'B < oo, the given X is of rank p(2, > 0), and 0, is nonstochastic on
the range 0 < 6, < 1 fori =1, ..., p, then

(i) Lo >0ifp> 1,
(i) ¢, > 0iff 6, - - -, 8, are all sufficiently close to one that RF(A) < 1,
(i) ¢, = 0 iff RF(A) = 1,
(iv) ¢, < 0iff RF(A) > 1, and
(v) the eigenvector of EMSE (b*) corresponding to a {, < 0 has jth element

3.2 *oc Y 951 — 3))rs ,
o R T (e |

for G = ((9,:)) and 4, of (2.1) and y = G'B.

Proor. It will only be necessary to show that EMSE (b*) can be written in
the notation of the lemma of the Appendix under the assumptions of the theorem.
EMSE (b*) = GAG’ where A = A-%¢* — MSE (Ac) can be rewritten as A =
D(I — zz')D where D is a positive definite diagonal matrix of the form D =
(I — A**A~%s and z = o}(I — A*)~*AY¥I — A)y is a column vector. Note then
that

2z =y, #°0=0) _ ppay,
(1 -4
that EMSE (b*) and A have the same eigenvalues, and that the eigenvector of
EMSE(b*) corresponding to a {, < 0 is proportional to G[D* + |, [I]-'Dz.

REMARKS. (a) In the one-parameter Hoerl-Kennard (1970) family, 4, =
2;/(A; + k), the ridge function is RF(A) = 3 ¢./(1 + 22;k™") and the results of
Swindel and Chapman (1973) are a special case of part (ii) of the above theorem.
Namely, every k > 0 yields a good ridge estimator if }; ¢,* < 1; otherwise the
good range is 0 < k < 2/|p,| where 7, is the negative eigenvalue of (X'X)~' —
BB'[s*. The sufficient condition of Theobald (1974), Theorem 2, that 0 < k <
20%/B'B is thus usually too stringent to be necessary.

(b) When p =1, d,¢, is good for 4§, > 6, = max (0; 26,"F — 1), and
RF(A¥SF) < 1 when p = 2. RF(A¥SF) can exceed one when p > 2. It is easily
shown that the following “(2/p)th’s rule,” d§, = 1 — 2(1 — 9,"5E)/p for i =
1, ..., p, is sufficient for b* to be good because each term of (3.1) will then be
less than 1/p.

(¢) Since f(0) = (1 — d)/(1 + ¢) is convex on 0 < ¢ < 1, the good ridge
factors form a convex, open, nonempty set within0 <o, < 1 fori=1,...,p
for each fixed (8, ¢*) with 8’8 < oo and ¢* > 0.

(d) If RF,(A)isthe value of the ridge function at (8,, ¢,%) and f is any nonzero
constant factor, then RF,(A) = f*RF,(A) is its value at (B,, 0,’) of the form
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(fB,, .) or (B,, 0.*/f*). Since RF,(A) must be greater than zero for some (8,, 0,%)
when ¢, is nonstochasticand 0 < g, < 1fori =1, ..., p, nosuch A can be good
for all (B8, ¢?) with 8’8 < oo and ¢* > 0.

Normal theory estimation. The maximum likelihood estimator of ¢,2 = 7,%2;/0*
under normal distribution theory is nF;/(n — p — 1) for F, of (2.3). The maxi-
mum likelihood estimators of {;, - - -, {, are the p solutions of
(3.3) D el — 01 — 62 — ] = 1
if ¢; = (y'y/4;)}r,; is not zero for i =1, - .., p, and s* = (¥'y)(1 — R?)/n. If the
estimate of {, is negative, substitution into (3.2) yields the corresponding maxi-
mum likelihood estimator of @*. For numerical examples, see Obenchain
(1976a, b).

The estimator of ¢,> which is unbiased under normal distribution theory is
$r = —1 4 (n— p — 3)F,/(n — p — 1), and the corresponding “correct range”
estimator is ¢,** = max (0, ¢,2). All of the above estimators can be used to esti-
mate RF(A) = 3 ¢*(1 — 6,)/(1 + 0,), and it is noted that the maximum like-
lihood estimate > the correct range estimate > the unbiased estimate.

The scaled mean squared error matrix, MSE (Ac)/o?, is unbiasedly estimated
for nonstochastic A by

G4y T==P=3) 1 A)A-ivA-I — A) + A2A — 1)
(n—p—=1)
= (%)) »
where t is the column vector of t-statistics, ¢, = +F,* of (2.3). The ith diagonal
element of MSE (Ac)/a* is t,, = MSE (d,¢,)/0* = [(1 — 8,)¢;* + 0,%]/4; = 0.2/,
this lower limit being the known scaled variance of d;c;. A correct range esti-
mator of z,; is provided by % = max (%, 6,’/4). The estimators of Mallows’
C-statistic, C(b*) = 1 + >, 4,7, corresponding to #,; and 7%, Obenchain (1975),

equation (5.1’), are minimized term-by-term when d, equals
(3.5) 0, =max{0,1 — (n — p — 1)/[Fy(n — p — 3)]}.

The corresponding estimators of MSE (a’b*)/¢?, which is the scaled mean
squared parallel to +a, are a'GTG'a for G of (2.1), where the off-diagonal
elements of T of (3.4) are used and the diagonal elements are either the #; or
the . If the %, are used, a correct range estimator of MSE (a’b*)/o* is
max (@’GTG’a, @’GA*A~'G’a), and this estimator can be smaller than the cor-
rect range estimator which utilizes the z%. Special cases of interest in the above
occur when a is a column of the identity matrix or when a indicates a contrast
between a pair of coefficients which are known to be highly negatively correlated
in the least squares estimator. Just as the ridge coefficients are plotted to form
a “trace,” Hoerland Kennard (1970), the above estimates of scaled mean squared
error or of the eigenvalues of EMSE (b*) can be plotted to aid in solution selec-

tion, Obenchain (1976a, b).



GOOD AND OPTIMAL RIDGE ESTIMATORS 1117

Under the restriction A = dI, b* = 6b° is good for ¢ > 1 — 2/(1 + 3 ¢,
where 37 ¢ is the noncentrality of the F-ratio, F, = (F, + --- + F,)/p =
R*(n — p — 1)/[p(1 — R?], for the hypothesis that 8 = 0. Utilizing the maxi-
mum likelihood estimator, npF,/(n — p — 1), of 3} ¢.2, the resulting estimated
lower limit for good g exceeds 1 — 2(n — p — 1)/(npF,). Now éb° is known to
dominate b° in summed mean squared error under normal theory, Baranchik
(1970, 1973), for ¢ = max (0,1 — ¢/F)) when p > 2, n > p + 1, and the con-
stant cis 0 < ¢ < 2(p — 2)(n — p — 1)/[p(n — p + 1)]. Note that this known
upper limit on ¢ is bigger than 2(n — p — 1)/np by a factor of (p — 2)n/(n —
p + 1). Thus sample evidence usually indicates that some Stein-type estimators
may not be good.

Normal theory confidence statements are relatively simple to make when A =
oI using arguments similar to those of Johnson and Welch (1939) for producing
confidence sets for a coefficient of variation. Given a confidence probability
7, Pr[L < 3] ¢’] = = when L is the minimum noncentrality needed to make
the 1007 percent point of noncentral F(p, n — p — 1) equal or exceed the ob-
served F, for B = 0. The resulting interval with (5)’s which are good with
specified confidence is Pr[RF(6I) < 1 for M < 6 < 1] =1 — 7= where M =
max [0, (L — 1)/(L + 1)]. For example, F, = 10,p =4,n —p — 1 =257 =
0.1, and standard approximations, Johnson and Kotz (1970), yield L = 60.3 and
M = 0.967, while (6)’s as smallas 1 — 25/270 = 0.908 imply that 6b° dominates
b° in the sense of Baranchik (1970, 1973).

The “strong” MSE criterion of Toro-Vizcarrondo and Wallace (1968) is relat-
ed to the ridge function for the case where each 4§, is zero or one, so that
RF(A) = X7, (1 — d;)¢. (In their notation, this noncentrality parameter is
divided by two.) The “weak” MSE criterion of Wallace (1972) corresponds to
observing that wmse (b’ X'X) — wmse (b*, X'X) = ¢> 337_, (1 — 8,)(1 — ¢2),
again when each d; is zero or one in b*. There criteria suggest forming the F-
ratio 317, (1 — d,)F,/m with degrees-of-freedlom m = p — 4, — ... —§, and
(n — p — 1) then testing whether its unknown noncentrality is either < 1 for the
“strong” criterion or < m for the “weak” criterion. However, generalizations
of this procedure to cases where the J; are neither zeros and ones nor all equal
do not seem to be straightforward.

4. Optimal ridge factor theorems. The following theorems characterize the
ridge factors which achieve either minimum mean squared error parallel to an
arbitrary direction, @, in coefficient space or minimum wmse (b*, W) for arbi-
trary positive definite weight matrix, W. The directions parallel to and ortho-
gonal to the unknown B will be shown to play pivotal roles in this theory.

THEOREM 2. Given a unit vector &, o* > 0, and B'B < oo,

(i) MSE (a’b*) does not depend upon 5, when a'g; = 0, and
(ii) MSE (a’b*) is minimized by choice of nonstochastic 6, at

(4.1) o(@) = (@'B)hr/[(a'g:)(o* + X% 1°4;)]
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when a@'g; + 0, where ) * denotes summation only over subscripts j such that a'g; +
0. Egquivalently, 6,7, = k¢?/(a'g;) where k = (a'B)/(1 + Y * ¢,2).

Proor. Let § = a’G be the unit vector giving the coordinates of @ with re-
spect to the principal axes of X. Then a’b* = §’Ac is the component of b* in
the @ direction, and this does not depend upon d, when @ is orthogonal to the
ith principal axis (§; = @’g; = 0). Nonstochastic (6)’s imply MSE (a’b*) =
o*§'A’A~1§ 4+ (§(I—A)y)?and d MSE (@'b*)/d5; = 26,6.24,70* — 2(&'(1—A)y)é. 74,
which is identically zero when §; = 0 or becomes zero when §, = k7, 4,/¢, and
k@ = [§(1 — A)y]/e* for &, ++ 0. The minimization problem is convex because
the second derivative’s matrix is nonnegative definite; so (4.1) results by solving
o’k = &y — k'@ 3 * y22; for k' and noting that §'y = a’B.

REMARKs. (a) It is easily shown that d,(a) = 0,(—a), but neither 0 < d,(a)
nor d,(@) < 1 is necessarily the case.

(b) d:(8;) = ri’4:f(0® + 7:°4) = 0,*5F of (2.8) and d,(g;) is undetermined for
j# i

(c) If Bis zero, every a is orthogonal to B in the sense that @’ = 0, and
0;(a@) = 0 is an optimal choice for i =1, ..., p and for every @ in this case.
When B = 0, there is a (p — 1)-dimensional space of @’s orthogonal to 8, and
0;(@) = 0 when a’g; # 0 is again the optimal choice for these orthogonal a’s.
If one always shrinks b° to 0 by taking 6, = ... = J, = 0, one cannot make
an error orthogonal to the unknown, true 8.

(d) If B + 0, & parallel to B yields §; = a’g; = 7,(7'7)"*. Thus d(a) is not
determined for this @ when 7, = 0, and d, = k=4, is otherwise optimal for
(4.2) k= = (r'n)/(e* + 7rAr) = 0.

The corresponding ridge estimator is b* = k='GAc = k='X'y, where X'y is the
vector of p inner products of the given regressor values with the response vector.

Thus a ridge estimator which achieves minimum mean squared error parallel
to the unknown, true B is known to be parallel to X'y, and this is the only

case (except A = 0) when the relative magnitudes of d (@), - - -, d,(a) are known
in (4.1).

THEOREM 3. Givenap.d. weight matrix W, a* > 0, and B’ < oo, wmse (b*, W)
of (2.6) is minimized by choice of nonstochastic é,, - - -, 0, at
(4'3) 57.(W) = rili 77i/(02mii) s

where 7, is the ith element of 7 = (D + M)y, M = ((m;;)) = G'WG, and D is
the diagonal matrix with ith element ¢.*/m,,. Equivalently, Ay = Dy = D(D +
M-~y

Proor. wmse (b*, W) = ¢* trace (MA’A~") + /(I — A)M(I — A)yis aconvex
function of d,, ---, d,, so the minimum occurs at d wmse/dd = 0, which are
fixed point equations of the form (4.3) with » = M(I — A)y. Thus » = My —
MD2 yields the desired result when solved for 3 because (MD + I)~! = (D +
M~1)"'M~! where M is positive definite.



GOOD AND OPTIMAL RIDGE ESTIMATORS 1119

REMARKS. (a) If M is a diagonal matrix or if at most one element of y is
nonzero, then d,(W) = 9,"5® of (2.8).

(b) The one “parameter” family of weight matrices W = I 4 (v — 1)88* and
corresponding optimal factors of (4.3) have some interesting properties. The
“parameter”y is the Lagrange multiplier when the problem is to minimize the
summed mean squared error orthogonal to B under a restriction on the mean
squared error parallel to 8. Then 06,(W) approaches 0 as v approaches 0,
0,(W) = 0,*® at v = 1, and J,(W) approaches k‘='2; of (4.2) as v approaches
infinity fori =1, ..., p.

Normal theory estimation. The maximum likelihood estimator of k= of (4.2)
under normal distribution theory is =) = ¥ nr%,2,7%/[1 4 (n — 1)R*]. Replac-
ing n by (n — p — 1) in this formula would remove the bias in the maximum
likelihood estimate of ¢ but would not produce an unbiased estimate of k‘=’.
Note that k=) is rather sensitive to the small eigenvalues, 4,, 4,_,, - -+, which
occur when X is ill-conditioned. Estimates of (4.1) and (4.3) can be constructed
by using ¢; as the maximum likelihood, unbiased estimate of y; and using the
maximum likelihood or correct range or unbiased estimates of ¢, as described
in Section 3.

5. Conclusions. Certain unrealizable estimators have been characterized as
being either good relative to least squares or optimal for given direction @ or
weight matrix W. These two classes appear to contain all known definitions
for “optimal,” nonstochastic factors. It is not claimed that the sample statistics
displayed here allow one to infer that any realizable estimators are guaranteed
to be good or optimal for a particular problem. The high variability associated
with an ill-conditioned regression problem affects the estimators of (3.1) to (3.4)
and of (4.1) to (4.3). However, the above procedures do provide valuable
sample evidence to the ridge practitioner; the data are used to indicate which
ridge estimators are likely to be good or in what direction they are worse than
least squares and also to estimate the scaled mean square error of linear ridge
estimators in all directions of p space.

APPENDIX
LemMA. If D = Diag(d,, - --, d,) is a positive definite diagonal matrix and if
z = (z,, ---, 2,) is a vector, then the matrix A = D(I — zz')D is
(i) positive definite iff z'z < 1,
(ii) nonnegative definite of rank (p — 1) iffz’z = 1, and
(iii) has one negative eigenvalue and (p — 1) positive eigenvalues iff z'z > 1.

An eigenvector T corresponding to an eigenvalue 2 of A is

(a) = = ith column of the identity matrix and A = d;* if z; = O for some i.
(b) T oc(D* — A)'Dz if A £ d? foranyi=1, .-, p.
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Proor. Since 7 # 0 is to be an eigenvector of A with eigenvalue 1, Az =
it = D’z — (Z’D7)Dz. Thus = must be k(D* — AI)~'Dz for some scalar k == 0
if2#d?>0fori=1,...,pand if z# 0. But then (D* — )z = kDz =
(zD7)Dz = (kz'D*(D* — iI)~'z)Dz. It follows that every eigenvalue of A must
either be a solution of

9(2) = X2iz? z22ddP — D)= 1

or must equal one of the d;* > Ofori =1, ..., p. Letting m denote the smallest
d? for which the corresponding z;* > 0, it is clear that g(2) is strictly increasing
on —oo < 4 < m and that g(2) = 1 has exactly one solution in this interval.
If this solution is 4y < 0, it cannot be a multiple eigenvalue of A because the
corresponding eigenspace of (D* + |4yy|I)~'Dz has rank one. The value, g(0) =
z'z, of g(2) at 2 = O is thus critical in determining 1y,y. Specifically, g(0) < 1
implies that the solution of g(4) = 1 is 4y > 0, g(0) = 1 implies 2y;x = 0, and
9(0) > 1 implies Ay < O.
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Addendum. Farebrother (1976) treated the case where the rank of X'isr < p
and good estimators are sought in the one-parameter ridge family. In this case
A,yy = --- =4, =0, and the last (p — r) principal axes and components are
not uniquely determined. Farebrother’s main result, given in his equation (6),
implies that a fixed k yields an estimator which dominates least squares for
every estimable linear function iff the sum of the first r-terms of the ridge
function of (3.1) is less than one—but the last (p — r) terms are zero because
¢, = --- = ¢, = 0. Thusitis not necessary to assume that r = p to prove a
generalization of Theorem 1, and the Farebrother (1976) result is more general
than that of Swindel and Chapman (1973). Farebrother (1978) gives a further
generalization of part (ii) of Theorem 1 to a class of estimators which includes
(2.4) and (2.4') as special cases.

FAREBROTHER, R. W. (1976). Further results on the mean squared error of ridge regression. J.
Roy. Statist. Soc. B 38 248-250.
FAREBROTHER, R. W. (1978). A class of shrinkage estimators. J. Roy. Statist. Soc. B 40 (to
appear).
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