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STABLE DECISION PROBLEMS!

By JosepH B. KADANE AND DAvID T. CHUANG

Carnegie-Mellon University

A decision problem is characterized by a loss function ¥ and opinion
H. The pair (V, H) is said to be strongly stable iff for every sequence
Fy—y H, Gyn —», Hand Ly — V, Wy — V uniformly,

lime o lim SUPn—oo [f Ln(0, Dn(e)) dFn(0) — infp [ Ln(0, D) dFs(6)] = 0
for every sequence Da(c) satisfying
J W0, Da(e)) dGa(0) < infp [ Wi(0, D) dGn(0) + ¢ .

We show that squared error loss is unstable with any opinion if the para-
meter space is the real line and that any bounded loss function ¥(6, D) that
is continuous in ¢ uniformly in D is stable with any opinion H. Finally
we examine the estimation or prediction case ¥(4, D) = h(6 — D), where A
is continuous, nondecreasing in (0, ) and nonincreasing in (—oo, 0) and
has bounded growth. While these conditions are not enough to assure
strong stability, various conditions are given that are sufficient. We be-
lieve that stability offers the beginning of a Bayesian theory of robustness.

1. Introduction. “Subjectivists should feel obligated to recognize that any
opinion (so much more the initial one) is only vaguely acceptable. (I feel that
objectivists should have the same attitude.) So it is important not only to know
the exact answer for an exactly specified initial position, but what happens
changing in a reasonable neighborhood the assumed initial opinion.” De Finetti,
as quoted by Dempster (1975).

A well-known principle of personalistic Bayesian theory is that no one can
tell someone else what loss function to have or what opinion to hold. Having
said that, the reasons for looking into properties of particular choices of loss
functions and opinions might be obscure.

The standard of personalistic Bayesian theory may be too severe for many
of us. Generally when a personalistic Bayesian tells you his loss function and
opinion, he means them only approximately. He hopes that his approximation
is good, and that whatever errors he may have made will not lead to decisions
with loss substantially greater than he would have obtained had he been able
to write down his true loss function and opinion.

There are two special cases that have been considered. In the first, one cannot
(or need not) obtain one’s exact prior probability. Stone (1963) studied decision
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procedures with respect to the use of wrong prior distributions. He emphasized
the possible usefulness of nonideal procedures that do not require full specifica-
tion of the prior probability distribution. Fishburn, Murphy and Isaacs (1967)
and Pierce and Folks (1969) also discussed decision making under uncertainty
when the decision maker has difficulty in assigning prior probabilities. They
outlined six approaches that may be used to assign probabilities. In the second
case, one cannot obtain one’s exact utility function. Britney and Winkler (1974)
have investigated the properties of Bayesian point estimates under loss functions
other than the simple linear and quadratic loss functions. They also discussed
the sensitivity of Bayesian point estimates to misspecification in the loss func-
tion. Schlaifer (1959) and Antelman (1965) discuss relating the utility of the
optimal decision to the utility of suboptimal decisions in certain contexts.

The closest related work, however, is the material on stable estimation in
Edwards, Lindeman and Savage (1963). They propose that there is data such
that the likelihood function will be sufficiently peaked as to dominate the prior
distribution. The criterion for robustness is that the densities of various possible
posterior distributions are close.

Another important line of comparison is the work on robustness in the classi-
cal context, as exemplified for instance, in Andrews et al. (1972), Bickel and
Lehmann (1975a, b) and Huber (1972, 1973). While they study how estimates
change as a consequence of outliers, we study here how the worth of the estimates
change.

To give an initial formalization of our question, suppose that the parameter
space is ® C R* for some k, and the decision space is & C R’ for some [. If
F.(0) is my (approximate) opinion over 6 € ©, and L. (¢, D) my (approximate)
loss function, the (approximate) loss of the decision problem to me is

(1) W, =inf,._ §{ L.(0, D)dF.(0),

which is here assumed to be finite. Then for every ¢ > 0, there is a decision
D, () which is e-optimal, that is

(2) § Lo(0, D.(¢))dF,(0) < W, + ¢.

Suppose, however, that my “true” opinion over © is on a sequence F,(0)
which converges to F(f) in a sense to be specified later. Also suppose that
my “true” loss function over © is L,(¢, D) which converges to L.(f, D) again
in a sense to be specified later. Then there is a sequence of “true” losses
generated by

w, = inf,. | L(6, D) dF,(6)

and a sequence of losses generated by behaving according to the approximate
opinion and loss function:

®,) = § L6, D(c)) dF,(6) .
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The worth of knowing the truth is then

— ’
B, =0, —o,

which is always nonnegative. Note that B, is a function of ¢, D,(¢), n, L, and
F,. Suppose that

(3) lim, ,, lim sup,_., B, = 0

for every choice of L, — L, F, — F,, and every choice of D_(¢) satisfying (2).
In this case, the pair (L., F.,) is called strongly stable (by Definition 1). The
above definition makes sense since the nonnegativity of B, implies that, for
each ¢,
limsup,_ . B,=0.

Further, as ¢ decreases to zero, the set of possible choices D, (¢) is nonincreasing.
Thus the possible values of lim sup,,_., B, is monotone and bounded below by
zero. Hence the limit in (3) exists.

There are situations in which (3) holds for every choice of L, — L, and
F, — F,, but only for some particular choice D_(¢). In this case, D(¢) is called
the stabilizing decision, and the pair (L., F.,,) is called weakly stable (by Defi-
nition 1). If (L, F,) is not stable (either strongly or weakly), it is called
unstable.

The motivation for these definitions is that if an opinion and loss function
are strongly stable, then small errors in either will not result in substantially
worse decisions. If, on the other hand, a Bayesian finds that the loss function
and opinion he has written down are unstable, then he may wish to reassess
his loss function and opinion to be certain that no errors have been made.
When he finds he has written down a loss function and opinion which is weakly
but not strongly stable, a Bayesian may choose to make the stabilizing decision
to have protection against errors in either the loss function or opinion.

There are a number of interesting and potentially enlightening choices that
might be made for the sense of convergence of F, to F,and L, to L,. In this
paper we chose to start with weak convergence in the distribution and uniform
convergence in both arguments in the losses. Another choice worthy of study
is to take the likelihood function as known and agreed upon, a weakly con-
vergent sequence of priors, and study the resultant sense of convergence in the
posterior opinions. The sense of convérgence studied here is the special case
in which that agreed-upon likelihood function is flat, which is equivalent to
considering fuzziness in the likelihood function on the same footing as fuzziness
in the prior. Perhaps the more general sense of convergence is closer yet in
spirit to the work of Edwards, Lindeman and Savage (1963).

We also note that uniform convergence in the loss sequence is a very strong
assumption. For example, if L (¢, D) = |6 — D|* for some p, 0 < p < 1, the
sequence L, (6, D) = |¢ — D|***» for some nonzero constant c is a reasonable
sequence of loss functions that do not converge uniformly in § and D to L.
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From a more general point of view we can formulate our problem as follows:
for every sequence (L,, F,) of truths, and every sequence (W,, G,) of approxi-
mations satisfying

L,—V, W, — ¥V uniformly

n

and
Fn —, H, Gn —, H,
act as if (W, G,) were true and evaluate at L, F,.
Let D,(¢) be defined by

If for every such choice of D,(e),
(5) lim, ,limsup, .. [§ L,(0, D,(¢)) dF,(0) — inf, § L,(0, D)dF,(6)] =0

then (¥, H) is strongly stable (by Definition 2). If there is some choice of D, ()
which makes (5) hold, then (¥, H) is weakly stable and D,(¢) is the stabilizing
decision (by Definition 2).

The second definition has the attractive feature that it permits the reader
another interpretation: the apparent truth can be on a sequence (L,, F,) ap-
proaching the fixed truth (¥, H). Definition 2 allows both the apparent truth
(L, F,) and the actual truth (W,, G,) to be sequences, and is thus more general
in the sense that any pair (H, V') that is stable by Definition 2 is clearly stable
by Definition 1. All theorems in this paper proving stability have been proved
for Definition 2 so they apply to Definition 1 as well. However, all counter-
examples to stability have been counterexamples by Definition 1. Hence all
statements about the stability or instability of pairs (H, V') in this paper apply
to both definitions. This observation leads us to conjecture that Definitions 1
and 2 might be equivalent.

Section 2 introduces Definitions 3 and 4 which are apparently simpler than
Definition 2, and shows their equivalence to Definitions 1 and 2. Then some
simple examples are given. In Section 3, bounded loss functions that are con-
tinuous in the right way are examined, and shown to be strongly stable when
paired with any opinion. Finally Section 4 takes up estimation (or, equivalently,
prediction) loss functions subject to a Lipschitz-condition restraint on growth,
and finds some of them strongly stable, and some unstable. To simplify matters,
assume the one-dimensional case (k = [ = 1).

2. A general structure theorem and some examples. In the first part of this
section we introduce two more definitions of strong (weak) stability, Definitions
3 and 4, and show their equivalence to Definitions 1 and 2, respectively. The
greater simplicity of the new definitions helps to simplify the rest of the paper.
Define, for every ¢ > 0, the decision D.(¢) as in (2). Then (L, F.) is strongly
(weakly) stable (by Definition 3) iff for every sequence F, —, F and for every
(for some) such D_(e),

(6)  lim,, lim sup,_.. [ Lo(6, Do(c)) dF,(8) — inf, | L.(6, D) dF,(6)] = 0.
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Similarly define, for every ¢ > 0, the decision D, () as in (4) but with W, taken
to be V. Then (¥, H) is strongly (weakly) stable by Definition 4 iff for every
sequence F, —, H and G, —, H and for every (for some) such D, (), (5) holds
with V substituted for L,. Thus Definitions 3 and 4 differ from Definitions 1
and 2 in that, for the latter, only the opinions move, while the loss functions
stay constant.

TueOREM 1. (a) (V, H) is strongly (weakly) stable by Definition 1 iff (V, H) is
strongly (weaky) stable by Definition 3.

(b) (V, H) is strongly (weakly) stable by Definition 2 iff (V, H) is strongly
(weakly) stable by Definition 4.

ProoF. The proofs of parts (a) and (b) are similar, so only the proof of (b)
is discussed in detail. If (V/, H) is strongly (weakly) stable by Definition 2, one
of the allowable choices for L, and W, is L, = W, = V for all n. Strong (weak)
stability by Definition 4 then follows trivially.

Suppose, then, that (V/, H) is strongly (weakly) stable by Definition 4, and
suppose that L, and W, are arbitrary sequences of loss functions converging
uniformly in ¢ and D to V. Choose ¢ > 0, and let D,(¢) be defined by equation
(4). Choose N, such that ¥V n = N,, |W,(6, D) — V(0, D)| < ¢ for every § and
D, using the uniform convergence of W, to V. Then

inf, § W,(6, D) dG,(6) — inf, § V(6, D) dG,(6)
inf, § W,(8, D) dG,(0) — inf, § (V(6, D) — W,(6, D) + W,(6, D)) dG,(6)
—inf, | (V(6, D) — W,(6, D)) dG(0)

sup, § (W,(6, D) — ¥(6, D)) dG,(60) < «.

Also inf, § W,(6, D) dG,(8) — inf, § ¥(6, D)dG,(6) > —e. Then

A IA

[inf, § W,(0, D,(¢)) dG(8) — inf, § V(6, D) dG,(0)| < ¢ .

Also |§ W,(0, D,(¢)) dG,(0) — § V(0, D,(¢)) dG,(0)| < e. By the triangle ine-
quality, we have

{ V(8, D,(¢)) dG(6) — inf, | ¥(6, D) dG,(0) < 3c .

Hence if D,(¢) is e-optimal for (W,, G,), it is 3e-optimal for (¥, G,), for all
n = N,. Choose d > 0. Then by the uniform convergence of L, to ¥, 3N,
such that Vrn > N,

IL.(6, D) — V(6, D)| < 6.

By exactly the same argument as above, substituting L, for W, and F, for
G,, we have

|inf, § L,(6, D) dF,(6) — inf, § V(8, D) dF,(0)| < & .
Also |§ L,(0, D,(c)) dF,(6) — § V(0, D,(¢)) dF,(6)] < 8. Hence V4 > 0 3 N, such
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that Vn = N,,
I[§ La(6, D,(¢)) dF,(6) — inf,, § L,(6, D) dF,(6)]
— [ V(6, Dy(¢)) dF,(6) — inf, | (0, D) dF,(8)]| < 25 .
Thus
limsup, ., [§ L.(0, D,(¢)) dF,(0) — inf, § L,(6, D) dF,(6)]
= limsup,_., [§ (0, D,(¢)) dF,(0) — inf, § V(8, D) dF,(6)] .

Finally, taking D,(¢) defined by (4), ¢’ = 3¢ and D,/(¢’) defined by (4), with V¥
substituted for L,
lim, ,lim sup, ., [§ L.(0, D,(¢)) dF,(0) — inf, § L,(6, D) dF,(6)]

= lim,, , lim sup, ... [§ ¥(0, D,/(¢")) dF,(6) — inf, | V(6, D)dF,(0)] = 0.
Thus if (V, H) is strongly (weakly) stable by Definition 4, it is strongly (weakly)
stable by Definition 2. []

ExaMmpLE 1. Composite hypothesis, composite alternative. Suppose that there
are only two available decisions {1, 2}, and suppose that V is defined as follows:
V@,1) =0 and Ve@,2y =5 if 6<a;

V@, 1) =c and V@,2) =0 if 6 >a,
where b and ¢ are assumed to be positive.

Since our purpose is to show a counterexample to stability, we temporarily
adopt Definition 3.

Then
D (e) = 1 if bH(a) > ¢(1 — H(a)) + ¢ ;
=2 if bH(a) < c(1 — H(a)) — ¢
= either of above otherwise.

§ V(0, D(¢)) dF,(0) = c(1 — F,(a)) if bH(a) > c¢(1 — H(a)) + ¢;
= bF,(a) if bH(a) < ¢(1 — H(a)) — ¢;
= either (depends on D,(¢))

otherwise.
Then
§ V(0, D.(¢)) dF ,(0) — inf, § V(6, D) dF(6)
= max {0, ¢(1 — F,(a)) — bF,(a)} , if  H(a) > ; j: 2
= max {0, bF,(a) — ¢(1 — F,(a))}, if H(a) < ; J: z ;

= either of above (depends on D, (e)) otherwise.

Suppose H(a—) < ¢/(b + ¢) < H(a). Then 3¢>0 such that Ha—) <
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(¢ — ¢)/(b + ¢) < H(a). Take F, to be a sequence such that

cC — ¢

F,(a) — 0** where H(a—) < 0** < 5T

. and F,—>_ H.

n w

Then D_(¢) = 1 and
§ V(0, D(¢)) dF,(0) — inf, § V(0, D) dF,(0) = max {0, ¢(1 — F,(a)) — bF,(a)}.
Asn— oo, c(1 — F (a))—bF, (a) > c— (b+c)f** > c— (b+c)((c—e)/(b+c)) =
¢ > 0. Hence
lim, , lim sup,_., [§ (0, D.(¢)) dF,(0) — inf, § V(0, D) dF,(6)]
=c— (b4 c)f** >0,

so (¥, H) is unstable in this case by Definition 3, and hence by Definition 4.

Similarly we can show if H(a—) < ¢/(b + ¢) = H(a) then (V, H) is weakly
stable and the stabilizing decision is 2 by Definition 4, and hence by Definition
3. In all other cases (¥, H) is strongly stable by Definition 4, and hence by
Definition 3. So we can see (¥, H) is unstable iff H(a—) < ¢/(b + ¢) < H(a),
weakly stable iff H(a—) < ¢/(b + ¢) = H(a), with 2 being the stabilizing de-
cision, and strongly stable otherwise. In particular, if H is continuous at a
then (V, H) is strongly stable. All the above holds for both definitions. This
example is important because it shows that all three phenomena, strong stability,
weak stability and instability, exist.

EXAMPLE 2. Simple hypothesis, composite alternative. An alternative two de-
cision problem can be defined as follows: let
Ve, 1) =0 and V@,2)y=»56 if §=a
Ve, 1)y =c and Veg,2)=0 if 0+a,
where b and c are positive.
Let J,(a) = F,(a) — F,(a—) and K(a) = H(a) — H(a—). Then the calcu-
lation of B,, formula (6), is exactly as Example 1 with J, replacing F, and K
replacing G.

Thus
B, = max {0, ¢(1 — /(@) — b, (@)} if K(@)> % j: :;
= max {0, b/,(a) — (1 — (@)} if K(@) <7 = >

= either of the above otherwise.
From this it is easy to see that (V, H) is
(i) strongly stable if H(a) — H(a—) < ¢/(b + ¢);
(ii) weakly stable if H(a) — H(a—) = ¢/(b + ¢) (the stabilizing decision is
2); and
(iii) unstable if H(a) — H(a—) > c/(b + c).
This analysis again holds for both definitions.



1102 JOSEPH B. KADANE AND DAVID T. CHUANG

EXAMPLE 3. Squared error loss. Consider 2 = © = R, the real line, and
the pair ((¢§ — D)?, H) for any opinion H(#) with finite variance. Since we are
looking for a counterexample, we use Definition 3. Thus let G, = H V n, and
let ¢, and ¢.* be the mean and variance of H(f), which we assume exists.
Then

§ (0, D)dH(0) = 0. + (¢t. — D)*.

When D = p., we achieve the infimum ¢.’ and for every ¢ > 0, and every
D,(¢),
fo — S DY) S o +

By finiteness of ¢,., the infimum value is finite. Let F,(6) be a convex combi-
nation of H(#) and J,(f) with weights (1 — 1/n) and 1/n, where J,(6) is the
distribution function of the random variable sure to take the value 8 = n.
Also let g, be the mean of F,. Then p, = (1 — 1/n)p, + 1, and

lim sup,_., [} ¥(6, D,(c)) dF, — inf, | (6, D) dF,(6)]
= limsup,_, [§ {(6 — Du(e))’ — (0 — )"} dF,(0)]
= (#n - Dn(e))2

3(1_&_5§>2
n

— (1 — &),
Thus, for any opinion H(#) with finite variance, the pair ((¢§ — D)?, H) is un-
stable by Definition 3, and hence by Definition 4.

3. Bounded continuous loss functions. The distinction between two concepts
of uniform continuity of a function f{(x, y) of two variables is important in the
sequel: f is called continuous in x uniformly in y iff

Ve>0, Vx, 3d>0 suchthat Vy,
X = x| <O=[f(x)) =) <e;
[ is called uniformly continuous in x uniformly in y iff
Ve>0, 306>0 suchthat vx, Vy,
[ = x| <= [f(x,)) = f(xo, p)| < e

The following lemma shows that these concepts are related in the same way
that continuity and uniform continuity are.

LemMA 1. Suppose f(x, y) is continuous in x uniformly in y on a compact set
x € S. Then f is uniformly continuous in x uniformly in y.

The proof is a simple extension of the proof that a continuous function on a
compact set is uniformly continous, and is therefore left to the reader.

LEMMA 2. Suppose that
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(i) |V(6, D)| < B for all 6 and D;
(i) ¥(8, D) is continuous in 6 uniformly in D,
(iii)y F,—, H;

then

YVe>0, AN suchthat Yn=N, and Y D
I§ V(6, D) d(H(0) — F(0))] <.

Proof. Choose ¢ > 0. Choose a and b, points of continuity of H(x), so that
H(a) < e, 1 — H(b) < ¢e. In the closed interval [a, b] the function V(6, D) is
uniformly continuous in ¢ uniformly in D, by Lemma 1 and Assumption (ii).
Then there exist points of continuity of H(f) in [a,b]a =g, < @, < --- < a, =
b such that

|V(8, D) — V(a,, D)| < ¢

forall Dand forg, <0 <a,,,k=0,...,5 — 1.
Let

V.(6,D)=V(@,D) a<0<a, k=0,-..,5—1

=0 otherwise.

Then for any distribution function G(6),
§ V(0. D) dG(6) = Tizh V(@ D)[G(dy) — G(a)] -

Since F,(0) — H(f) as n — oo at § = g,

\ V.0, D)dF,6)— § V.(0, D)dH(§) VD
and since s is finite, the above occurs uniformly in D. Thus

Ve>0, 3N, Vnx=N, VD, [§ V.(6, D)(d(F,(0) — H@®)))| < .

For any distribution function G(6)

§ |V(6, D) — V.8, D)| dG(6)
= {°. [V(8, D) — V.(0, D)| dG(6)
+ §8|V(8, D) — V.0, D)| dG(6) + {5 |V(6, D) — V.(6, D)] dG(0)
=< BG(a) + ¢[G(b) — G(a)] + B[l — G(b)] VD.

Applying this to H(0) yields
§ |V(0, D) — V (0, D) dH(6) < (2B + 1) .

Applying it to F,(f) and noting that F,(a) — H(a), F,(b) — H(b), yields that,
for large enough n,

§ [V(8, D) — V8, D)| dF,(6) < (2B + 2)e .
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Then 3 NsuchthatVn >N VD
I§ ¥(0, D) dF,(0) — § V(0, D) dH(0)|
= [§[V(0, D) — V(0 D)]dF,| + |§ V(6, D)[dF,(6) — dH(0)]|
+ 1§ (V(0, D) — V (6, D)) dH(0)|
< (2B+2¢c+e+ 2B+ 1)e = (4B + 4)e.
Since ¢ is arbitrary, Lemma 2 is proved. []

THEOREM 2. Suppose (i) |V(6, D)| £ B for all § and D and (ii) V(9, D) is con-
tinuous in 6 uniformly in D. Then (V, H) is strongly stable by Definition 4.

Proor. By Lemma 2, Ve > 0, 3N, such thatVn > N,V D
[§ V(0, D)d(H(6) — F,(0))] < ¢, and
AN, suchthat Vvn>N,, VD, |§ V(8, D) d(H(#) — G,(0)) < ¢.
Then V n > max (N, N,), V D
§ (0, D) dF,(8) — § (0, D(c)) dF.(6)
= (1 ¥(0, D) dH — ¢) — (§ V(0, Dy(¢)) dH(0) + ¢)

= ({ V(0, D)dG, — ¢) — (§ V(0, D,(c)) dG,, + ¢) — 2¢
= —5e.
So
lim, , lim sup,_. [§ V(0, D,(¢)) dF,(6) — inf, § V(6, D)dF,(0)] = 0. 0

ExaMPLE 4. Take the same example as Example 3, only restrict the domain,
so that &7 = © = C where C is some compact subset of R. Then squared error
satisfies the condition of Theorem 2, and is therefore strongly stable when paired
with any opinion H by both Definitions 3 and 4.

4. Estimation or prediction loss functions with bounded growth. In this
section, the following assumptions are frequently used:

(i) V0, D) = k(6 — D), where k is continuous, nondecreasing in (0, co),
nonincreasing in (— oo, 0) and £(0) = 0.

(ii) A satisfies the following Lipschitz condition in the tail: |A(x) — A(y)| <
B|x — y| for all [y| > y,, and x, and for some constant B > 0.

Note that in this section B represents a bound on the growth of 4. However #
itself may be unbounded. The following example shows that Assumptions (i)
and (ii) are not sufficient to ensure stability.

ExaMpLE 5. Let
h(x) = |x]| if —l<x
=1 otherwise,

and let H(#) be the distribution function of any random variable that has a finite
mean. Again since we are looking for a counterexample, we use Definition 3.
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Hence let G, = H(f). Then D(¢) is defined as any decision D satisfying
§ h(0 — D,(c)) dH(6) g inf, § (6 — D)dH(6) + ¢ .

Let F,(0) be a convex combination of H(f) and J,(f) with weights (1 — 1/n)
and 1/n respectively, where J,(8) is the distribution function of the random
variable sure to take the value § = 3n. Then

§ V(6. Du(e)) dF,(6) — inf, § V(6, D) dF,(6)
2 [ h(6 — Du(e)) dF,(6) — § h(8 — 3n) dF (6)
=2 — " h(0 — 3n)dH(0) — §5 k(6 — 3n) dH(0)
=2—1—(n0dH(®H).
The existence of the mean of H implies that
lim,_, §o 0 dH(6) = 0,

* lim, , lim sup,_., [§ V(8, D.(¢)) dF.(8) — inf, § ¥(8, D)dF,(6)] = 1,

so (V, H) is unstable by Definition 3, and therefore by Definition 4.

LeMMA 3. The pair (V, H) is strongly stable by Definition 4 if, in addition to
conditions (i) and (ii), the following condition (iii) obtains:

(iii) There is a compact interval [a, b] and an ¢, > O such that for every e, 0 <
¢ < &, every sequence G, —, H, and every sequence of ¢-optimal decisions D,, D,, - - .
for (V, G,), there is an N such that for all n > N, D, € [a, b].

Proor. Without loss of generality we may assume 6 > y,, and a < —y,.
Since 4 is continuous in [a, 4], 4 is uniformly continuous in [a, b]. Thus given
e > 0, there exists a > 0 such that for every x, y € [a, b], |h(x) — A(y)| < ¢ if
|x — y| < 6. Choose § < (b — a)/2.- Now there is a finite open covering of
[a, 6] {(cird)|i= 1,2, ..., k} such that d; — ¢, < min {J, ¢} for all i =1,
2, ..., k. Lete e(c,d;). Wenow proceed to show that |h(§ — e,) — h(6 — e¢;)|
is bounded.

h(0 — e) — h(6 — e;)| < h(yo) + h(=ys) + Ble, — ¢}
= h(yo) + B(b — a + 2¢) + h(— )
= h(yo) + 2B(b — a) + h(—y,) -
Thus |h(6 — e,) — h(6 — e;)| is bounded. By the Helly-Bray theorem there exist
N,; and M; such that V.n > N,;
1§(V(ew, ) — Vie;, 0)) dF,(6) — § (V(ew, 0) — V(e;, 0)) dH(0)] < ¢,
andVn > M,
IS (V(ew 6) — V(e;, 0)) dGo(0) — § (V(ew 6) — V(e;, 0)) dH(O)] < e.
Let N, = max (N,,, Ny ooy Nuoy oy My, My, s Moy ).
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Now suppose ¢, € (¢;, d;) and 1, € (c;, d;) for some i. Our purpose is to bound
|h(6 — t,) — h(6 — t,)|. Without loss of generality, assume ¢, > t,.
(a) If 0 = ¢, + b, then
|h(@ — t;) — h(@ — t,)| < Blt, — 1| < Be < (B + 1)e;;
(b) If , + b > 0 = t, + b, then
(O — 1) — W6 — 1) < |H(6 — 1) — h(B)| + [h(b) — K8 — 1)]

Se+4 Bl —t,—b < e+ Be=(B+ 1.

By similar arguments, it can be shown thatwhen ¢, + b6 >0 >a+ t, a4+ t, >
0 = a+ t,or a + t, > 6 the inequality |#(0 — 1) — #(0 — 1,)| < (B + 1)e still
holds. Let De[a, b]. Then there is an [ such that De(c,,d)). Let n > N,.
There is an m such that D,(¢) € (c,,, d,,). Then

§ (V(d, 6) — V(D,(c), 0)) dF,(6)
§[V(D, 0) — Ve, 0) + Ve, 6) — V(D,(¢), 6) + V(e,, 6)

— V(e,, 0)]dF,(6)

I

= —2(B+ l)e + § (V(e, 0) — Ve, 0)) dF,(9)
= —2(B+ l)e + { (V(e, 0) — V(e,, 0)) dH(0) — ¢
= —2B+ l)e + § (V(e, 0) — V(e,, 0))dG,(6) — 2¢
= —2(B 4 2)e + § (V(d, 0) — V(D,(¢), 0)) dG(6) — 2(B + 1)e
= —(4B + T)e.
Then V n = N,

infyeis 01§ V(D, 0) dF,(6) — § V(D (<), 6) dF,(6) = — (4B + T)e .

Now F, —, H, so if D,*(¢) is a sequence of e-optimal decisions for (F,, V) then
3 N such that Vn > N, D,*(¢) € [a, b]. Thus ¥ n > max (N, N,),

infperen § V(D, 0) dF,(6) = inf, § V(D, 6) dF,(6) .
Hence V n > max (N, N,),
inf,, § V(D, 0) dF,(0) — § V(D,(¢), 0) dF,(6) = —(4B + T)e .

‘

Now we conclude
lim, , lim sup, _.. [§ V(D,(e), 8) dF,(6) — inf, § V(D, 6) dF,(6)] = 0 .
Thus (V, H) is stable by Definition 4. ]

THEOREM 3. The pair (V, H) is strongly stable by Definition 4 if, in addition to
conditions (i) and (ii), the following condition (iv) obtains:

(iv) There exist r > O such that h(x) = r|x|, ¥V x.

PRrooF. Since H is a distribution function, we can find b large enough such
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that b > y,, both b and —b are continuity points of H, and (H(b) — H(—b))/(1 —
H(b)) > 2B/r. The strategy below is to prove that any decision D either must
lie in a certain interval or D* = 0 beats D by at least e. Hence all e-optimal
strategies lie in the interval, which permits use of Lemma 3. Let

D> h(—=yo) + h(yo)) + rb + ¢, . 2

H(b) — H(—b) r
It is straightforward to show D/2 > b6 > y,.
(% (h(6 — D*) — h(0 — D)) dH(6)
= (V2o + §2bo 4 50, + §5) + §07% + 5230 + (5.4,,)(A(0) — h(6 — D)) dH(0)
= [B(6 — yo) + h(—=yo) — r(yo + D)] {2t dH(0)
+ [A(y0) + ~A(—y0) — r(D — y))] {10, dH(6)
+ [A(ys) + Bb — r(D — 6)] {3, dH(6) + [A(yo) + BD — ry,] §7% dH(6)
+ [#(yo) + BD] {31y dH(0) + BD {3,,,dH(6)
= K(—yo) + h(y)) + BD(1 — H(b)) — rD(H(b) — H(—b)) + rb

= h(=y) + h(yo) +rb — _r_213 (H(b) — H(—b)) — rD(H(b) — H(—b))

A

—E .

Similarly if

D< _h(=y) ) + b+ 2
H(b) — H(—b) r

9

then
{%w (B(6 — D*) — k(6 — D)) dH(f) < —¢.

So any e-optimal decision D, for H must satisfy

ID,| < h(—yo) + h(yo)) +1rb + ¢ 2
’ H(b) — H(—b)

Let b, be a continuity point of H chosen so that b, > y, and
2B
(H(b) — H(=b))/(1 — HB)) > 1+ 22
Let J, —», H. Then 3 Nsuch thatVn = N,
Ju(by) — J(—0,)/(1 — J, (b)) > 2B|r
Ju(by) — Ju(—b1) > $(H(b)) — H(—by)) .

Let m = 2(h(—y,) + A(y,) + rb, + &,)/r. The e-optimal decisions for (J,, V) for
all n > N is within

(=m/(Ja(bs) — Ju(—=b1) s m[(Ju(by) — Ju(—by)),
and hence within

(=2m[(H(by) — H(=by)),  2m[(H(b) — H(—b)))).

and
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Thus condition (iii) obtains, and hence (V, H) is strongly stable by Definition
4 using Lemma 3. [J
CoROLLARY 1. Let I(+) be the usual indicator function. Then V(6, D) = a(f —
D)I(6 = D) + b(D — 6)I(60 < D), where a > 0, b > 0, is strongly stable by Defi-
nition 4 with any H. When a = b, V in Corollary 1 specializes to absolute error.
The following example shows that conditions (i) and (ii) and symmetry of
h around zero (h(x) = h(—x)) are not sufficient to assure strong stability of

vV, H).
EXAMPLE 6.
h(x) = x if 0x<1
=1 if IT<x<g2.2p
=w—2ﬁw-§+wj—UH if 27 < x < 35— j(j — 1)
=/ if 37 —j(j— 1) < x S 2(j 4 1)+

for j=2,3, e,
and let A(—x) = h(x).

Then 4 is continuous, symmetric, piece-wise linear, noﬁdecreasing in (0, o0),
nonincreasing in (— oo, 0), and satisfies #(0) = 0 and the Lipschitz condition.
Now let H be the distribution function of the random variable sure to take the
value § = 0, and since we are looking for a counterexample, we take Definition
3 and let G, = H. Let F,(f) be a convex combination of H(6) and J,(0) with
weights (1 — (1/n)) and 1/n, where J,(6) is the distribution function of the
random variable sure to take the value 3(n"*') — n(n — 1)*-'. Then F, —, H,
and D,(c) € (—¢, ¢) where ¢ < 1. By comparing the expected losses of the de-
cisions, D,(¢) and 2(n)"*', it can be shown that (¥, H) is unstable by Definition
3, and hence by Definition 4.

Tueorem 4. (V, H) is strongly stable by Definition 4 if, in addition to As-
sumptions (i) and (ii), the following condition (v) is satisfied:

(V) A(x) = h(—x), h is unbounded, and h(x 4 y) < h(x) + h(y), for x, y > 0.

ProoF. Our strategy is to apply Lemma 3 by proving condition (iii). Choose
¢ > 0, and ¢ such that 0 < ¢ < «,.

Since H is a distribution, there exists a positive number b such that H(—b) <
1 H(b) = §, b6 > y, and b and —b are continuity points of H. Since h(x) is
unbounded there isa Dy, > 0 such that

h(D,) > 2h(b) + Bb + 4, .
Now we will show that D* = 0 is better, by at least ¢, than any D > b + D,
orany D < —b — D,. Suppose first that D > b + D,. Then
= § V(0, D*)dH(6) — § V(6, D) dH(6)
= {Z% (h(0 — D*) — k(6 — D)) dH(6) + {*, (h(0 — D*) — k(O — D)) dH(0)
+ 37 (0 — D*) — WO — D)) dH(6) = I, + I, + I,.



STABLE DECISION PROBLEMS 1109

It follows:
1 L £0; and
(2) in I, k(@ — D*) < h(b) and 6 — D <O.
Also applying condition (v) to /,, we have
1< 52, (h(b) — k(b — D)) dH(0) + §3 H(D — D*) dH(0)
§ $h(6) — 3h(D — b) + }Bb

A IA

—¢,.

Thus the e-optimal decision for H cannot be greater than 6 + D,. Similarly
it cannot be smaller than —b — D,. Consider now the sequence G, —, H.
There is a point b, such that both b, and —b, are continuity points of H satis-
fying b, > b, H(b,) = %, and H(—b,) < §. Let D, satisfy

k(D) > 2h(b,) + Bb, + 4, .

Since G, —,, H, there is an N such that Vn > N, G,(—b,) < 1 and G,(b) = 3.
Then for all such n, D,(c) e (—b, — Dy, b, + D;). Lemma 3 now applies, so
(V, H) is stable by Definition 4. []

CoroLLARY 2. If V(0, D) = |6 — D|*0 < p < 1 then (V, H) is strongly stable
by Definition 4.
The next example shows the effect of asymmetry.
ExaMpLE 7. Let V(0, D) = h(6 — D), where
A(x)y=xt x=0
=|x}) x<O0.

Then let H(#) and G,(6), F,(¢) be the same as in Example 6 except now J,(0)
is the distribution function of the random variable sure to take the value 16n*.
It can be shown that (¥, H) is unstable by Definition 3 in this case.

5. Conclusion. An alternative method of presentation of our results would
have been to stress that we are studying a particular kind of continuity, and
that the subscript n has no real-world counterpart. We find the statement of
the theory in terms of sequences to be easier to understand and, we hope, ac-
cessible to a wider audience. There aré, of course, alternative topologies that
might be imposed on this problem and whose consequences would be interesting
to explore.

Our aim has been to study stability as an approach to a personalistic Bayesian
theory of robustness. We intend for our results to be used not artificially to
alter loss functions very far from the origin to achieve a theoretical advantage
of no practical consequence, but rather as a way of learning more about the
underlying structure of Bayesian decision theory, in much the same way that
large-sample theory can be used in sampling theory—we often do not know
whether the large sample theory is relevant, but it is a good guide to intuition.
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Added in Proof. The dissertation of David T. Chuang (1978) shows that the
conjectured equivalence of Definitions 1 and 2 is false in general but true for
the estimation/prediction case. He also finds in that case that if a loss function
is strongly stable with one opinion it is strongly stable with all opinions, and
characterizes stable loss functions. Necessary and sufficient conditions are also
given for stability in the more general case in which the likelihood function is
considered known and fixed.
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