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COMPLETE CLASS THEOREMS DERIVED FROM
CONDITIONAL COMPLETE CLASS THEOREMS!

By Morris L. EATON
University of Minnesota

Let (27, &1, 1) and (%, <73, v) be o-finite measure spaces and suppose
© is a separable metric space. Let f(x|y, ) be a family of conditional
densities on (2%, £#, ). Consider an action space 4 which is a compact
metric space with <84 the Borel g-algebra and a loss function W(¢, a) such
that W6, +) is continuous. For any decision rule §: &84 x & — [0, 1],
assume the risk function R(g, «) is continuous on ©. Suppose that a set of
decision rules _#; is an essentially complete class for each y € 27 for the
conditional decision problem. Let _#* be the set of decision rules »: <& X
(& x 2’) — [0, 1] such that 5(+ | «, y) € # a.e. [v]. Then _#* is an essen-
tially complete class no matter what the family of marginal densities on
the space (2, &, v).

1. Introduction. The problem of obtaining complete class theorems from
conditional complete class theorems is well illustrated by the following example.
Suppose f(x|y, 0) is a conditional density of X given ¥ = y where X and Y are
real valued random variables and § € ®—an interval of the line. Let g(y|0)
denote the marginal density of Y. Consider the problem of testing H,: § < 6,
versus H,: 6 > 0, and assume f(x|y, 6) has a monotone likelihood ratio in x and
0 for each fixed y. Let <7 be the class of test functions (for y fixed) of the form

o(x) =0 if x<x
(1.1) =7 X =X,
=1 x> Xx,.
As is well known, & is an essentially complete class of tests for y fixed. Now,

let 7(x, y) be any test function for H, versus H, based on both X and Y. For
each fixed y, the essential completeness of <7 implies there is a test function

¢, € Z which is at least as good as (-, y); that is,

(1.2) Ele(XN) Y =y) S EX )Y =), 0= 0,
2 EmXNIY =), 0> 0,.

If ¢y(X) were a jointly measurable function of (X, Y), one could then integrate

(with respect to the marginal distribution of Y) both sides of the two inequalities

in (1.2) to obtain

(1.3) Z,00(X) < Ey9(X, Y), 0 <0,
ggoﬂ(Xa Y), 0>00.
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Let &% be the set of test functions (X, Y) such that &(., y) e & for each
y €. Then the above argument yields (assuming the measurability of ¢,(X))
that 7* is an essentially complete class. Thus, it is clear that the only difficulty
with this argument is in showing that one can select a measurable version of
¢, € Z. It is precisely this measurability problem which arose in the work of
Matthes and Truax (1967) concerning complete class results for testing problems
in multivariate exponential families. That this measurability problem is fairly
nontrivial is evidenced by the fact that Matthes and Truax (1967) found it
necessary to use the martingale convergence theorem and a version (involving
measurability) of the Blaschke selection theorem to show the existence of a
measurable ¢,(X).

The purpose of this paper is to establish complete class results from condi-
tional complete class results for a fairly general decision.problem with a compact
action space. As with the above example and the Matthes-Truax problem, the
primary difficulty is the measurability. We have found a recent result of Brown
and Purves (1973) useful in this context. In Section 2, we describe the decision
problem under consideration and discuss a representation theorem for decision
functions due to Le Cam (1955) and discussed in Farrell (1967). In addition,
the result of Brown and Purves (1973) is outlined.

The main result of this paper is proved in Section 3. Basically, this result
says that if _# is an essentially complete class for a conditional (given Y = y)
decision problem, then _#Z*, the class of decision functions which are in _#
for y fixed, is essentially complete for the unconditional decision problem.

The main result of Section 3 is not applicable to all the examples to which
the Matthes--Truax result can be applied. This point, together with some ap-
plications, is discussed in Section 4. The appendix of this paper establishes some
measurability results needed in Section 3.

2. Notation and assumptions. This section consists primarily of a long string
of definitions, notation and assumptions concerning the structure of the decision
problem under study. The reader is urged to keep in mind the testing problem
treated by Matthes and Truax (1967) as this problem is what motivated the
current work. The following notation and assumptions hold throughout.

(2.1) (&, <), 1) isa o-finite measure space such that
L, <4, p) is a separable Banach space.
(7, <,,v) is a o-finite measure space such that 27 isa
(2.2) complete separable metric space and <%, is the g-algebra
of Borel sets.
(2.3) © denotes the parameter space of the decision problem and
© is assumed to be a separable metric space.
2.4  f(-|y,0), yeZ, 0e0O isa family of densitieson (27, &, p)
and f(.|.,0) is &, X &, measurable for each 6c0O.
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A denotes the action space of the decision problem, 4 isa
(2.5) compact metric space, and <%, is the g-algebra of Borel sets.
#(A) denotes the Banach space of continuous functions on
A (with the sup-norm).
(2.6) W:0 x A—[0,c0) isthe loss function for the decision problem
and W(f, .) iscontinuouson A foreach 6¢e©.
DEFINITION. A function §: &%, X 2 — [0, 1] is a decision function, if
(i) (- |x) is a probability measure on <%, for each x € 2~
(ii) 6(B|+) is <, measurable for each B e Z,.
(2.7) If o isadecisionrule,let R,(0,0)= {{ W(0,a)d(da|x)f(x]|y,0)p(dx)
and assume R,(d, ») is continuouson © for each y and 4.

Suppose 4, and §, are two decision rules such that for all g € €(4) and ke L,
(= L(Z, 2B 1))
(2.8) 0§ 9(a)h(x)3,(da | x)u(dx) = §§ g(@)h(x)3(da | x)u(dx) .
Then, using the separability of &7(A), it is not hard to show there is a ¢ null
set, say N, such that for all x ¢ N, d,(+ |x) = 0,(+ | x). Conversely, if d,(+ |x) =
d,(+ |x) a.e. (#), then it is clear that (2.8) holds. For any decision rule 4, [d]

denotes the equivalence class of decision rules which are equivalent to J as
described above. Let

(2.9) A = {[0]|0 is a decision rule} .

We will write § € . when there is no reason to distinguish between ¢ and [4].

Following Le Cam (1955) and Farrell (1967), it is convenient to think of .2’
as a subset of the set of continuous bilinear functionals on &{(4) X L,. For
d e _#; consider [., «]; defined on &(4) x L, by

(2.10) [0, A1, = §§ 0(@)h(x)3(da | x)u(dx)
Clearly [., -], is bilinear on &(4) x L, and satisfies
(i) [1, 4] = § A(x)r(dx)
(2.11) (iy g=0, A=0  implies [g, 4], =0
(iii)  supygi—smi-1 [95 Bl = 1.

Conversely, suppose [+, «]isa bilinear functional on &(4) x L, which satisfies
(2.11) (i), (ii), (iii) (without the subscript §). It follows (see Le Cam (1955) or
Farrell (1967)) that there is a decision rule 4 such that [+, «] = [+, «];-

To introduce a topology on _#; for each g e &/(4) and he L,, define T, :
A — (—o0, o) by

(2.12) T,,(0) = [0, s -
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The weakest topology such that all T, ,, g e . (A4), h'e L,, are continuous is the
weak topology on . 7. Since «’(A) and L, are both separable, it follows that
this topology is metric. In addition, a standard embedding argument shows that
- is compact in the weak topology. In summary, under the assumptions we
have made on L, and 4, _# is a compact metric space with the weak topology.

This section is concluded with a statement of a result due to Brown and
Purves (1973). Let %/ and 77" be metric spaces. If EC %/ x 7, proj(E) =
{u](u,v)e E forsomeve 7'} & %.

DEFINITION. X C E & 7%/ x 7 is a Borel selection if

(i) “is a Borel setin %/ X 7
(ii) For each ue 7/, &, = {ve 77| (u, v) € &7’} contains at most one point;
(iii) proj (<) = proj(E).

For each selection .. is the function p: proj (') — 7 which assigns to each
u € proj (&), the unique v € 7" such that (4, v) e & Thus (4, p(u)) € E for all
u e proj (E).

THEOREM (Brown and Purves (1973)). Let 7/, 7" be complete separable metric
spaces and let E C 7/ x 77" be a Borel set. If for each uc 7/, the section E, =
{ve 77| (u, v) € E}is o-compact, then there is a Borel selection <. Further, proj (E)
is a Borel set and p is a Borel measurable function defined on proj (E) (= proj (&)).

References related to this result are Kunugni (1940) and Novikoff (1939).

3. A complete class theorem. With the notation and assumptions in Section
2, we now want to prove a complete class result for an unconditional decision
problem (decision functions are functions of both X and Y) given a complete
class theorem for the conditional problem (y fixed). Assume that Z & .# is
an essentially complete class for the decision problem given in Section 2 for each
fixed y, and _# is a closed (hence compact) subset of _#. That is, given any
decision rule d e .# and y € 7/, there is a decision rule 9, € % (which can
depend on y) such that

(3.1) R,(3,,0) < R,(3,0) forall 6e@.

In what follows, » denotes a decision rule defined on &, X (27X %) to
[0, 1]. Thus (- |x, y)is a probability measure on <%, and »(B| +, «) is &5, X &,
measurable for each Be £4,. Given such an », 5, € .# is defined by 7, (B|x) =
7(B|x, y). Define a set of decision rules _Z* by

3.2) A* = {n|7n is a decision rule and {y|[n,]¢ -#;} isa v null set}.

THEOREM 1. Given any decision rule 1,, there is an ne _#* and a v null set N
(depending on », and 7)) such that if y ¢ N

(3.3) R,(7,, 0) < Ry(9,,,0) forall €.
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Proor. Define a set £ .~/ X . 7; by
(3.4) E={(y,0d)|ye#,de. 7 R(3,0) < Ry, 0) forall §c0O}.

Since _#, is essentially complete, given y €/, there is a d such that (y, d) € E.
Hence proj (E) = 2/. The proof now proceeds in two steps:

(i) We first show that the Brown-Purves theorem is applicable to E. Thus,
there is a Borel measurable function p: %/ — . /7 such that (y, p(»)) € E for all
yez.

(ii) Then it is shown that o(y) can be “represented” by an element of ..Z*
(using the representation of continuous bilinear functionals).

Now, to the details. The space .2/ is a complete separable metric space by
assumption and _/7 is a compact metric space, so it is complete and separable.
Also
(3.5) E, = {0e. #7Z;|R(d,0) < R/(n,,,0) forall #c0}

= nﬁee {5 I Ru(a’ 0) é Ry(’)o,y’ 0)} :

But R,(-, #) is continuous on . 7] so E, is compact for each y. Thus, to apply
the Brown-Purves result, it remains to show that E is a Borel set. By (2.7),

R,(9, +)andR,(»,,, +) are continuouson ©. Let #,, §,, - - - be a countable dense
set in ©. Then it is easy to show that

(3.6) E= N Ey,

where

(3.7) E, = {(7: )| R,(8, 0) < R,(70,, 0)) -

Thus, to show E is Borel, it suffices to show that each E, is Borel. From Lemma
A.2 in the Appendix, R (9, 0) is a Borel measurable function on 2/ x _# to R.
Also, from Lemma A.1 in the Appendix R,(7,,, #) is Borel measurable on 2’ to
R' so it is Borel measurable on 2/ X _#; to R'. Thus, E, = {(y, 0)|R,(0, §) —
R,(7,.,, 0) < 0} is a Borel set in 2/ x _#.

Applying the Brown-Purves (1973) result, there is a Borel function p: 27— .7
such that (y, o(y)) € E for all ye Z/. Thus, for each y e 7/

(3.8) R (p(), 0) < R(%.4> 0) forall 0e¢©.

To complete the proof, we now show that o corresponds to an element of _#Z*.
Let L, = L(Z X 7, B, X &, pr X v). ForheL,, and g € €(A), the function
(3.9) y = 1§ g(a)o,(da| x)h(x, y)1(dx)

is Borel measurable and v-integrable by Lemma A.3 in the Appendix. (Here, p,
is written for p(y) for ease of reading.) Thus, the function [., .] on &(4) x L,
given by

(3.10) lg, k] = §§§ 9(a)o,(da| X)h(x, y)p(dx)v(dy)



COMPLETE CLASS THEOREMS 825

is well defined. Clearly, [+, +] is a bilinear functional on &(4) X L,. Further,
it is easy to verify that [+, ] satisfies (2.11)(i), (ii) and (iii) (with the subscript
0 suppressed).

Thus (Le Cam (1955)) there is a decision function »: &%, X (27X Z)— [0, 1]
such that
(3.11) lg, 1] = §§§ g(a)n(da|x, y)h(x, y)u(dx)v(dy)
for ge &(A)and he L,

We now claim there is a v-null set, say N, such thatif y ¢ N, then [7,] = o(y).
To see this, let {g,};x, and {f,}7., be countable dense sets in = (4) and L,,
respectively. For A(x, y) = f(x)k(y) € L,, (3.10) and (3.11) yield

(3.12) §[§§ g:(a)o,(da| x)f;(x)(dx) 1k (y)u(dy)
= §[§§ g(@)n(da|x, y)f(x)u(dx) k(y)(dy)
for all v-integrable k. Thus there is a v-null set N, ; such thatif y¢ N, ,,

(3.13) 1§ 9:(a)o,(da | X)fy(x)p(dx) = §§ gi(a)n(da | x, y)f(x)p(dx) .
Let N = U, Ui N, ; so N is v-null and if y ¢ N, (3.13) holds for all i and j.
Hence if y ¢ N, we have
(3.14) 1§ g(a)o,(da| x)f(x)(dx) = {§ g(a)n(da]x, y)f(x)(dx)
for all g € € (4) and fe L,. Thus for y¢ N, p(y) = [»,]. Since p(y) e 4 for
all y, » e _#Z* by definition. This completes the proof.
COROLLARY 1. _Z* is an essentially complete class for the unconditional decision
problem when the family of densities is
(3.15) {f(x1y, 0)k(y)|6 €0,k =0, § k(y)(dy) = 1} .
Proor. This follows immediately from Theorem 1. If it is assumed that 2]

is a conditional complete class and k > 0 a.e. [v], then it follows that _#Z™* is a
complete class. The proof of this assertion is similar to that of Theorem 1 and

is omitted.

4. Discussion and applications. Suppose U = (X, Y) e &£7*! is a random ob-
servable with an exponential family density of the form
(4.1) P(Ue B) = ¢(n) § 5 7" A(du)
where 1 is a probability measure on Z2?*!. Partition 7 as 7’ = (6, ') where
0 e #', we Z*. The conditional density of X given Y = y with respect to the
conditional probability measure p(dx|y) is

e0z

4.2 R = .
(4.2) f(x1y,0) L edz]y)

Thus, conditional on y, X has an exponential family distribution on .2£*.
Suppose we have a monotone multiple decision problem involving @ (see Ferguson
(1967), Chapter 6 for the definition of monotone multiple decision problems and
monotone decision rules). Then, results of Karlin and Rubin (1956) show that
the class of monotone decision rules is essentially complete for each fixed y.
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To apply the results of Section 3, we assume that the family of measures
{#(+ |y) |y € &?} is dominated by a fixed o-finite measure p. The remaining
assumptions necessary to apply Theorem 1 are easily checked. Thus the class
of conditional (on y) monotone decision rules is essentially complete for the
unconditional decision problem. Recent results by Brown, Cohen and
Strawderman (1976) provide conditions under which the class of monotone
procedures forms a complete class.

The assumption that the family of conditional measures {u(+|y)|y € S2?} is
dominated also must be made if one applies Theorem 1 to the testing problem
treated in Matthes and Truax (1967). In the context of the Matthes-Truax
(1967) paper, it is not hard to construct examples where the family of condi-
tional probability measures is not dominated by a o-finite measure. Thus, the
results of the current work are not applicable to all of the testing problems to
which the Matthes—Truax (1967) results or those in Eaton (1970) can be applied.
However, the results established here are not restricted to testing problems nor
to exponential families. For example, in a nonparametric context, Kariya and
Eaton (1976) established a robustness property of the two-sided #-test using the
generalized Neyman-Pearson lemma. Alternatively, this result may be estab-
lished using Theorem 1 without recourse to the generalized Neyman-Pearson
lemma.

APPENDIX
Throughout the appendix, the notation and assumptions of Section 2 hold.

LEMMA A.l. Suppose h: 2 X Z — F* is B, X <5, measurable and
{ |A(x, y)|u(dx) < +oo for each ye Z/. Assume 7: B, X (Z X &) —[0,1] is
a decision function. For each g € € (A), the function
y = §§ g(a)y(da|x, y)h(x, y)p(dx)
on 7/ to %" is Borel measurable.

Proor. This is an easy consequence of the generalized Fubini theorem (see
Neveu, page 74).

LEMMA A.2. Let h be as in Lemma A.1. For g € &(A), the function
T(y, 0) = {§ g(a)d(da | X)h(x, y)(dx)
on?Z X _# to " is Borel measurable.

PROOF. Let y, be a probability measure on (27, ;) with the same null sets
as p and let f, = dp/dp, = 0. Then

T(y, 0) = §§ g(a)3(da | X)h(x, y)fo(*)1o(d¥) -
Without loss of generality, £ = 0 so h(x, y)f,(x) is the increasing limit of non-
negative %, X <%, simple functions. Thus, it suffices to show that

Te(y, 9) = §§ 9(a)d(da| xX)x(x, y)p(dx)
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is measurable where F € <%, x <%,. However, the class of sets £ = {F|T, is
measurable} contains all measurable rectangles, and disjoint unions and com-
plements of measurable rectangles. The monotone convergence theorem shows
that 7 is a monotone class so _# = .2, X <%,. This completes the proof.

ReEMARK. The above proof is a minor modification of that in Sudderth (1971)
(Section 5). A related reference is Dubins and Freedman (1964).

LeEMMA A.3. LetL, = L(Z X 2/, B, X By, pp X v). If p: &/ — _# is Borel
measurable and if h ¢ L,, then the function

Ty(y) = 1§ 9(a)p,(da | x)h(x, y)p(dx)
is %, measurable and v-integrable.

Proor. Since T\(y) = T(y, p,) with T given in Lemma 2, T, is &%, measurable.
That T is v-integrable is clear.
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