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ESTIMATION OF A BIOMETRIC FUNCTION

By GRrRACE L. YANG
University of Maryland

In the analysis of life tables one biometric function of interest is the life
expectancy at age x, e; = E[X — x| X > x]. Estimation of e, is considered,
the standard estimator used in life tables is shown to be asymptotically
unbiased, uniformly strong consistent, and converges in distribution to a
Gaussian process. The connections of the estimator studied in this article
and that used in reliability theory are illustrated.

1. Introduction. Let X be a nonnegative random variable defined on a fixed
probability space (Q, .27, P). Assume that X has a mean 7, a finite variance ¢?,
and a density function f(x) >0, x = 0. Let S(x) = 1 — F(x) be the survival
function. Define

(1.1) e, = (V2 S(v) dv)/S(x) for xe[0, c0).
For life tables, e, is called the life expectancy at age x, or more generally a
biometric function (Chiang [3]). In biometry e, is defined via the force of mor-
tality p(x) = f(x)/S(x),

e, = {¢exp{—1{s u(x + y)dy}dv, for xe[0, o).

Like p(x), e, also determines S(x),

S(x) = eje,texp{—{te,~tdv}, x €0, o).
Therefore u(x), e, and f(x) are equivalent in determining S(x).

While the theoretical investigation of p(x) occupies a central position in re-
liability theory, little attention has been paid to e,. The intent of this article
is to study the estimation of e,.

The estimator é, of e,, to be discussed (see (2.5)) corresponds to a cohort life
table estimate. In Section 2, é, is shown to have a multiplicative bias in a finite
sample and to be uniformly strong consistent as sample size increases to infinity.
In Section 3, é,, considered as a function of x, is shown to converge in distri-

bution to a limiting Gaussian process. The major term in é, is a statistic of the
form

(1.2) T,=n{2S,@)dv= 3%, KX, — x)(X; — x) (cf. (2.1) to (2.4))
where S, (v) denotes the empirical survival function. T, is related to the total-
time-on-test statistic H,(x) by
H((x)=n{S,@0)dv=T,—T,
in reliability theory (Barlow et al. [1]). But T, and H,(x) differ in the range of
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integration. Therefore, the techniques used in proving the limiting results differ

in both cases. In our calculations it is advantageous to use the form on the ex-

treme right of (1.2) which preserves the i.i.d. structure as opposed to the usual

way of treating H,(x) as a function of the ordered X’s. Another note is the

analogy of T, to 3%, (X, — x) used in Donsker’s theorem, and T, reduces to
’}=1 X]. at x = 0.

2. Bias and uniform consistency of é,. Let X}, - - -, X, be i.i.d. random vari-
ables from F. Let
(2.1) I(ay=1 or 0 accordingto a>0 or a<0,
(2.2) L= 21X, — x) for every x¢€[0, o0),
(2.3) S.(x) =1L/n,
and
(2.4) T,=n{=S,w)dv= 3", I(X;, — x)(X; — x).
When F is not specified in a parametric form, the proposed estimator é, is
(2.5) &, = (Su(0))™" 17 Su(v) dv I(X,,,, — %)

where X,,, = max,_;., X; [4]. Interpreting x as age, é, gives the average time
to be lived by those /, individuals having age larger than x.

In the sequel, the limits are taken as n — co unless otherwise stated. The
following lemmas discuss the bias and uniform strong consistency of é,.

LEMMA 1. For every x € [0, o0), Eé, = e, P[l, > 0]. Also, ¢, is an unbiased es-
timator for e, and asymptotically unbiased for x > 0.

Proor. It suffices to notice that given [,, there is a sample of size /, from
(f(y)/S(x))I(y — x) and [, is a binomial random variable. Since I, = 0 with
positive probability, on occasion the data contains no observation. Moreover,
note that no unbiased estimator for e, exists for x > 0.

LEMMA 2. Let b be any fixed positive number; €, in (2.5) is uniformly strong con-
sistent for e, in the sence that

(2.6) P[sUpys,<; |6, — €] >0, as n— o] =1.

ProoF. Since EX < oo, applying a lemma due to Marshall and Proschan [6]
in the form given in [1] (page 237),

(2.7) (= S,(v)dv— {7 S(v)dv uniformly in x with probability one.
Combining (2.7) with the fact that S,~*(x) — $7}(x) uniformly in x € [0, b] with
probability one gives (2.6).
3. Weak convergence of é,. For nota;tional convenience, denote
(3.1) 0(t,u) = EI(t < F(X) < u)X and
o¥(t, u) = Var (I(t < F(X) = u)X),
where I(t < F(X) < u) is the indicator of [r < F(x) S u]for0 <t <u < 1.
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THEOREM 1. Lett = F(x). Lete, and é, be as given in (1.1) and (2.5). The

process
nt(ép-1y — €p_1y)) for te[0,b], b<1,

converges in distribution to a Gaussian process U(t) with mean zero and covariance
function

(3.2) Fis, =1 — 971 — )1 — 5)(1 — He*(t, 1) — (1 — s)0%z, 1)}
0<s<tb.
The proof of Theorem 1 relies on Lemmas 3, 4 and Theorem 2 below.

LEMMA 3. Let X, .-, X, be i.i.d. satisfying assumptions specified in Section 1.
Let

(3.3) Valt) = n74 T [IF(X;) — X, — E((F(X;) — X)),
for te[0,1].

Then, for any positive integer k and 0 < t, < 1, < --- < t,,, = | the finite di-
mensional distribution of V ,(t) converges to a multivariate normal, [V (1), - -,
Vlt)] — . A0, ALA’), where _37(0, ALA') denotes a k-dimensional normal
distribution, A a k x k matrix, A’ its transpose, with components

(3.4) a;; =1 if i<j and O otherwise
and £ a k X k positive definite covariance matrix with components
(3.5)  ou=0Ntyty), oy = —0(t, 1,00t 1)), PEj=1, 0, k.
Proor. Let {,(t) = X7_, I(F(X;) — 1)X;, for brevity,
D, = [Cu(t) = Ca(ta), -+ -5 Culte) — Cultend)]

O = [0(1,, 1), O(ty, t;), - - -, O(¢y, 1] (cf. (3.1)),
and
A= (4, -+, 4,)eR*, a k-dimensional scalar.

Then the inner product ’D, may be expressed asa sum of i.i.d. random variables,
D, = 35 Y, X,
where Y, = 3 k_ 2, I(t, < F(X,) < t,,,)-

a=1

Direct computation gives
EY X, = 20 and | Var (Y, X,) = 2XI1.
It then follows from the central limit theorem that
(nd’£2)~*2'(D, — ED,) — . .40, 1), for every 2eR*.
Application of the Cramér-Wold theorem (Billingsley [2]) gives
YD, — ED,) - . .40, 3),
and F(x) being strictly increasing insures ¥ béing positive definite. Since
MV(1) = Thea [6(1) — Cultyad) — ECA1) — Lut))]

applying transformation A in (3.4) to D, completes the proof of Lemma 3.
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Next we show that the sequence V,(r) given in (3.3) is tight (Le Cam [5]).
The sample functions of V, are right continuous and have left-hand limits, so
we shall establish the tightness condition via verifying the hypothesis of Theorem
15.6 in [2].

LEMMA 4. For arbitrarily chosen values t,, t,, t, subject to0 < t, < t, < t, < 1,
V(1) in (3.3) satisfies

(3.6) EV(t) — Vi(t)V(ts) — Va(B) < (a(t) — g(t))
where g(f) = (-1, V}f(v) dv for tin [0, 1].
Proor. For simplicity, denote
0, = 0(t,, t,1) and o’ = o't ) for i=1,2 (cf. (3.1)).
Proceed from the left-hand side of (3.6)
V(1) — V(6)[IVolts) — Vot
= n B[ Djen (K6, < F(X;) S 6)X; — 0|3, (5 < F(X,) < 6)X; — 6,)[1]
= a0} + 20,°0," + n7'[0%,} + 0,%0, — 00,2 — 36,%0,%]
< 20 + 07)(02 + 62) = 2[0(1) — g()][9(t) — 9(8,)]
= [9(t) — 9(n)]* - 0
THEOREM 2. Let V (t) be given in (3.3). Then
V,— .V
where V is a Gaussian process with
EV(t=0
EV(s)V(t) = o(t, 1) — 6(s, £)0(z, 1), for 0<s<t<1,
and a*, 0(s, t) are defined in (3.1).
Proor. Theorem 2 follows from Theorem 15.6 in [2] which is applicable be-
cause of Lemmas 3 and 4. []
Proor oF THEOREM 1. Using (2.4) and (2.5), write, for x < X,,,,
(3.7) m(E, — e.) = m(S,(x)S(x)[S(x) §5 (Su(v) — S(v)) d
= (5u(x) = S(x)) {7 S(v) av] .
Let t = F(x), V,(t) be given in (3.3), and

(3.8) W) = n=t B3, [(F(X; — 1) — EXEX; — 0)]
= m(S,(F(1)) — (1 — 7).
Then,
”é(é‘x - ex) = ”Q(éF—l(t) - eF—l(t))
(3.9) = (SUFO)(1 — ) {(1 — OV, (1) — [F(r 1 — 1)

+ (1 — uydF- )W, (1)} for te[0,1).

S.(F(t)) converges to (1 — ¢) a.s. It suffices to show that the random function
in the bracket of (3.9) converges weakly to a Gaussian process. First, observe
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that the tightness of the sequence n(é, 1, — e,-1,) is a result of the tightness
of W,(t) and V,(¢); the former is well known and the latter is given in Lemma 4.
Secondly, using the Cramér-Wold technique we can show that the finite-dimen-
sional distributions of the vector process [V,(¢), W ,(1)]’ converge to multivariate
normal distributions. To complete the proof of Theorem 1 what remains is the
computation of the covariance function of the limiting process of n#(é,_,,, —
€p-1,)- The procedure is straightforward, we shall only present the final result
in (3.2). [
REMARK. Applying (3.8), rewrite (3.7) as

n(é, — e,) = n¥(ép-1,) — €p-1y))

(3.10) = [S(FHOXL — O]7[(1 — 1) §1 W, () dF-(u)
= W) 1 (1 — ) dF-(w)] .

§: (1 — u)dF~(u) exists because EX < oo. Since W () converges weakly to the
Brownian bridge W(t), (3.10) suggests that

BA1) Wl — €pr) = (1 — O7(1 — 1) § W(u) dF-Yu)
— W(0) §(1 — u) dF-u)] .
However, this is not immediate since in general ! dF~'(u) is infinite unless X is

bounded. Under the assumption that variance of X is finite using integration
by parts we can show that

(3.12) V52 7, ) dF Y1) dF () < oo

where y(u,v) = u(l —v), for 0 < u < v < 1, is the covariance function of

W(t). Condition (3.12) implies that the integral §} W(u) dF~Y(u) exists in quad-
ratic mean and the Var [{} W(u) dF~'(u)] = (3.12), explicitly
Var (§; W(u) dF=u)) = §i (F7(u))"du — (§ F~(u) duy’
+ (1 — )(F~X(1))* — 2tF~Y(1) §} F~Y(u) du .
We can then verify directly that the normal process on the right-hand side of
(3.11) has the same covariance function as I'(s, 7) given in (3.2) of Theorem 1.
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