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CONTINUOUS TIME CONTROL OF MARKOV PROCESSES
ON AN ARBITRARY STATE SPACE:
DISCOUNTED REWARDS

By BHARAT T. DosHI
Rutgers University

The paper deals with continuous time Markov decision processes on
a fairly general state space. The rewards are continuously discounted at
rate « > 0. A set of conditions is shown to be necessary and sufficient for
a policy to be optimal. For the special case of time independent reward
function and under the assumption that the action space is finite a policy
improvement algorithm is proposed and its convergence to an optimal
policy is proved.

1. Introduction. We study continuous time Markov decision processes on a
general state space. Such a decision process can be described as follows. {X,;
t = 0} is a stochastic process on a state space 2. At each of the specified time
epochs 7 € 7 the state X, is observed and based on the history of the process up
to time 7, an action a, is chosen from the action space .%/. The actions {a,; 1 ¢ .7}
interact with chance environments in determining the evolution of the process
{X;; 1 = 0}. We assume that given the present state X, and action a,, the evo-
lution of the process {X;; s > 0} until the next decision is made is stochastically
independent of the past. Because of this Markov property the resulting decision
process is called a Markov decision process. At time ¢, if the state is x and
action a is chosen, then the reward is obtained at the rate r(¢, x, a). A policy
m is a measurable rule for choosing actions. That is, giver the time ¢ and the
state x, at time ¢, & prescribes action a, to be chosen. For each policy = and
initial state x we define its economic effectiveness by the long run total expected
discounted return. A policy maximizing this total expected discounted return is
called optimal. We seek to find the conditions under which an optimal policy
exists. We also seek to characterize an optimal policy, if one exists.
~ Much of the earlier work in this area was done by Blackwell [1, 2] and Strauch
[27]. They, however, restricted themselves to discrete time parameter case.
That is, &~ = {0, 1, 2, - . .}. Hinderer [9] gives an extensive account of Markov
decision processes with discrete time parameter.

Miller [17, 18] considered Markov decision processes with continuous time
parameter. This is, .77 = [0, c0). He restricted attention to finite state space
case. Later, Kakumanu [13] extended his results to the case of countable state
space. Markov decision processes with continuous time parameter and arbitrary
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state space have not been studied in its generality. Special cases have been
considered by various authors. Stone [26] and Pliska [21] dealt with controlled
jump processes. Mandl [17], Kushner [15], Fleming [7] and Pliska [21] studied
controlled diffusion processes. The methods used for the controlled diffusion
processes rely on the properties of the second order differential operator and
cannot be easily extended to more general processes.

In this paper we deal with continuous time Markov decision processes on a
fairly general state space. No assumptions are made about the specific nature of
the controlled process. Our approach is similar in spirit to that of Kakumanu
[13]. The results obtained here will include as special cases those obtained by
Kakumanu [13] and Pliska [21] for jump processes, because the infinitesimal
operator A4 defined below reduces to the infinitesimal generator Q of [13] and
[21]. With appropriate modifications due to boundary conditions they will also
include the results obtained for the controlled diffusion processes.

In Section 3 we put the control problem described above in the formal
framework of dynamic programming. A useful apparatus connecting a time-
homogeneous Markov process with a contraction semigroup of bounded linear
operators is developed in Section 2. A necessary and sufficient condition for a
policy 7* to be optimal is derived in Section 4 which also shows the existence
and uniqueness of a solution to the dynamic programming functional equation.
The rest of this paper is devoted to an important special case of time independent
reward function. In this case it is shown that the existence of an optimal policy
implies the existence of a stationary optimal policy. For the problems with a
finite action space an algorithm is presented to generate successively improving
stationary policies. Under appropriate assumptions this algorithm is shown to
converge to an optimal policy. This also provides a constructive proof of the
existence of a stationary optimal policy when .%7 is finite. When the action
space %7 is countable the results for the finite action space case are used to show
the existence of a solution to the dynamic programming functional equation and
so that of an ¢-optimal policy for any ¢ > 0. '

2. Contraction semigroup associated with a time-homogeneous Markov pro-
cess. The material in this section follows from Dynkin [5] where the reader is
referred to for details.

Let Z be a complete separable metric space with the usual topology r, and
the Borel g-algebra $, on it. For each ze Z, let (Q, &, P,) be a probability
space. Let {Z,;t = 0} be a time-homogeneous Markov process on Z with (2,
&, P,) as the underlying probability space.

DEFinNITION 2.1. The transition function P of the process {Z,; ¢t = 0} is defined
by
' P(z;t,TY=P{Z,eTWzeZ, T eB,, t =0).

- Let B(Z) denote the set of all bounded j3,-measurable function on Z. With
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respect to the supnorm '
[1f1] = sup,e |f(2)]

and the usual linear opérations, B(Z) is a Banach space.

DEeFINITION 2.2, For each t = 0, we define an operator T,: B(Z) — B(Z) by

T.f(z) = E[f(Z)] = E[f(Z)| Z, = 7]
= $2f(0)P(z 1, dy)
for fe B(Z)and z e Z.
The family {T,; t = 0} is a contraction semigroup of bounded linear operators
on B(Z). Dynkin [5] gives some important properties of this semigroup [also
see [4], Appendix I].

DEFINITION 2.3. Let {f,; n = 1} be a sequence in B(Z). We say that f,, con-
verges to fe B(Z) in a weak sense if

(i) lim,_, f,(z) = f(z) for each z € Z, and
(ii) {||f.|]; » = 1} is a bounded sequence.

If f, converges to f in a weak sense we write wlim,,__, f,, = f.
Let B, be a subset of B(Z) such that for fe By, wlim, . T, f = f.

DEFINITION 2.4. The weak infinitesimal operator A of a contraction semigroup
{T,; t = 0} is defined by

Af = wlim, o1 ﬂit:_/i

for all fe B, such that the limit on the right-hand side exists and belongs to B,.
Let Z(A) < B, denote the set of such functions.

3. Formulation and basic assumptions. We now formulate the control prob-
lem described in Section 1 as a dynamic programming problem. It is character-
ized by the following objects:

(a) The state space 2. This is assumed to be a nonempty Borel subset of a
complete separable metric space. Let 7. be the usual topology on .2~ and let
B be the g-algebra of Borel subsets of .27

(b) The action space &7, This is also a nonempty Borel subset of a complete
separable metric space. Let r_, and 8, denote the corresponding topology and
o-algebra, respectively.

(c) The set .7~ of decision epochs. Since the decisions are taken continuously
7~ =[0, ). Let r, and B, be the corresponding topology and s-algébra, re-
spectively.

(d) The law of motion. Corresponding to each action a e %7, there exists a
weak infinitesimal operator A4,. If at any time ¢, action a is chosen, then the
stochastic behaviour of {X,; ¢ = 0} at time ¢, is completely determined by x,
and 4,.
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(¢) The reward rate function r. This is assumed to be a measurable function on
[0, c0) x 27 x 7.

(f) The set D, of all admissible policies. A policy and its types are discussed
below.

In this paper we restrict ourselves to (nonrandomized) Markov policies. A
Markov policy is a 8, x $_-measurable function on [0, co) x 22~ into .% such
that z(, x) is the action prescribed by = when state x is observed at time . Let
D, denote the set of all Markov policies. A Markov policy is called stationary
if it is independent of time. That is z(¢, x) = 7(0, x) = =(x) forall r = 0, x € 2.
Let Dy be the set of all stationary policies.

In a given application various reasons may force the ‘controller to restrict the
choice of his policy from a subset D, of D,. D, is called the set of admissible
policies. In this paper we shall assume that for each z € D, there exists a version
of stochastic process {X,; ¢t > 0} with the following properties:

(i) {X,;t = 0} is a strongly measurable, strong Markov process.
(ii) The stochastic behaviour of the Markov process {X,; r > 0} at any time
t, is determined by the weak infinitesimal operator Az ity arp°
(iii) Almost all sample paths of {X,; > 0} are right continuous with left
limits and have only finitely many discontinuities in any finite interval of time.

Let P, denote the transition probability function of {X,; r > 0} under policy
m. Thatis, P(s, x; 5 + t,T) = P{X,,,eT|X, = x}forall s > 0, t > 0, xe 2
andT'eg,.

The Markov process {X,; ¢ > 0} induced by a policy « € D, is not time-homo-
geneous except when r is a stationary policy. However, by properly expanding
the state space we can get a time-homogeneous Markov process for any = € D,.
More specifically, let (Z, 8,) denote the product space ([0, o), B,) X (2 B..)-
For any policy = € D, the bivariate process {(1, X,); t = 0} is a time-homogene-
ous Markov process with transition function H, given by

3.1 H(s,x;t,7, ) = P (s, x; s + £, [)o(z — 5 — 1)
s=0,t=0,z=0,

where 6(y) = 0if y < 0, and = 1 if y > 0. When convenient, we shall use z
to represent (7, x) € [0, co) x £2° In this case the process {(z, X,); ¢ = 0} will be
represented by {Z,; + > 0}. Since = € D, induces a time-homogeneous Markov
process {Z,; t = 0} we can associate with it, a contraction semigroup {T,%; ¢ = 0}
and its weak infinitesimal operator A,. The sets B,* and </(4,) have obvious
meanings.

Unless otherwise stated, the continuous time Markov decision process under
study is assumed to satisfy the following:

ASSUMPTION 1.

() There exists a nonempty subset B, of B(Z) such that B, € e, By"-
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(b) There exists a nonempty subset Z(A4) of B(Z) such that £)(A4) C
Neen, A(A4,).
(¢) For each € D, the resulting Markov process {Z,; t > 0} is conservative.
That is, T,"1 = 1 and A1 =0.
(d) There exists an M < oo such that
Ir(t %, @) = M

forall t = 0, xe 2 and ae ..

(e) Forany neD,, r,e B, where r,: Z— R is defined by r.(t, x) = r(t, x,
n(¢, x)) for t = 0 and x ¢ 2%

Let a > 0 be the discount rate. We discount the rewards continuously at a
constant rate a. Suppose we start at time ¢+ > 0 in state x ¢ 22~ and use policy
n € D,. The total expected discounted return is then given by

3.2) Vi(t, x) = E[{7 e=*"¥r(z, X, n(z, X,)) dr | X, = x].
By Fubini’s theorem the interchange of expectation and integral is justified.
This leads to '
3.3) Vit x) = {7 e YE [r(z, X, n(z, X,))| X, = x]dr
= (Fe T r(t, x)dr .

DeriNITION 3.1. The optimal discounted return function ¥, : [0, co) x 27—
R is defined by
3.4 Vi(t, x) = sup,ep, Vi(t, x) t=20, xe 7.

DEFINITION 3.2. A policy 7* ¢ D, is said to be a-optimal or simply optimal in
D, if Vu(t, x) = V(t, x) forall t > 0 and x € 2

DEeFINITION 3.3. For a given ¢ > 0, a policy =* € D, is said to be ¢-optimal if
Ves(t, x) = Vy(t, x) — e for all + > 0 and x € 27,

4. Conditions for optimality. We begin by showing that the discounted return
function V, for any policy = € D, is the unique solution in £(4,) of a functional
equation. This functional equation is of great importance because it depends on
the controlled process {Z,: ¢ = 0} only through its infinitesimal operator 4,.

THEOREM 4.1. For any policy x € D, V, is the unique solution in Z(A,) of the
equation
4.1) (al — AV =r,.
That is,
aV =r 4+ AV.

ProoF. The proof may be found in Dynkin [5, Theorem 1.7].

We now establish the necessity and sufficiency of a dynamic programming
condition for a policy z* to be optimal in D,. We shall assume that the set D,
of admissible policies satisfies the following:
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ASSUMPTION 2. .
(@) Suppose w e D,. Let a policy z’ be defined by
7'(t, x) = w(ty, X) xeZt=0
for some t, > 0. Then =’ e D,.
(b) Suppose = € D, and ' € D,. Forsome #, > 0and 7, > 0 let z" be defined

by
n''(t, x) = n(t, x) if 051<ty, th+t,2t< o0

= n'(t, x) if ,<t<ty+1,.
Then n” ¢ D,. We say that the set D, is closed under (time) interval exchange if
it satisfies this assumption. :
The following lemma was proved by Kakumanu [13] in the countable state
space case. Let 1 denote the unit function on Z. That is
(4.2) 1(z) = 1
forall ze Z.

LeEMMA 4.1. Suppose there exists a function V € Z(A) and a nonnegative constant
¢ such that

(4.3) ' aVzr, + AV —el.
(=) (+)
Then
(4.4) V=V, —ella.
(=) ()

Proor. From (4.3) we have

(al — AYV =r, — el .
(=) (+)

Since (al — A,)~" is a monotone operator the above inequality may be written

as
Vz(al — A)™Nr, — €l)

= (al — A) (el — A,)V, — el)
(+)
=V, —ella.
(+)
This proves the lemma.

LEMMA 4.2. If for some r € D,, t = 0 and x € 22, there exist Ve Z(A4,), fe
2(A,) and a & > 0 such that

4.5) r(t, x) + AV(t, x) = f(t, x) £ 0,
then there exists a t, > 0 such that

(4.6) Tr(t, x) + TAAV(, X) = TAf(t, x) £ 6 0<7<1,.
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*

Proor. By Assumptién 1(e) r, e By C B, forall = € D,. By hypothesis of the
lemma and by definition of <Z(A4,) we have 4.V e B and fe Z(A,) C By". The
set B," is closed under addition. Therefore,

r. AV — f+ 6l eBy.
The lemma now follows from the definition of B".

THEOREM 4.2. Suppose n* € D, and V. € Z(A). Then a necessary and sufficient
condition for ©* to be optimal in D, is that

4.7 aV(t, xX) = Sup,cp, {r:(t; x) + A Vu(t, x)} t=0,xeZ.
Proor. Suppose n* satisfies (4.7). It follows that’
aVaez=r, + AV reD,.
Lemma 4.1 now implies that
Ve 2 V2 meD,,

which proves the sufficiency.
To establish the necessity suppose there exists a 7* € D, such that V,. € Z(A)
and
Ve =Vy =SUPrep, V-

From Theorem 4.1 it follows that
(4.8) aVu(t, x) < sup,ep, {rot, X) + AV, (t,x)} t=20,xe2.
Suppose there exist #, > 0, x,€ 22" and 7 € D, such that
AV (tos X0) < Fallor Xo) - AV u(toy %) .
Then there exists a ¢ > 0 such that
(4.9) aV (ty, Xo) < Fo(to, Xo) + AV (g, X)) — 0 .
From Lemma 4.2 it follows that for some 7, > 0
(4.10) T aV w(tg, Xo < T.r(tos Xo) + T.7AVs(ty, Xo) — 0 0t<7.
Leta policy‘ 7’ be defined by .

n'(t, x) = n(t, x) if (,Zt<t+ 71
= m*(t, x) if 051t<t, (it St oo,

By Assumption 2(b) ' € D,. From (4.8) and (4.10) we obtain
e TVt 1) < Tl %) — € i 05w <7
T

and

.
—3— (€T V(ty, X)) < Tty %) if 72 7,.
T
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Integrating from = = 0 to oo the above inequalities reduce to
Vea(toy Xo) < Violtys Xo) — (0/a)(1 — e=*70)
< V:r'(tO’ xO) *
This contradicts the fact that z* is optimal in D,. The necessity is thus proved
by contradiction.

The above theorem is useful only when an optimal policy exists. There are
situations where an optimal policy does not exist. Some Markov decision pro-
cesses with countably or uncountably infinite action space are of this type. The
optimal discounted return function V, is, however, well defined by equation
(3.4) in these situations. We now studythis optimal discounted return function
and also the question of an e-optimal policy. Some additional assumptions are
needed to obtain useful results.

AssUMPTION 3. If Ve Z(A) and f e 2(A) satisfy

(4.11) St x) = sup,.,, {r(t, x) + A V(2 x)} t=0,xeZ,
then for any given ¢ > 0, there exists a z’ ¢ D, such that
(4.12) ra(t x) + A V(LX) + ¢ > f(t, x) t=0,xe2.

AsSUMPTION 4. Let ¢ be any probability measure on 22°. Then for given ¢ > 0
and ¢t > 0, there exists a policy =z, , € D, such that

(4.13) plx: Ve, (,x) Z Vy(t,x) —ep = 1.

AsSUMPTION 5. Let D’ be any subset of D,. Let fe Z(A) and Ve Z(4). If
for some f, = 0 and x, € 22, there exists a 6 > 0 such that

(4.14) Ie(to Xo) + AV (tyy Xo) £ 0 = f(to, Xo) teD,
then there exists a 7, > 0 and a 4, > 0 satisfying
(4.15) Trr(ty, x0) + TFAV(ty, x0) £ 0, S Tt X)) 0=t <7, meD .

REMARK. Maitra [16] has investigated conditions under which Assumption 3
holds. For discrete time parameter problem Blackwell [2] and Strauch [27] have
shown that Assumption 4 holds under fairly general conditions. Schal [25] has
recently proved the same result using an entirely different approach. Schal’s
approach appears to be more promising as far as the extension to continuous
time parameter case is concerned. Assumption 5 imposes a uniformity property
on the result of Lemma 4.3. It is clearly satisfied when .% is finite.

THEOREM 4.3. Suppose V, = sup,.,, V. € Z(A). Then V, is the unique solu-
tion in Z(A) of

(4.16) aV(t, x) = sup,.,, {r.(t, x) + AV(t, x)} t=0,xeZ,
and for any ¢ > 0, there exists an e-optimal policy in D,.

Proor. We first prove that (4.16) has a unique solution, if any, in Z(A4).
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Suppose V € Z(A) satisfies (4.16). Then by Lemma 4.1

(4.17) V=V,.

Let ¢ > 0 be given. By Assumption 3 there exists a policy =, € D, satisfying
aV <r, + A,V + eal .

Lemma 4.1 now implies that

(4.18) VSV, +el

<V, 4 el
since ¢ > 0 can be made arbitrarily small, we conclude that
(4.19) | v<v,. ‘
Combining (4.17) and (4.19) we obtain

V="V,

and from (4.18) it follows that =, is an e-optimal policy.
We now show that ¥/, satisfies equation (4.16). Suppose for some 7, = 0 and
X €,

(4.20) aV i (ty, Xo) < SUP,ep, {Ta(tor Xo) + AV i (20, X0)} -
That is, there exist a policy = € D, and a ¢ > 0 satisfying
aV (ty, xo) < Falte, Xo) + AV (8, Xo) — 0.
By Lemma 4.2 there exists a r, > 0 such that
(4.21) ae= TV (1), X)) < e T r (ty, Xo) + e T AV (¢ X;) — 0™
for 0 < r < 7,. Lete > 0. By Assumption 4 there exists a policy =, ,. . with
(4.22) e~ 0 TLV o (t, Xo) = e‘“’OT;‘OVMOHO,e(tO, Xo) + e *%oe .
We define a policy =* by
n*(t, x) = 7(t, x) if 0t<t,+ 1
= Ty pey,es X) if t,+,2t< 0.
By Assumption 2(b) 7* € D,. Also from (4.21) and (4.22) we have
V(o X0) Vst X0) — (8/a)(1 — e7%%0) + ee~*%0,
Choosing ¢ < (6/a)(1 — e~*70)/e=*"0 we obtain
Vi (tos Xo) < Vir(t, Xo)
This contradicts the fact that ¥, is the optimal return function. So
(4.23) aV,(t, x) = sUp.cp, (1, x) + AV, (1, x)} t=0,xe2.
Suppose there exist 7, > 0 and x, € &2~ such that
(4.24) aVy(to, Xo) > SUPrep, {Fellos Xo) + AV (10 Xo)} -
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That is, there exists a 6 > 0 satisfying
aV (to, Xo) > ri(te, Xo) + AV (ty, Xo) + 0 reD,.
Assumption 5 implies the existence of a d, > 0 and a 7, > 0 with
(4.25) ae= TV  (ty Xo) > e * T, r(ty, Xo) + € T."Vy(toy Xo) + 0,67
forallzre D, and 0 < ¢ < 7,. From (4.23) and (4.25) we obtain
Vi(te, x) = (0,/a)(1 — e*0) + V (1, X,) teD,.
This implies that
V*(to, xo) > V*(to, xo)
which is a contradiction. So .
aV(t, X) = sUp,cp, {r:(t, X) + AV, (1, x)} t=20,xe.

5. Time independent reward function. In this section we study the Markov
decision processes with time-independent reward function. That is, the case
in which r(¢, x, a) does not depend on.z. In fact, most earlier literature on
Markov decision theory deals only with this special case. We first investigate
the conditions which are sufficient for the existence of an optimal policy which
is stationary.

Sufficient conditions.

THEOREM 5.1. If r is independent of time, then the following hold:

(@)
(5.1) Vi(t, x) = Vi(0, X) = Viy(x) t=0,xeZ.

(b) If there exists a policy ' which is optimal in D, with V, € D,, then there
_exists a policy n* € D, N Dg which is optimal in D ,.

ProoF. The proof is trivial. The details may be found in [4], Lemma 2.5
and Theorem 2.7.

In Theorem 4.3 we derived a functional equation the solution of which is the

optimal return function. We now use this functional equation to characterize
an optimal policy. We need an assumption similar to Assumption 3.

ASSUMPTION 6. V': 2" — R belong to Z(A). If for each x € 27, there exists
an action a, € %7 such that

(5.2) r(x, a,) + A%V(x) = SUp,. ., {r(x, a) + A, V(x)},
then there exists a policy #* € D, n Dy satisfying
(5.3) res(X) + ApV(X) = sSUpepg {ro(x) + A V(x)}
= SUp,. ., {r(x, a) + 4, V(x)} xeZ .

In order to avoid repetitions we shall assume that our selection of a, is such

that
ﬂ*(x) =a, xe 2,
where 7* ¢ D, N Dy. :
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Under Assumption 6 the following is obvious: Suppose there exists a function
V e Z(A) satisfying

5.9 aV(x) = sup,., {r(x, a) + A,V(x)} = SUPcp, {7:(5 X) + A, V(x)}
=0, xeZ.

(a) If &7 is finite, then there exists a policy z* € D, n Dg which is optimal
inD,.

(b) If r(x, a) + A,¥(x) is an upper semicontinuous function of a with respect
to the topology 7, and if %" is compact with respect to this topology, then
there exists a policy #* € D, n Dg which is optimal in D,.

An important requirement in the above is the existence of a solution to the
functional equation (5.4). The existence can be established using Theorem 4.3.
But the Assumption 4 used in the proof of Theorem 4.3 is difficult to be verified
and soan alternative approach is desired. A computational method provides such
an alternative by giving a constructive proof of the existence of a solution to
(5.4). This is a version of the policy improvement algorithm originally suggested
by Howard [10]. We now describe this algorithm and prove that it generates
an improving sequence of stationary policies. We also seek to establish the con-
ditions under which this iterative procedure converges to a stationary policy
which is optimal in D,. We shall assume that the action space % is finite.

ALGORITHM. Given a policy #' € D, n Dg we generate a sequence {r"; n > 1}
of policies in D, N Dg by the policy improvement algorithm. An iteration of
this algorithm is described below.

(a) After finding 7" € D, n Dy we obtain the expected discounted return func-
tion for z* from the value determination equations

(5.5) aVu(x) = re(x) + AV a(x) xeZ.

If n =2 2 and V,u(x) = Vyu-i(x) for all x € 27, then we terminate the algorithm
and conclude that z"~* and =" are optimal in D,. Otherwise proceed to (b).
(b) A policy z"** is defined by
. ﬂ.n+1(x) = a, xe. P
where for each x e .27,

(5.6) r(x, a,) + Ay Vea(x) = sup,. ,, {r(x, @) + AV a(x)} .

Assumption 6 guarantees that we can choose {a,; x € 227} such that z"**e D, n
Ds. We now go back to step (a).

In the following theorem we establish that the policy improvement algorithm
described above generates a successively improving sequence of stationary
policies.

THEOREM 5.2. Let n'e D, N Dg be given and {n"; n = 1} be a sequence of poli-
cies in D, 0 Dg generated by the policy improvement algorithm starting with x'.
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(a) If for some n = 1
(5.7 Fen1(X) + Apnr1Via(X) = Fen(X) + ApnVen(X) xeZ,

then
Vant1(X) = Viea(X) xeZ.

Also, =™ and 7** are optimal in D ,.
(b) Forallnz=1

V,rn+1(X) g Vﬂn(X) X e Z.
If for some x,e€ 27
(5.8) Fenia(X0) + ApuraVin(x0) > Fon(x) + AV on(xo)
then
Vrr"‘+1(x0) > VI”(XO) .
Proor.

(a) By (5.7), Theorem 4.1 and the algorithm

aVn(X) = aVoau(x) = sup,. ., {r(x, @) + AV a(x)}
= SUP,cp, {7:(f, X) + AV u(x)} xeZ.
So

V,,n—l—l = m — V*

by Theorem 4.2.
(b) By definition of z"+! we have

(5’9) rft"”‘l(x) + Aft"”‘an”(x) Z rx”(x) + Ax” Vx”(x)
= aVn”‘('x) X € Z.
Lemma 4.1 now implies that

Voia(x) Z Va(x) xe 2.
Next suppose (5.8) holds for some x,€ 22", Then there exists a ¢ > 0 such that
aVen(xo) < Fenvi(Xo) + AgniVen(Xe) — 0.
By Lemma 4.2 there exists a 7, > 0 satisfying
(5.10)  ae=* T ™"V, u(x)) < €T 1 wii(x0) + €T Arnir Via(xy) — de™%°

if 07t<+,
and
(5.11)  ae TV a(x) £ e T, "1 uii(xe) + €T Awia Vien(x,)
if t>1,.

As in proof of Theorem 4.2, (5.10) and (5.11) lead to
Vnn(xo) = Vnn+1(xo) - (5/a)(1 - e_aro)
< Vewsa(Xo) -
This proves the theorem.
Thus, starting with a policy ' € D, N Dy the policy improvement algorithm
generates a sequence {z"; n = 1} in D, N Dy such that

(i) Vner(x) = V() n>1, xe 2,
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and

(ii) [|Venl| = M/ nx=1.
Therefore, w lim,_,, V. exists and is bounded. Let V': 22”— R be defined by
(5.12) V=wlim, . V..

We now study the conditions under which ¥ equals the optimal return function
V. and satisfies the functional equation (5.4).

ASSUMPTION 7. Since % is finite, Tykonoff’s theorem [28] implies that the
set (%% is compact with respect to the weak topology. The set of all stationary
policies is isomorphic to % and so is compact with respect to the ropology of
weak convergence. We shall assume that the set D, n Dy is also compact with
respect to this topology

ASSUMPTION 8.

(a) {Ves me D, n Dg}is a uniformly bounded equicontinuous family of func-
tions.

(b) For any n*e D, n Dg, the famlly {AxVsme D,y n Dg}ois uniformly
bounded and equicontinuous.

(c) For each x € 27 there exist (i) a compact subset E, of .2” containing x,
(ii) a real number M, < oo, and (iii) a real number /4, > 0 such that for any
reD,andt =0

(5.13) P(t,x;t+ h E)=1— Mh 0 h<h,.
Under these assumptions we prove the following two lemmas which will be

useful in establishing the convergence properties of the policy improvement
algorithm.

LEMMA 5.1. Suppose that V, € 2(A) for all x € D, N Dg. If for some sequence
{z"snz=1}in D, 0 Dg, V = wlim, ., V,u, then Ve N cp, By

Proor. By Assumption 8(a) the family {¥,.; n = 1} is uniformly bounded
and equicontinuous. It follows from Ascoli-Arzela theorem that there exists a
subsequence {z*'} of {z"; n = 1} such that V.- — V uniformly on every compact
subset of . ForzeD,,t =20, xe2 and k > 0, we have
(5.14) [T V(1 x) — V(x)| < |Ty V(2 X) — T,7V,a(t, X))

+ |Th”V7t"‘(t’ X) - n”(’x)l + ,Vz"‘(’x) - V(X)l .
Let M,, h, and E, be as defined in Assumption 8(c). Then (5.14) reduces to
TV (2, x) — V(x)| IM, M
(5.15) = e, Pl 5 1 4 B dY)[V(Y) = VDI + ==2

+ TV en(ts x) — Vea(X)| + |[Viea(x) — V(%)
0<h<h,n=1.
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Suppose ¢ > 0 is given. Since the convergence of V.. to V is uniform on E,
and since Vi € Z(A) C N,ep, B, there exists a d, > 0 with the following
properties.

(i) There exists a positive integer n, such that

V(y) = Ve (y)l < ¢/4 yeEn zn,,
(ii) TV oty x) — Vino(x)| < /4 0<h<é,,
(iii) 3 < h and 8, < (ca)/(8M,M) .

Substituting (i), (ii) and (iii) into (5.15) we obtain
[Ty V(1 x) — V(x)| < /4 + (M, Mea)/(8M Ma) + ¢/4 + ¢/4
= 0 h<d,.
Thus
lim,, o+ T},"V(2, X) = V(x) xeZ5t=0.
From boundedness of V it follows that
wlim, o+ T,V = V.
So Ve By". Since n was arbitrary, Ve ,cp, By
LEMMA 5.2. Under the hypothesis of Lemma 5.1 the following hold:

(@) Ve Nbyans Z(A4,)-
(b) If n* € D, N Dy, then there exists a subsequence {z"'} of {x", n = 1} such that

w liI‘I'l,,L,_,(,a A"* Vi = ALV .

Proor. The lemma follows from Assumption 8 (b) and the fact that the oper-
ator A, is closed (see Dynkin [5, page 40]).

Using the above two lemmas we now prove the convergence of the policy
improvement algorithm and the existence of a stationary policy which is optimal
inD,.

THEOREM 5.3. Suppose that V, € Z(A) for e D, N Dg, S is finite and {n™;
n = 1} is a sequence in D, N Dy generated by the policy improvement algorithm.
Then the following hold:

(a) VeZ(A).

(b) aV(x) = sup,.,, {r(x, @) + A,V (x)} = SUp,ep, {r:(t, X) + AV(x)} (t=0,
xeZ).

(©) V(x) = Vilx) (xe ).

(d) There exists a policy n* € D, N Dg which is optimal in D ,.

(e) There exists a subsequence {x"'} of {x"; n = 1} such that = converges to n*
pointwise.

Proor. From Assumption 7 and the uniform boundedness of r and V,, it
follows that there exists a subsequence {z™'} of {z"; n = 1} and a policy z* ¢
D, n Dy with the following properties:
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(i) = — =* pointwise. That is, for each x € 2”7 there exists an integer n,
such that z*'(x) = n*(x) for n’ = n,.
(ii) rpm(x) = ra(x) for xe 2, n’ = n,.
(iii) A V(x) = AuV(x) for xe 25 0" = n, and V€ N;ep,ang Z(4,)-

Therefore

(5.16) wlim, ., aVu = aV € Neep, B& C B,
and

(5.17) wlim,,  Fw = r.cB7 .

By Theorem 4.1 and equations (5.16) and (5.17) we have
wlim,, ., Aw Vo = aV — rae By .

It follows from simple modifications in the proof of Lemma 5.2 that V' € 2(4,.),
and

(5.18) aV =ra.+ AuV.
From Theorem 4.1 and the hypothesis we now have
V = V"* e Q(A) .

This proves (a) and (e).
From (5.18) we also obtain

aV(x) < sup,.,, {r(x, a) + A,V(x)} xeZ.
For each n’ ’
(5.19) Vo (X) 2 1(X, @) + AV w-1(X) + Agnr Viw (X)
— A Vienr-1(X) xXeZ,ae Y.

By arguments similar to those used in the proof of Lemma 5.2, the above in-
equality may be reduced to
aV(x) = r(x, a) + A, V(x) xeZ,ae Y.

That is,
(5.20) aV(x) = sup,.,, {r(x, a) + A, V(x)} xeZ.
From (5.18) and (5.20) we obtain

aV(x) = sup,., {r(x, @) + A, V(x)} = r.(x) + A.V(x) xeZ.
(b), (c) and (d) now follow from Theorem 4.2.

Countable action space. When the action space is not finite the policy improve-
ment algorithm is not feasible in general. Therefore the existence of a solution to
the functional equation (5.4) and of a stationary policy that is optimal in D, can-
not be established directly using this algorithm. However, when .& is count-
able we can prove the existence of a solution to the functional equation (5.4)
and that of a stationary e-optimal policy. The approach is via the finite action
space case. Suppose that the countable action space .9 is given by {1, 2, - - .}.
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For each n = 1, let .57, be the subset {1, 2, .., n} of %7, and D" the set of sta-
tionary policies corresponding to the action space .%7,. We have already proved
that V, is the unique solution in Z{(4) of the equation (5.4). We now use this

fact to establish the existence of a solution to (5.4) when & is countable.

THEOREM 5.4. Suppose V,_e€ Z(A) for all me D, n Dg, and D, n Dg* is com-
pact for each n > 1. Then we have the following:

(a) There exists a function V € (Nrep,ang Z(A,) satisfying (5.4).

(b) V(x) = sUp,cp ang ValX) (x € Z).

(c) For ¢ > 0, there exists a policy * € D, N Dgwhich is e-optimal in D, n Dg.
If V e Z(A), then for any ¢ > O there exists a policy =* € D, n Dg which is e-opti-
mal in D .

Proor. The proof is similar to that of Kakumanu [13]. The details may be
found in Doshi [4].
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