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CONSISTENCY IN CONCAVE REGRESSION

By D. L. HANSON AND GORDON PLEDGER

SUNY, Binghamton and
University of Texas, Austin

For each ¢ in some subinterval T of the real line let F; be a distribution
function with mean m(f). Suppose m(t) is concave. Let #,75, -+ be a
sequence of points in T and let Y1, Yz, - -+ be an independent sequence of
random variables such that the distribution function of Yj is Fi,. We
consider estimators mn(t) = ma(t; Y1, - -+, Yy) which are concave in ¢ and
which minimize Y7, [ma(ti; Y1, - -+, Yu) — Y;]? over the class of concave
functions. We investigate their consistency and the convergence of {m./(r)}
to m/(t).

1. Introduction and summary. Concave and convex functions occur with
some regularity. (Note that the negative of a convex function is concave.) In
economics, utility functions are usually assumed to be concave; marginal utility
is often assumed to be convex; and functions representing productivity, supply,
and demand curves are often assumed to be either concave or convex. (See
Hildreth [3] for more discussion of this point and a fairly detailed example.)
Various functions which occur in statistics are sometimes assumed to be either
concave or convex. This paper concerns the estimation of such functions.

Let T be a subinterval of the real line having positive length. For each ¢ in
T let F, be a distribution function with mean m(r).

(A1) Assume m(f) is continuous and concave on T'.

(Note that concavity implies continuity except possibly at the endpoints of
T.) For each subset 4 of T define

(1.1) N(A) = Do L(t) =#k:1 <k <n and 1, isin A}
where we use the notation #(S) to denote the number of elements in the set S.
(A2) Assume that t,, t,, - - - is a sequence of (not necessarily distinct) points
from T. Assume that for each subinterval I of T having positive length
(1.2) lim inf N,(I)/n > 0.
(A3) Assume that Y,, Y,, - .- is an independent sequence of random variables
such that Y, has distribution function F, .
We think of Y,, Y,, -.. as a sequence of random approximations to m(t,),
m(t,), - - - respectively. For each positive integer n we will define precisely (in

the next section) an estimator m,(f) = m,(t; Y;, - - -, Y,) of m(f) which minimizes
a sum of squares.
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For y = 0 define
(1.32) G(y) = supeer {Fm(1) —y] + 1 — F(m() + y)—1}

so that G provides a uniform bound on the tails of the distributions of the error
random variables Y, — m(t,). In particular,

(1.3b) P{lY, — m(t)| = y} < G(») forall k.
(A4) Assume that

(1.4) lim, . G(y) =0

and that

(1.5) - BYG(y)| =@ < o

The main purpose of this paper is to prove the following:
THEOREM. Suppose T = [0, 1] and that 0 < o < B < 1. Then

(1.6) P{lim sup max,. , [m,(t) — m(H)] < 0;
lim inf min, ., [m,(f) — m(H)] = 0} = 1.

This theorem says that, with probability one, m,(f) converges to m(t) uniformly
on [a, B8], and in addition m,(f) will not get too large at the ends of the interval T

In the next section we present the estimators m, (). The theorem stated above
is proved in Section 3. Section 4 contains some corollaries giving similar results
about the convergence of {m,’(r)} to m'(f). Section 5 contains some concluding
remarks including some discussion of our assumptions and of variations on the
main theorem.

2. The estimators. Fixnandlet r,, ..., r, be the distinct elements of ¢, - - -,
t, ordered so that r, < r; if i < j. Lety, ---,y, be real numbers which we can
think of as the values taken on by Y,, .., Y, at some particular point » in our
underlying probability space.

Let U be the set of all real valued functions g on T = [0, 1] such that

(2'1) g(ri+1) - g(rj) < g(ri) - g(rj—l) for 2 é] Sy — 1;

Tivn — 715 rj — T
(2.2) g is continuous;
(2.3) if v=1 then g(/)=g(r,) forall ¢ in T,
2.4 if v=2 then g has constant slope; and

(2.5) if v =3 then g has constant slope on each of the intervals
(0, 72), (ras 75)s =+ +5 (Fuzs Tt (s 1)

Note that U is a collection of concave, continuous and piecewise linear functions
on T. Observe also that if % is a concave function on {r, ..., r,} (i.e., if A
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satisfies (2.1)) then there is a unique function g in U which agrees with 4 on

{rl’ . .,rp}.
Forj=1, ..., v define

(2.6) A, ={k:1 <k <n and 1, =r;},
(2.7) s; = #(A4;) and

(2-8) Vi = ZkeAjyk/sk .

Note that

2.9)  Tialo(t) — Il = Diasilers) — FT + Dia Dkea; (F5 = 0)°

and that the last term in (2.9) does not depend on g.

We now think of (g(r), - - -, g(r,)) as a point in v-dimensional Euclidean
space. It is well known (from quadratic programming) and fairly easy to show
that there is a unique point (g*(r,), - - -, g*(r,)) which minimizes

(2.10) 2y sile(ry) — il

subject to (2.1). We can think of g* as a concave function of {r,, ---,r,}. We
also use g* to represent the unique function in U whose valuesonr, ---,r, are
g*(r), - -+, g*(r,). It follows from (2.9) that g* is the unique function in U
which minimizes

(2.11) Dialo@) =yl

We let

(2.12) M85 Yis == =5 Ya) = 9*(0) -

Our estimators will be the functions m,(t; Yy, -+ -, Y,).

The computation of m,(f; y,, - - -, y,) is a problem in quadratic programming.
Hildreth {3] proposed an iterative procedure for obtaining m,,. The authors
know of no closed form solution for m,. Its minimizing property will be used
in our proofs.

3. Proof of the main theorem. We proceed via several lemmas.

LemMA 1. Letr = 1 and let X, X,, - - - be an independent sequence of random
variables such that EX, = 0 and E|X,|*" < oo for all i, and such that 3 i, E\X,|r it <
co. Corresponding to each positive integer n = 2 let iy, iy, « -+, Iy, be a permu-
tation of the integers 1, - - -, n obtained by assigning a place to the integer n between
two successive integers, or at the beginning, or at the end, of the permutation cor-
responding to the integer n — 1. Let B be a positive real number; let a, , = 0; and
forn=1,2,...leta,,, -, ., be random variables such that

P{lim Sup Z;(L:l lan,i - an,i—ll é B} = 1 *
Then
nt a4, X, 0 a.s.

as n — oo.
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PRrROOF.

|n=t 3%, an,kXik,nI = |n7t 2ho Zl;'=l (@n,; — an.j—l)Xikml
= 252140 — @u i) N, X,
S Xialan; — | X n Bro X, —nT B, |
= 2(X51 10 — @, 50]) X (max;_, .., 7Y D, Kol -
The “lim sup” of the first expression in brackets is “< Ba.s.” by hypothesis.
The “lim sup” of the second expression is zero a.s. by Brunk’s theorem ([1],
Theorem 6.1). Thus lim sup |a7t >in_, a,, X;, .| = 0a.s. proving this lemma.

For notational convenience we define 2 =Y, — m(,)and ¢, = EZ

LEMMA 2. If 0 < a < B < 1 then there exists a positive real number M such
that P(lim sup {|m, (1) — m(f)| = M for all t in [a, B]}) = O.

Proor. From the minimizing property of m, we see that

limsupn=* 332_ (Y, — m,(t,))* < lim supn~t v Z2.
A version of the strong law of large numbers applied to the sequence {Z,> —
0.’} shows that n=' 32 (Z.» — 0, — 0 a.s. so that lim supntyn_ Z2=
limsupn= 32_ ¢,2a.s. From the definitions of G and Owehaven 'y r_ 0. <
Q* for all n. Putting these together gives limsupn=' 3n_ (Y, — m,(1,))* < Q*
a.s.

From Chebyshev’s inequality P{|Z,| > a} < ¢,}/a* < Q%a*. Choose a > 2iQ
so that P{|Z,| < a} =  for all k. For reasons which will become apparent later
choose M so that M > a and, using (A2), so that (M — a)’(lim inf N,[a, B]/n) >
20

Now let

A = {limsup n™* Tp_, (¥, — m(1)) < 0%,
B = (N[, 17" Zics ha it 0.0 (1 24]) — P(1Z,] < @)] — 0},

C = lim sup {|m,(f) — m(r)) = M for all ¢ in [a, B1}-

and

We have proved that P(4) = 1. By the strong law of large numbers P(B) = 1.
Thus P(ABC) = P(C). We will show that ABC is empty so that P(C) = 0.
Suppose not and suppose  is a fixed point in 4BC. For the remainder of this
argument all random variables will be evaluated at this fixed » but we will not
explicitly exhibit w in our expressions. Since w is in C there exists a subsequence
{n;} such that “|m, (1) — m(1)] = M for all ¢ in [a, B]” for each j. Note that

n7t 3 (Y, — my(1))?

= 17" Dker T p(8)(Yy — m (1))

P BN N, 81 B B (W01 ZD(Ys — my (1)

v
~~

For notational convenience we use j in place of n;. Using this notation we
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see that
lim inf j T, (Y, — my(t))°
> (lim inf N e, B1/j)(tim inf Nj[a, 817 Sim fu st e0ar(1 Z)(M — 0)?)
= (M — ay(lim inf Na, B)/j)(lim inf Njfa, B1" Eios e n(t)P(Z:] < 4))
> (M — ay(lim inf N,[a, B1/))3) > 0°-
This contradicts lim sup n~* 337, (Y, — m,(1,))* < Q* for @ in 4. Thus 4BC is
empty.
LEMMA 3. There exists a positive real number K such that
P(lim sup {sup,., m,(f) = K}) =0,
ProoF. Because m is continuous on T = [0, 1] there exists a positive real

number M, such that max,., |m(f)]| £ M,. Now let I, = [, %], L =[3, 3]
I, = [4, 8], and I, = [§, 1§]. From Lemma 2 there exists a positive real number

M, such that
P(lim sup {|m, (1) — m(t)] = M, forall ¢ in I}) =0
for k = 1 and for k = 2 and for k = 3 and for k = 4. Now let M* = M, + M,
~ and let K = 6M*. Because of the concavity of m,, if m,(s) = K for any s < }
then either min,., m,(f) =2 M* or max,.,, m,(f) £ —M*. Thus
{sup;<; m.(f) = K}
C {min,., m,(f) = M*} U {max,.,, m,(f) £ —M*}
C {min,,, [m,(t) — m(t)] = M} U {min,.,, [m,(1) — m(?)] = Mi}.
Similarly
{sup,z, m.(t) = K}
C {minyep, [m(t) — m()] = My} U {min,. ;, [m,(t) — m(t)] = My} .
It follows that
lim sup {sup,., m,(?) = K} € Ui, lim sup {min,,, |m,(f) — m(t)] = My}
so that P(lim sup {sup,., m,(f) = K}) = 0.

LeMMA 4. If 0 < a < B < 1 then there exists a positive real number K such that
P(lim sup {min, ., 5 m,(f) < —K}) = 0. .

Proor. It suffices to prove the lemma for « < % and 8 > §. Because m is
continuous on T there exists a positive real number M, such that max, ., [m(7)] =<
M, Let I, =[@/2,a] and I, = [B, (1 + B)/2]. From Lemma 2 there exists a
positive real number M, such that for k = 1 and for k = 2 P(lim sup {|m,(7) —
m(t)] = M, forall rin I,}) = 0. Now let K = M, 4+ M,. Note thatifa <5< §
then

{mn(s) = _K} = {SuPtSs mn(t) = —K} U {Suptza mn(t) = _K}
c Ui, {max,.,, m,(t) = —K}
c UL, {|m.(t) — m(t)] = M, forall ¢ in IL}.
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It follows that
lim sup {minte[a,p] mn(t) é _K} c U??:l lim sup {mintelk Im'n(t) - M(t)l = Ml}
so that P(lim sup {min, ., , m,(t) < —K}) = 0.

LeMMA 5. Let T* = U, {t;}. If0 < a < B < 1 then there exists a constant
K such that
P(lim sup {min, o gy m,'(f) < —K}) =0 and
P(lim sup {max, ., ;- m,’(f) = K}) = 0.
Proor. Suppose 0 < ¢ < min {a, 1 — 8}. From Lemmas 3 and 4 there exists

a constant C such that P(lim sup {max,c;,_. s4.1 |[M.(f)] = C) = 0. Let K = 2C/e.
Note that

{miny o p_re m,/(f) < —K} < {lim, |, [m,(1) — m,(B)]/[1 — B] = —K}
C {m.,(8) =2 C}U {m,(8 +¢) = —C}
C {maxt.e[a—e,p+é] |mn(t)| g C} .
Thus P(lim sup {min, ., _p m,’(f) £ —K}) < P(lim sup {max, o, s1e [M.(0)] =
C}) = 0. The proof of the second half of the lemma is similar.
In the proofs which follow we occasionally use an ‘“expression number” in-
stead of the expression written out in symbols. This is done in an attempt

to reduce the amount of notation necessary. For example, we use (3.1)/n,
instead of

L [Sh (m(6) — Y — Xt (0,060 — Y]

or even (ekpression (3.1))/n, in the proof of Lemma 6. As another example,
we refer to expression (3.3) by number in the expression immediately following
its definition.

LeMMA 6. If0 < a < B < 1ande > 0 then
P(lim sup {min, (. [m,(f) — m(f)] = ¢}) = 0.

Proof. If min,.(, , [m.(f) — m(f)] = ¢ let A4, be the largest interval contain-
ing [a, B] such that m,(f) = m(t) + ¢/2 for all ¢ in the interval. Otherwise let
A, = @. Note that 4, depends on . Now define '

g.(8) = (m() + ¢/2)] 1, (D) + m,(O] 4,00 -
Observe that g, is a continuous concave function and hence that
(3.1 2= (Ma(t) — Yi)' — Zio1 (9a(t) — Vi)’

is nonpositive for every » in the underlying probability space by the minimizing
property of m,. We will use Y™ to denote 3 ,..ci<nana tye4,- Then, using the
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notation Z, = Y, — m(t,), we can rewrite (3.1) as
LMY, — my(t)) — (Vi — 9.(10))"]
= 2" [2Y, — m,(t,) — gu(t)][9a(t) — ma(1)]

(32) =2 Z(n) Zk[gn(tk) - mn(tk)] ’
(3.3) + 2™ [ma(t) — gu(t)l[ma(t) + gu(te) — 2m(1)] -
Now ’

(3:3) 2 ¢ Z™ [m,(t) — ga(1)]
2 ¢e[(¢/2)k: 1 <k <n and ¢, isin A4, n [a, B]}]
= ()/2)N,[a, B] if 4,+ @

=0 if 4,=¢@.

We will use Lemma 1 with » = 1 on the random variables Zyy Zyy +++. Pro-
duce an ordering < of 1,2, ... so that ¢, < ; implies i & j. If t, = 1, any
arbitrary ordering will do. We choose to set i & j if t, = t; and i < j. Now
let k = i,, if i < k for exactly v — 1 of the integers i = 1, - - -, n. The permu-
tations i, ,, - -, i, , are obtained in the manner specified in Lemma 1 and (3.2)
can be rewritten as
(3.4 L2250 Zi,,,,,,[gn(tik,,,,) - mn(tikm)]]A”(tik,”) .

Recall thatr, <t < ... < t,, . Definea,,=0andfork =1, .., nde-

fine the random variables a, , by
Aup = [gn(tikm) - m'n(tz‘km)]]An(tikm)
= [¢/2 — (m,(1,, ) — m(t, N, (%, )
so that (3.4), and hence (3.2), becomes
(3.5) 2 3% an,th,‘m .
Since m is continuous max, ., ,; |m(f)] = M, for some real M,. For a function f

defined on [0, 1] let V(f) denote the variation of f over [0, 1]. Since m is
concave V(m) < 4M,and V(ml, ) < 6M,. Clearly V((¢/2)I 4,) = ¢ Wealsohave

—My=ml, <(m-+ ¢/2),, = m,l, < [max,., m, ()1,

so V(m,1, ) < 4M, + 2 max {0, max, ., m,(s)}. From Lemma 3 there thus exists
a constant K such that P{V(m,l, ) = Ki.0.} = 0 (where i.0. = “infinitely often”).
It follows that

P{V([e/2 — (m, — m))l, ) = ¢ + K + 6M, i.0.} =0
and that therefore
Pllimsup 317, |a, , — a,, 4| S e+ K 4+ 6M;} = 1.
We now apply Lmma 1 setting B = ¢ + K + 6M, and Xipw = Ziy, .- 1f we set
(3-6) A= {n" T Z,[gu(ti) — my(1,)] — 0}
it follows from Lemma 1, and from the equality of (3.2) and (3.5), that P(4) = 1.
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Let' C = lim sup {min, ., ,; [m,(f) — m(?)] = ¢}. We will argue that AC is
empty so that P(C) = 0. Suppose not. Fix w in AC and for that o let {n,} be
a subsequence such that for all v we have min, ., 4 [m, () — m(t)] = ¢ so that
A, = A, (0) # @. Then

3.1 2 3.3
ED 2 s 200,00 — mo 0] +

n n, n,

v

22500 20, () — mo (1] + €N, [, B2,

v

so that lim inf [(3.1)/n,] = 0 + [¢*/2][lim inf (N, [@, B]/n,)] > 0. Thus for some
large values of n the expression (3.1) is positive contradicting the definition of
m, which requires (3.1) to be nonpositive. It follows that AC is empty and the
lemma is proved.

LEMMA 7. Ife > 0and 0 < a < B < 1 then

P(lim sup {max, ., , [M,(f) — m(t)] = ¢}) = 0.

ProoF. Use Lemma 5 to get K such that if 4, = {max, ., 1 |m,'(7)| = K}
then P(lim sup 4,) = 0. m is continuous (so uniformly continuous) on [0, 1].
Let 6, > 0 be such that if |s — 1] < §, then |m(r) — m(s)| < ¢/3. Let § =
min {0, ¢/3K}. Leta =g, < a, < --- < a, = B be such that max,_, ... {a —
@} < d and let B, = [a,_,, a,]. Let Q* = (limsup 4,)° and for & in Q* let
Mw) be such that n > N(w) implies @ in 4,°. Now suppose @ is in Q* n
lim sup {max, ., ,; [m,(f) — m(f)] = ¢}. Then there exist sequences {s,} and {n,}
of real numbers and positive integers, respectively, such that

(i) s, isin [a, B8] for all v,

(i) Moysn <n < ...,and

(iii) m, (s,) — m(s,) = e.

Infinitely many of the s,’s will be in some B, so suppose we have chosen the
subsequence so that

(iv) s, is in B, for all v (k fixed).

Then if s is in B,
mn,,(s) - m(s) = [m'ny(s) - mn,,(sv)] + [m'n.,(sv) - m(sv)] + [m(SV) - m(s)]
—|s—5|K+4+ e —¢/3
—0K + 2¢/3 = ¢/3.
Thus min,. », [m, (s) — m(s)] = ¢/3. It follows that o is in
U/ lim sup {min, ., _[m, (1) — m(t)] = ¢/3}.
Lemma 6 now shows that

\ai\%

P(lim sup {max, (, ; [m,(1) — m(1)] = ¢})
= P(Q* n lim sup {max, ., 4 [m,(t) — m(t)] = €})
< o P(lim sup {min, . 5, [m,(1) — m(t)] = ¢/3}) = 0.
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LEMMA 8. If e > O then there exist a, 8 € (0, 1) such that
3.7 P(lim sup {max, . o [M,(f) — m(t)] = ¢}) =0 and
(3.8) P(lim sup {max,., .1 [m,(f) — m(t)] = ¢}) = 0.

Proor. Let 0, € (0, 1) be such that |s — ¢| < 0, implies |m(f) — m(s)| < ¢/3.
From Lemma 5 we get K > 0 such that P(lim sup {min, o ;- m,'(f) £ —K}) = 0.
Let 6 = min {4, ¢/3K} and let & = 9/2. Let Q* = (limsup {min (o, 5,1-7+ M, (f) <
—K})° and for w in Q* let N(w) be such that if n = N(w) then m,’(f) = —K for
all tin [0, 9,] — T*. Suppose w € Q*, n = N(w), t € [0, a], and m,(t) — m(t) = .
Then if s e [a, 2a]

mo(s) — m(s) = [my(s) — mu())] + [ma(t) — m()] + [m(1) — m(s)]
= —K|t—s|+e—¢/3=¢/3.
Thus Q* n lim sup {max, . . [M.(1) — m(£)] = €} C lim sup {min, ., 501 [mM,(5) —
m(s)] = ¢/3}. An application of Lemma 6 proves (3.7). The proof of (3.8) is
~ similar.

LEMMA 9. If e > 0 then P(lim sup {max, ., ,; [m,(f) — m(f)] = ¢}) = 0.

Proor. This is an immediate consequence of Lemmas 7 and 8.

LEMMA 10. If0< a< B < 1ande> 0 then

P(lim sup {min, ., , [m(f) — m,()] = ¢}) = 0.
Proor. Define g,(f) = min {m,(f) + ¢, m(t)}. Let
Q* = (lim sup {max, g,y [m,(1) — m(1)] = ¢}y
and recall that P(Q*) = 1 from Lemma 9. For w ¢ Q* let N(w) be such that if

n = N(w) then m,(f) < m(f) + ¢ forall #e[0, 1]. From the minimizing property
of m, we see that

(3.9) Lk=r (Y — ma(1))” — Ziea (Y — 9a(%))?

is nonpositive for all » and all » (in particular for all @ € Q* and all n = N(v)).
Using the notation Z, = Y, — m(t,) we can rewrite (3.9) as

(-10) 2 3%, Zi[ga(t) — ma(8)]

(3.11) + 2k=1 [2m(t) — mu(t) — 9a(t)[gn(t) — mu(1)] -

Now for w € Q* and n = N(w) we have

B.11) = g, =+ [2m(B) — 2my (1) — ele + 305, wmyve [M(1) — my(1)]
g Zy,,=m,,,+e e
The last inequality comes from the fact that if g, = m, + ¢ then m, + ¢ < m.
Define the random variables Z; = as in Lemma 6. Let 4, = {0: e Q* and
n = N(w)}. Define a,,= 0 and for k = 1, ..., n define the random variables
a,,bya,,= [9.(1:,,) — ma(t;, )M4,. If @ is not in A, then a,, = 0 so that
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i |8u — Gnya) = 0. If ® € 4, and g,(f) = m,(t) + ¢ for all ¢ then a,, = ¢
for k +0s0 7., |a,, — G,y = ¢. If ® € A, and there is at least one ¢ such
that g,(7) + m,(t) + ¢, then let a* = min{z:g,(f) = m()} and let B* =
max {t: g,(f) = m(r)}. Note that g,(f) — m,(t) = ¢ for t [0, a*) U (8%, 1], that
g.(a*) = m(a*), and that g,(8*) = m(8*). Let V,(f) denote the variation of the
function f over the interval /. Then

V(9 — m)l, 1= Viegnl(9. — m), ]

= Vioar(-++) 4 Viwwgr(- =) + Vigeou(- - )

é V[a*,ﬁ‘](gnlAn) + V[a*,ﬁ*](mn]An) .
Let M be a bound on |m|. Then since g, is concave, since g,(a*) = m(a*) and
9.(B*) = m(8*), and since g,(r) < m(t) for all ¢, we see that |g,(f)] < M for t e
[a*, 8*] and further that Vi, s(9./,,) < 4M. Similarly, since m, is concave,
since m,(a*) = m(a*) — ¢ and m,(8*) = m(B*) — ¢, and since for we 4, we
have m,(f) < m(t) + ¢ for all ¢, we see that |m, ()] < M + ¢ for t e [a*, $*] and
further that Vi go(m,l, ) < 4(M + ¢). Thus in this case V[(g, — m,), ] =
8M + 4e 50 that 113, [a,, — a, 4] < 8M + de + [g,(0) — m,(0)] < 8M - 5.
An application of Lemma 1 now shows that if Q, = {n~* }]%_, Zy, s — 0}
then P(Q) = 1. We will argue that Q, n Q* n lim sup {min, ., , [m(f) —
m,(t)] = e} = ¢ so that P(lim sup {min,., ., [m(t) — m,(t)] = ¢}) = 0. Suppose
not, that o is in the set, and that {n,} is an increasing sequence of positive in-
tegers such that N(w) < n, and such that for every v we have min,, , [m(f) —
m, (£)] = . Then since w € Q,

(3'10)/”v = (2/”u) 2 Zikmuan,,k —0.

In addition, since w € Q* and n, = N(v) for all v

tim inf -1 > e lim inf (N, [a, g/n,) > 0.
n

v

It follows that for large enough values of v
, 3.9) = n,[(3.10)/n, + (3.11)/n,] > O,
giving the desired contradiction.
LemMmA 11, If0 < a < B < 1 and e > O then
P(lim sup {maX,c, 5 [m(t) — m,(1)] = ¢}) = 0.
Proor. Follows from Lemma 10 and is similar to the proof of Lemma 7.

PROOF OF THE MAIN THEOREM. An immediate consequence of Lemmas 9 and
11.

4. Derivatives. We will use f’(1+) to denote the right derivative of fat tand
f(t—) to denote the left derivative of fat ¢.
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COROLLARY 1. Suppose T =[0,1],0 <t < 1,and 0 < s < 1. Then
4.1) P{lim inf m,’'(t+) = m'(t+)} = 1 and
4.2) Pllimsupm,’'(s—) < m'(s—)} = 1.
ProoF. Suppose ¢ = (1 — #)/2 and define B = {lim inf m,'(t+4) = m'(1+)}".

Let {a,} be a decreasing sequence of positive real numbers such that a, < ¢ and
a, — 0. For each v define

A, = {lim sup max, , [m,(x) — m(x)] < 0;
lim inf mint+ay§x§t+e [m,(x) — m(x)] = 0}.

From our main theorem P(4,) =1 for each v. We will argue that B n
[Ny 4] = @ so that P(B) = 0 and (4.1) is true. A similar proof would give
(4.2).

Suppose o is in B n [, 4,]. Because w is in B there exist a real number
C < m'(t4) and an increasing sequence {n,} of positive integers such that
m;, (t+) < C for all k. Because m'(1+) exists there are real numbers d and D
suchthat0 < 6 < ¢, C < D < m'(t+), and if t < x < ¢ + 6 then m(x) = m(t) +
(x — )D. We set x = t + d so that

(4.3) m(t + 0) = m(t) + oD .
Since m,, is concave we have
(4.4) m, (t + 0) = m(t) + om,, (t+) =< m(t) + oC .
Subtracting (4.4) from (4.3) gives for all k
(4.5) m(t + 0) — m, (t + 0) = 6(D — C) > 0.
Now choose v large enough that @, < . Then, since w € 4, for all v, we have
m,(t 4+ 6) — m(t + ). This combined with (4.5) gives the desired contradiction.
COROLLARY 2. Suppose T = [0, 1] and let T* = {t,:i = 1,2, ---} U {t: m'(¢)
does not exist}. If te (0, 1) — T* then P{m,'(t) — m'(f)} = 1.
PrROOF. An immediate consequence of Corollary 1.

COROLLARY 3. Suppose T = [0,1], 0 < a < B < 1, and that m'(t) exists on
(0, 1). Then
P{Supaszgﬂ lmn'(t+) - m’(t)i —0} =1
and
P{sup,c.<, |m,/(t—) — m'(f)] - 0} = 1.
Proor. Is standard and follows from Corollary 1 or Corollary 2 and the con-
cavity of m, and m. Note that if m'(¢) exists for ¢ in (0, 1) then, because m is
concave, m’ is automatically continuous on (0, 1).

5. Concluding remarks. One might wonder whether the assumption
lim inf [N, (I)/n] > O is necessary. It is easy to see that one cannot simply elimi-
nate the assumption, that some restriction, in addition to its being dense in T,
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must be placed on the sequence {1,} of observation points. Suppose, for example,
that observations have been taken at ¢, - - -, ,; that t; — ¢, > 0; and that there
are no observation points between ¢, and ¢;. Suppose further that thereisa d > 0
such that for all ¢ in T we have F,[m(f) — d] > 6. Now suppose #, < t,,; <
lhys < - -+ < t;. Let Nbeany positive integer. With probability one (eventually)
we will have Y, — m(t,) < —0 for some block of N consecutive integers k =
v+ 1,..-,v 4+ N. Because of the huge number of observations taken to the
left of this block and the stabilizing effect of these observations on the estimates
of m to the left, it is likely that the fact that Y, ,, -.-, Y, are all too small
will have little effect on m, ,(¢) for t < t,,,. On the other hand, at mostn — 1
of the observation points ¢, ---, t,,, are to the right of 7,,, so if N is large
enough relative to n, and if ¢,,,, #,,,, - - - are close enough to 7,, then we ought
to be able to pull the value of m,,(¢;) down at least to m(t;) — /2 with high
probability. A construction like that used in Theorem 2 of [2] can be used and
should give an example in which for some ¢ > 0

P{sup,g; <, liminf [m,(f) — m(t)] < —e} = 1.

The sequence {#,} used in the construction would be made dense in [0, 1] but
(of course) would not satisfy (1.2) of Assumption 2. Note that we have not sug-
gested the possibility of an example in which

Pfinf,_, ., limsup [m,(t) — m()] = ¢} = 1.

One can bend one side of a concave curve (say for ¢ > t) downward at an
arbitrarily steep angle without changing the curve for ¢ < ¢, and without destroy-
ing concavity. One cannot perform the corresponding “upward” bending.

It is easy to understand why we are able to bound m,(f) from above uniformly
“at the ends of the interval 7,” but are unable to bound m,(7) from below uni-
formly “at the ends of the interval T.” Suppose ¢, < t; for je{l, - -., n} — {i}.
Then m,(t,) < Y, since if m,(t)) > Y, we could reduce the sum of squares
ey (Y, — m,(t,))* without violating concavity by letting m,(#,) = Y,. Under
any sort of reasonable assumptions on the distributions of the error terms ¥, —
m(t,) there will be a 6 > 0 such that P(Y, < m(t,) — 0) = 0 for all k. Thus we
always have P{m,(t,) < m(t) — 6} > ¢ for that o.

It is clear that our main theorem holds for any compact interval [a, b], that
T need not be [0, 1]. In fact, if T is a finite interval it need not be closed. The
fact that T is closed was used to give boundedness (and hence uniform continuity)
of mon T. If T is finite, but not necessarily closed, it suffices simply to add the
additional assumption that m is bounded. If ¢ = (0, 1) and if lim, ,m(r) =
—oo (lim, ,m(f) = 4co is impossible for concave m), then, since m,(t) is
always bounded on finite intervals, sup,., [m,(f) — m(t)] = oo for every n. If
lim,,, m(f) = —co as well, then (1.6) would have to be weakened to
P{lim max,,, |m,(t) — m(t)] = 0} = 1. If T is the real line then one can get
uniform strong consistency over finite subintervals but one cannot get any sort
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of uniform consistency on an unbounded end of the interval because a small
error in the slope of m,(¢) at the rightmost or leftmost observation point can
lead to arbitrarily large errors |m,(f) — m(t)| as t — co Or t —» —oco.

It is clear that similar results can be obtained if any or all of m,(s),

limm mn(t)t : r:n(s) s lirnth m'»(t)t - ':ln(s)

are specified or bounded (correctly) at a finite number of points. One might,
in particular, want to specify m,(s) at the endpoints of 7.
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