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AN UPPER BOUND OF RESOLUTION IN SYMMETRICAL
FRACTIONAL FACTORIAL DESIGNS

By Yosuio Fuinn
Okayama College of Science

For the minimum weight in s-ary (n, p) linear codes (or for the maxi-
mum resolution in s»~» designs), an upper bound has been obtained by
Plotkin [4] where s is a prime power.

The purpose of this note is to obtain an improvement of the Plotkin’s
‘upper bound. Main result is as follows: when p = 2, the maximum reso-
lution Ry(n, 5) of any s»—» design satisfies the following:

Ry(n, s) = s»—1q if m=0,1
= s771g + [sP=2%(s — 1)(m — 1)/(sp—1 — 1)]
if m=2,3,...,sp-1

< sP-1g + [(s — D)m/s] if m=sr-14+1,.... N—1,

where [x] is the greatest integer not exceeding x, n=¢gN + m and N =
(57 — Di(s — 1.

1. Introduction and summary. Consider s" factorial designs with n factors each
at s levels, where s is a prime power. A 1/s? fraction of an s* factorial design is
called an 5"~ fractional factorial design, or briefly, an s"~* design. An s"~?
design in which no r-factor or lower order interaction is aliased with another
u-factor or lower order interaction is called an s"~? design of resolution ¢ + u + 1
[1]. It is desirable to obtain, in s~* designs, an s"~? design having the maximum
resolution. In the special case p = 1 it is easy to see that the maximum resolu-
tion of any s"~' design is equal to n; for p = 2 it is well known [5] that the
maximum resolution of any s"~* design is equal to [ns/(s + 1)] where [x] is the
greatest integer not exceeding x. But it is very difficult, in general, to obtain
an s*~? design having the maximum resolution.

Plotkin [4] obtained the following upper bound for resolution in s"~# designs
(or for the minimum distance in s-ary (n, p) linear codes):

In s"~7 designs, the resolution R cannot exceed [s*~!(s — 1)n/(s* — 1)], i.e.,

(1.1) R < [s*7Y(s — Dnj(s» — 1)].

The purpose of this paper is to obtain an improvement of the Plotkin’s upper
bound. (Plotkin’s upper bound works for any symmetrical fractional factorial
being regular or irregular. But in this paper, we consider the comparison of our
upper bound and Plotkin’s upper bound within the limits of the regular case.)
The main result is given as Theorem 4.1.

In Sections 4 and 5, it is shown that (i) our upper bound, BF, is less than or
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equal to Plotkin’s upper bound, BP, for any s*~* design and (ii) there are ex-
amples such that BF < BP.

2. The resolution of the s*-7 design D,. An s”~? (fractional factorial) design
D, may be defined as the set of the s"~? treatment combinations X’ = (x,, x,, - - -, X,))
such that x,’s are elements of the finite field GF(s) and Fx — ¢ over GF(s) for
some p X n matrix F whose elements are those of GF(s) and whose rank is p
over GF(s).

It is well known [1, 3] that the resolution R, of the s"~? design D, is given by
(2.1) R, = min {r(§)|§ e F(F')}
where .Z(F’) denotes the (p — 1)-dimensional subspace (or the (p — 1)-flat) of
an (n — 1)-dimensional projective space PG(n — 1, s) over GF(s) generated by
the linear closure of column vectors of the matrix F’ and r(§) denotes the number
of nonzero elements in the n components of the n-vector §. The maximum res-
olution R of s"~? designs can be expressed as
(2.2) R = max, R, .

3. The modular representation of the s"~? design D,. In order to obtain an
upper bound for the resolution R of s"~? designs, we shall use the concept of
the modular representation which was introduced by Slepian [6] in connection
with problems in coding theory and independently by Burton and Connor [2]
for the case of factorial designs.

Let a be a primitive element of GF(s”). Then every nonzero element of GF(s”)
may be represented as a power of @, say a' (0 < i < s* — 2), and every point
of PG(p — 1, 5) may be represented as (a?) (0 < j < N) where N = (s* — 1)/
(s — 1). Two points (a'1) and (a'2) represent the same point when and only when
i, = i, mod N. Since every nonzero element a’ (i = 0, 1,2,-.-,s” — 2) of GF(s?)
can also be represented uniquely by a polynomial, x, + x;a + - -+ + x,_,a?™,
in a, of degree at most p — 1, with coefficients from GF(s). It is clear that
every point of PG(p — 1, s5) has also such a representation. In the following, we
shall denote by @, (i = 0, 1, ..., N — 1) the vector (x,,, X, - - -, X,,_,) such that

(3.1) (@) = x; + Xp 4 -0 le—la'p_l .

The vectors @, (i=0,1, ..., N — 1) may be regarded as the N points of
PG(p — 1, s) and every nonzero p-vector f; of F can be taken as a points of
PG(p — 1, 9).

DEerFINITION 3.1. The modular representation of the s"~? design D, is defined
as the vector (z, My, M,, - --, M, _,) where z and M, denote the number of the
zero column vectors 0 in F and the number of the column vectors in F corre-
sponding to the point (af), respectively. We call the vector M’ = (M,, M, - - -,
M, _,) the modular vector of the s"~? design D,.

The maximum resolution R for s"~? designs can also be represented by

(32) R = max, min ., "(§)
where SA(F') = {§,|&, = Fa;,i =0,1, ..., N — 1}.
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4. A new upper bound for the resolution R of s*~? designs. For an improve-
ment of the Plotkin’s upper bound, we have the following theorem.

THEOREM 4.1. [n the case p = 2, the maximum resolution R,(n, s) of s"~? de-

signs is given by
R, (n, s) = s?7'q if m=0,1
(.1 < 97l + [#7%s — D(m — D[ = 1))
if m=23,...,s""
<o+ [(s— Oms]  if m=s4 1 N -1,

where n = gN + m and N = (s* — 1)/(s — 1).

In order to prove the above theorem, we prepare the following two lemmas
given by Robillard [5].

LeMMA 4.1. Berween the vectorv' = (r(§,), r(§), - - -, n(§y_))), or, briefly, ¥’ =

(Py> F1s ++ 5 Ty_1), and the modular representation (z, M') of the s~* design D, where
§ =Fa,and M' = (M, M, - -, M_,), there is the following relation:
(4.2) r =AM

where z + >0 M, = n and A isthe N X N matrix whose elements a,; are given by

a,; =0 if the jth point (af) in PG(p — 1,s) lieson

1%
(4.3) the (p — 2)-flat V, (i)
=1 otherwise,

where V, (i) = {§|a/§ = 0,§c PG(p — 1, 5)}.

LeMMA 4.2. For any integer [, the values of nonnegative integers z and m; (i = 1,

2, -+, 1) which maximizes the minimum of l integersm; (i = 1,2, ..., I) subject to
the condition z + Y,'_, m, = n are given by
z=20 z=0

4.4 m, = i=1,2,...,1 or m, = +1 i=1,2,.-.,r
) q ( ) q ( )
m; =gq (j:r_l_l,...,[)

according asn = gl or n = ql + r (1 < r < [ — 1) for some nonnegative integers q
and r.

From Lemma 4.2, it is easy to see that the maximum value of the minimum of
I nonnegative integers m, (i = 1, - - -, [) subject to the condition z + >;!_, m, = n,
z = 0, is given by [n/I] for any positive integers / and n.

The following concept plays an important role in proving Theorem 4.1.

A symmetric (v, k, 2)-configuration is defined as an arrangement of v elements
Xy, X,y ++ ¢, X, INtO v sets By, By, - .-, B, such that (i) each set contains exactly k
distinct elements and (ii) each pair of elements occurs together in exactly 1 sets.
We define the incidence matrix of the symmetric (v, k, 2)-configuration to be the
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matrix 4 = {a;;](i,j = 1,2, - -+, v) where a,;; = 1 or 0 according as the ith ele-
ment x; belongs to the jth set B; or not. Then it is easy to see that each element
occurs in exactly k distinct sets.

Proor oF THEOREM 4.1. It is well known [5] that the matrix 4 in Lemma 4.1
is the incidence matrix of a symmetric (v, k, A)-configuration with v = N, k =
s?~tand 4 = s»~*s — 1). From the definition of a symmetric (v, k, 4)-configu-
ration, (4.2) and ¥ ' M, = n, we have

(4.5) o= NS M, 35 ay; = kn
(4.6) Dornay = XYM YNt aa, = (k— DM, + An
for/=0,1,..., N — 1. Letusdenote by i(0, /), i(l, l), - - -, i(k — 1, [) the k
integers / such that a,, = 1 for / and by i(k, I), i(k + 1,1), -« -, i(N — 1, ) the
N — k integers i such that a;, = 0 for /. Then from (4.5) and (4.6), we obtain
the following conditions for the vector r’ = (r,, 7, - - -, Ty_1)-

iz0 M = (k — )M, + an

4.7  F(My,ny: S0
Sy =k —=Dn—M) 1=01...,N—1.

We define the following N + 3 sets of vectors M’ = (Mg, My, -+, M,_)) and
¥ = (ro, ry, -+, ry_;) respectively.
A = MM’ = (My, My, -, My_)), T3 M, = n, M, = 0}

B =1{r|r = (r, 1y, ceTyoa)s i r = knyr, = 0}
L%(A, n) = {l'll‘: AM,MG%}
%(M,,n):{r]%(Ml,n)} /I=0,1,...,N—1.

Then from the definition of above sets, we have
(4.8) (A, n) C U_, NI -2(M,, ny C 2.

From (3.2), (4.8) and Lemma 4.2, the resolution R for s*-» designs satisfies the
following inequality.

R = max ., ,, min {ry, r, - ., Ty-1}

IA

max_, MaxXay=1 o MU {ry, ryy -, 1y )

IA

in¥-1 i ink-1 N1
max_, minyS' max , o, ., min {minfzgr,; ,, miny=}r,; 1.

Thus we have
R < max , min¥3' min {maxﬁ,m,l‘m minzi 7, ), max , , , 0I5 o)
= max_, min}' min {[((k — )M, + in)/k], [(k — A)(n — M)/(N — k)]}.
Then it follows that
4.9) R < max_, minj”' min {[((s — 1)n + M,)/s],

[s775(s = I)(n — M,)[(s>= — 1]}
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Letn=gN+m (@0 <m< N —1,q = 0), then we have
@.10) (s = I)n + Mfs < 7%(s — D(n — M)[(s>* = 1) if M, < ¢
((s = D + Mfs > s75(s — D)(n — MYJ(s» — 1) if M,z g+ 1.
As the inequalities
(s = D4 g)fs = s — D(n — g — V(s — 1) if m < &=

411 (s = D+ gq)fs < s*7%(s — I)(n — ¢ — 1)/(s*7 = 1)
if m>=s1+1
hold, then from (4.9), (4.10) and (4.11), we have
R < [s7%(s — I)(n — ¢ — 1)/(s*=" — 1)]
(4.12) = sP7'q + [s27%(s — 1)(m — 1)/(s>~* — 1)] if 2=mg s?!
< 527 + [(s — 1)m)s] if mz=zs 141,
It follows that the second and third equations in Theorem 4.1 hold. When
m = 0, from (4.9) and (4.10), and when m = 1, from (4.9) and (4.11), we have
R < s*~'g respectively. However we select gN or gN 4 1 points in PG(p — 1, 5),
corresponding to the column vectors in F, each point repeatedly g or g + 1
times, i.e., M' = (¢, ¢, ---,g)orM' = (¢q,---,4,9 + 1,9, ---,q) whenn = gN
or n = gN + 1 respectively, so that the resolution R for s*~” design is s?~'q. It
follows that the first equation in the theorem holds.
This completes the proof of Theorem 4.1.
From (4.9), it follows that the following corollary holds.

CoROLLARY 4.1. [n an s*~7 design, let M be the maximum value of the N com-
ponents of modular vector M' = (My, My, ---, My_,). Then the resolution R for
§"=? design is less than or equal to [s*~*(s — 1)(n — M)/(s*~* — 1)], i.e.,

(4.13) R < [s7~%s — 1)(n — M))(s»™* — 1)].

Our upper bound BF is derived under conditions (4.7), and Plotkin’s upper
bound BP under condition (4.5). However any set of r, which satisfy (4.7) auto-
matically satisfy (4.5), hence BF < BP.

5. Examples of the maximum resolution for s»-? designs. In this section, it
is shown that there are examples such that our upper bound is less than Plotkin’s
upper bound.

ExamrLE 1. Consider the case s = 2, p = 3and n = 9. Inthis case, it follows
from (1.1) and (4.1) that BP = 5 and BF = 4. This shows that BF < BP and
R < 4. On the other hand, there exists at least one 2°~* design with resolution
R = 4. For example, D, = {x'| Fx = c¢} is a 2°~® design with R = 4 where

00110110
1 01 0 0 1].
01 01 1 00

Therefore, we have BF =
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There are many examples such that BF < BP. We list such examples in
Tables 1, 2 and 3.

TABLE 1 TABLE 2
3n-3 designs 4n—3 designs
n 3 6 15 16 19 n 7 8 12 23 24 25 28 29 33
R 1 3 9 10 12 R 4 5 8 16 17 18 20 21 24
BF 1 3 9 10 12 BF 4 5 8 16 17 18 20 21 24
BP 2 4 10 11 13 BP 5 6 9 17 18 19 21 22 25
TABLE 3

2n—4 designs

n 4 6 17 19 21

R 1 2 8 9 10
BF 1 2 8 9 10
BP 2 3 9 10 11
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