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APPROXIMATIONS FOR STATIONARY COVARIANCE
MATRICES AND THEIR INVERSES WITH
APPLICATION TO ARMA MODELS!

By PAuL SHAMAN

Carnegie-Mellon University

Approximation of the covariance matrix £ of T consecutive obser-
vations from a second-order stationary process with continuous positive
spectral density f(2) = [0%/(27)2]| £ 5, 85 €'24[2 is considered. If Z* is the
covariance matrix corresponding to a process with spectral density
1/[27)2f(2)], then Z* — Z-1 > 0. A matrix ¢—2A’A with the property that
I* — ¢72A’A =z 0 and ¢~?A’A — Z-! = Ois also considered. For autoregres-
sive-moving average processes of order (p, g), Z* — ¢—2A’A and ¢—2A’A —
Z-1are shown to have rank min [max (p, g), T] and Z* — Z-! to have rank
min [2 max (p, q), T]. Some results concerning the covariance determinant
arealso discussed. If Dr is ¢—27|Z| for sample size Tand Dy = 1, then Dy <
Dry, T=0,1, -+, unless the process is autoregressive of order p, in which
case 1 < Dy < +++ < Dp=Dpyy=+--

1. Introduction. In time series studies approximation of the inverse of the
covariance matrix of T consecutive observations from a stationary process is
often of interest. This problem arises, for example, when an autoregressive-
moving average (ARMA) process is assumed to be Gaussian and maximum
likelihood estimation of its parameters is desired. Exact representations of the
inverse are usually either unknown in closed form expressions or are too com-
plicated to be useful when they are known. A list of references to known ex-
pressions for the exact inverse in various special cases of the ARMA model
appears in Shaman (1975). See also Galbraith and Galbraith (1974) and
Newbold (1974).

Consider a zero mean, second-order stationary stochastic process {x,, r = 0,
+1, ...} with continuous positive spectral density f(4). Let the covariance
function be specified by

(1.1) Ex,x, = o(h)={, e™f(2) dA , h=0,+1, ...

Define

(1.2) o*(h) = {5 ey da h=0,+1, ...,
(27)?

which is a covariance function. The corresponding spectral density is 1/[(27)*(4)].
Let X denote the T x T covariance matrix of x = (x5 - -+, x;) and define Z*
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to be the T X T matrix with ¢*(%) in place of o(h), h =0,1, ..., T — 1. We
shall study approximations to Z-'. In particular, we shall consider a matrix
o~?A’A such that Z* — ¢~?A’A and ¢7*A’A — Z-! are positive semidefinite.
Therefore £* — Z-! is positive semidefinite (Theorem 2.2). These differences
will be examined in some detail when {x,} is an ARMA process. In particular,
their ranks will be studied. We shall also discuss approximation of |Z|.

ARMA models constitute a class of stationary processes which has recently
been receiving considerable attention (see Box and Jenkins (1970) and Hannan
(1970), e.g.). Let {¢,} be a sequence of uncorrelated random variables with
mean 0 and variance ¢*>. The process {x,} defined by

(1.3) 280 BiXe ;= XloThCi—i> t=0, +1, ...,

with B, =7, =1, is an ARMA process of order (p, q). If ¢ =0 {x,} is also
called an autoregressive process of order p, and if p = 0 it is called a moving
average process of order g. We assume that B(z) =1+ Bz + .. 4 8,27
and G(z) =1+ r;z+ --- + 7,z* have no common zero and that for both
all zeros are outside the unit circle. The spectral density of {x,} is f(4) =
[0%/(27)]|G(e) /| Be) .

In the general case where f(4) is positive and continuous {x,} admits the
representation

(1'4) xt22?=05j8t—j’ t=0’ ila"',

with 6, =1, 317,0;* < co. The spectral density of {x,} specified by (1.4) is
S(A) = [0*/(27)]| XZ5=0 0,€"9]*.  In the case of (1.3) Y7 ,0,2z9 = B-!(2)G(z) and
the d,’s are functions of p 4 ¢ parameters 3, - - -, Bps 715 ++ > 1, Sometimes it
may be assumed that 6; = 6,(0,, - - -, 0,), where the 6,’s are finitely many un-
known parameters. The possibility that r < p 4 ¢ or that the 6,’s are not
expressly the 8,’s and r,’s when (1.3) holds is not excluded.

When {x,} is Gaussian the density of x is

(1.5) (2m)#7|Z| "t exp{—$x'Z7x]} .

Numerous authors have considered estimation of the parameters in (1.3) and/or
the parameters characterizing the 9,’s in (1.4). The Gaussian assumption is not
crucial for consistency if the estimation procedure merely originates from (1.5).
However, some assumptions about fourth-order cumulants are needed to es-
tablish efficiency. Since |Z| and Z-' are generally intractable and an explicit
maximum likelihood solution cannot be found, the estimation studies have pro-
ceeded by maximizing an approximation to the likelihood (1.5). Whittle (1953,
1954) proposed replacing (1.5) by

(16) @y ep =i S )

= (27)~¥" exp {_% 0", |:10g 2f(2) + %} d,z} ,
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where
1 )
I('Z) = "‘—"‘zﬂ_T |ZtT=1 xte”t|2

is the periodogram and we have used 2z loge® = {*_log2nf(2) d2. The ap-
proximation (1.6) involves replacing |Z| by ¢?” and Z-* by Z*.

Estimation of parameters in ARMA models (1.3) has been treated using (1.6)
or the same expression with a discrete sum in place of the integral by Whittle
(1953, 1954), Durbin (1959), Hannan (1969, 1970), Clevenson (1970), Parzen
(1971), and Anderson (1975c). Whittle (1962), Walker (1964), and Hannan
(1973) have considered estimation of the parameters 6,, - - -, 8, characterizing
the d,’s in (1.4) by using (1.6). Box and Jenkins (1970) proceed in the case of
(1.3) by maximizing by numerical means an approximation to the likelihood
function which differs somewhat from (1.6) in the exponent of its first form.
Anderson (1975a, b, c¢) has studied estimation of the parameters in (1.3) under
the assumption x, = ..+ = x_,,;, = ¢ = .-+ = e_,,, = 0. This leads to a modi-
fied likelihood function in which the covariance determinant is ¢27, as it is for
the modified likelihoods considered by all of the above authors. Mann and
Wald (1943) treated x,, - - -, x_,,, as fixed values in considering parameter es-
timation for autoregressive processes.

2. Approximation of X-1

2.1. Some general results. The covariance function (1.1) of {x,} may be ex-
pressed as

O'(h):()'zch:oajajﬂh!, h=0,+1,....
We assume that the following expansion is valid for |z| < 1 4 4, 6 > 0,
2.1) Dfe0 @27 = (X5 0;29) 7"
Then (1.2) is also
o*(h) = 07" Dif0 ;A » h=0,+1, ..,

with ay = 1.
Let L be the T X T matrix with 1’s on the diagonal directly below the main
diagonal and 0’s elsewhere and define

A=YigaLi, « D= 3i34;Li.

Then AD = I. Let the following random variables be defined,
yt:Z;:Oﬁtjet—j’ t=1,...,T,
J. = g;{)atjet-j’ t:l’...,T,

where the 6,;’s are any coefficients such that the sums exist as limits in mean
square. Denote the covariance matrix of y,, - --, y, by ' and that of y, - . -, 7,
by T.

TueoreM 2.1. T — T'is positive semidefinite, T = 1,2, . ...
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Proor. T' — T is the covariance matrix of
Z?=t0tj5t—j’ t=1,”"T,T:1’2,""

COROLLARY 2.1. Z — ¢°DD’ and Z* — ¢=*A’A are positive semidefinite, T =
1,2, ...

Proor. The assertions follow directly from Theorem 2.1. Set 6,; = d; for
the first matrix, and for the second set 6,; = «;.

Since Corollary 2.1 implies ¢-*D’)~!D-! — £ = ¢~?A’A — X~! is positive
semidefinite, the following is an immediate consequence.

THEOREM 2.2. Let X be the covariance matrix of T consecutive observations from
a second-order stationary stochastic process with positive continuous spectral density
f(4), and let £* be the covariance matrix associated with a process with spectral den-
sity 1/[(27)*f(R)]. Then £* — X-' is positive semidefinite, T = 1,2, - - -.

If Z* — Z-'is positive definite for some value of 7, then it is also positive
definite for all smaller values.

THEOREM 2.3. Let the conditions of Theorem 2.2 hold. If Z* — X! is positive
definite for T = T,, then it is positive definite for T =1, ..., T, — 1.

Proor. Partition X and Z-' according to

2 — [211 212} s 2—1 — I:zu 212]
z, Z,, ya oy |’
so that X, and X" are square and have the same dimension. Partition Z* simi-
larly. Since Z} — Z" > 0 and X3! = Z" — Z1¥(Z#)~1X%,

z;’i —_ 21_11 — zl"; _ [211 _ 212(222)_1221]
ZZf—-2Z">0.

For autoregressive processes of order p it is well known that Z-' is approxi-
mated by X*. If T = 2p these two matrices are the same except in the p X p
submatrices in the upper left and lower right corners. (See Section 6.2 of
Anderson (1971), e.g.) This matter was examined in Shaman (1975), where it
was shown that for T > 2p columns (rows) p + 1, ..., T — p of ZX* — I are
zero vectors when {x,} is an autoregressive (a moving average) process of order
p»> and that the 2p nonzero characteristic roots of ZX* — I are positive. Thus
Theorem 2.2 provides a partial generalization.

Corollary 2.1 and Theorem 2.2 imply that in the general case of f(4) positive
and continuous ¢—*A’A approximates X! better than X* does (or at least as well).
The expression used by Anderson (1975a, b, ¢) to approximate X' in arriving
at a modified likelihood function for ARMA (p, ¢) processes is in fact ¢2A’A.
Below we shall have occasion to refer to

(2‘2) z - 02DD, - 02EE, = [0'2 Z;‘o:min(s,t) 5j53'+ls—t]]s,t=1,--~,T ’
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where the element inrow tand column jof Eisd,,;_,t=1,...,T,j=1,2,...
and also

* “SATA — —2RE — [e—2
(2'3) ¥ — g7*A'A = 07 FF = {o D T —min (T—s+1, T=t4D) A0 ileimt,er s

where the element in row rand columnjof Fisa,_, ;, t =1,...,T,j = 1,2,....

Consider again as an example the autoregressive process of order p. Then
a;=8;j=0,1, .-, pya,=0,j=p+1,p+2,...,and Z* — ¢7%A’A has
a p X p block in the lower right corner and 0’s elsewhere if 7 = p. If T = 2p
it follows immediately from the known form for Z-* (see Siddiqui (1958), e.g.)
that 6—*A’A — Z-*is the transpose about the transverse diagonal of Z* — ¢6?A’A.
This relation also holds for p < T < 2p, as may be deduced from examination of

(2'4) Zf,t=1 ot X, = 2P opStxsxt
+0_2 ZtT=p+1 (xt + 181xt—1 + - ‘f“ fepxt—p)z ’
where 2! = (4,**), and use of (see Siddiqui (1958))

T st — 07 p+l-t,p+1l—3s
¥4

P
= DO B Bivia—ty — BpeiPoi-is-tl 5 2=s+r=p+1.

The second summation on the right-hand side of (2.4) is not present if 7' = p.
If T < pZ* — 067?A’A and ¢7?A’A — X~'are not transposes about the transverse
diagonal of each other. These same relations hold for moving average processes
of finite order when applied to X—¢*DD’ and oDD’ — XT*-1, except that the lower
right corner is replaced by the upper left corner. For ARMA (p, q) processes
with p > 0 and ¢ > 0 only the rank conditions described below hold generally.

2.2. Autoregressive-moving average processes. We examine X — ¢°DD’ and
I* — ¢*A’A in more detail when {x,} is an ARMA (p, ¢q) process as defined at
(1.3). For such a process

(2.5) yminen gy =0, r=qg+1,q+2 ---.
With the aid of (2.5) Corollary 2.1 can be refined.

THEOREM 2.4. Let {x,} be an ARMA (p, q) process with 8, 0 and y, =+ 0.
Then . — DD’ and Z* — o~*A’A have rank min [max (p, q), T].

Proor. We present the details of the proof for £ — ¢’DD’.

(a) T = max(p, q). First assume p = ¢. Then if T > p row r of E defined
in (2.2) is a linear combination of rowsr — 1, ..., r —p,r=p+1,..., T.
This follows directly from (2.5) for p = q. Moreover, the first p rows of E are
linearly independent. For if they are not there exist b, ---, b,_;, not all 0,
such that

(2.6) Neibid,_; =0, r=ppt 1, ...

The left-hand side has transform

Dz bizi Y, 0.2 = 3 bz (N, BuZ®) ™ Yozt
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which is a polynomial of degree at most p — 1. This is impossible unless
by= ... =5, , =0, because no zero of B(z) is a zero of G(z). Now suppose
g > p. In this case if T > g row r of E is a linear combination of rows
r—1,....r—p, r=q+1,...,T. Rows I, +++, ¢ — p are not involved—
they relate to end effects. This assertion follows directly from (2.5). Also,
the first g rows of E are linearly independent. If they are not, there exist
by + -+, b,_;, not all 0, such that (2.6) holds with p replaced by ¢g. The left-hand
side of this modified (2.6) has transform

(2.7) 1200;2(Nk=0 B2 Do 12t
which is a polynomial of degree at most ¢ — 1. Since ¢ > p» select by, -+, b
so that B(z) divides )23 b;z7. Then let (2.7) be

q=-1

(2.8) i A FE AN MY OF A

still a polynomial of degree at most ¢ — 1. Thus
0= Co—p-17q >

(2.9) 0=c,purym + Co—p-27q>

O=c¢putpn+ -+ + Co7q-
Since 7, # 0, we must have ¢, = ... = ¢,_,_, = 0, in which case by= ... =
b,_,=0.
(b) T < max(p,q). By (a) £ — ¢’DD’ = ¢°EE’ is positive definite if T =
max (p, q), and every principal minor is therefore also positive definite.
That the rank of Z* — ¢=?A’A is also min [max (p, q), T] follows in a similar
manner by considering (2.3). The analog of (2.5) is

Z?Li(’)”q’”rja,_jzo, r=p+4+1lLp+2,....

For autoregressive and moving average processes the rank result of Theorem
2.4 is an immediate consequence of the lemma in Shaman (1975) when T is at
least twice the order.

Let us consider an example. The process x, -+ fx,_; = ¢, + 7¢,_, has 6, =

t=1,0;=(r — {)(=F) ay = (§ — 1)(=1)" j = 1,2, +-. Then
1
3 _ DD — o’(r — By _‘8 1—p8... (_‘B)T—l]
1 —p .
(=B
and
(=7
¥ _ go2ACA — (2‘3 - T)Z (=7) [(_T)T—l(_T)T—Z S 17,
o1 — 7%
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If {x,} is an autoregressive process of order p and T > 2p then Z* — ! has
rank 2p. This follows from the discussion directly below Theorem 2.3 and the
result may be generalized.

THEOREM 2.5. Under the conditions of Theorem 2.4 and T > 2 max (p, q), no
column (row) of * — o—*A’A is a linear combination of the columns (rows) of
X — ¢°DD.

ProoF.. We can seek constraints ony = (y,, -+, y,_,)’ such that y'(¢=*FF’ +
o’EE')y = 0 [see (2.2) and (2.3)]. Let ¢ = p. First consider y'F = 0, or
wyia._; =0, r=T,T+1,....

The transform of the left-hand side is

(2.10) 2550037 Lk Bz (Lo 1i2) ™
a polynomial of degree at most T — 1. Therefore y must be chosen so that each

zero of G(z) is a zero of Y(z) = };7} y;z/. Then (2.10) is

=0

(2.11) 2t 162 Pl But*
which is certainly a polynomial of degree at most T — 1. Next consider
YE = 0, or

g:olyT_l_j(S,_j:O, r=T7T,T+1,....
The transform is

(2.12) 2550 Y112 (D0 Bz Do a2 s

a polynomial of degree at most 7 — 1, and y must be chosen so that each zero
of B(z) is a zero of 372} y,_, ;z7. In that case (2.12) is

(2.13) itz Bzt

In order that this be a polynomial of degree at most T — 1, d,_, = ... =
dy_,_, = 0 is necessary (if in fact ¢ > p), because y, = 0. Then (2.10)—(2.13)
imply

(2.14) Y(z) = G(z) 3547 ¢; 29,

(2.15) 2"Y(z7) = B(z) 2 im0 d; 29 .

But (2.15) implies y, = ... =y,_,_, = 0 (if ¢ > p) and therefore by (2.14)
€= -++ = ¢,y = 0. Thuseach zero of G(z) is a zero of Y(z), the reciprocal

of each zero of B(z) is a zero of Y(z), and Y(z) has ¢ — p zeros with the value
0. Therefore T — g — p — (9 — p) = T — 2q coordinates of y can be chosen
freely. It follows that Z* — ¢—?A’A 4 Z — ¢’DD’ has rank 2g.

A similar proof holds if p > g.

COROLLARY 2.2. Under the conditions of Theorem 2.4 X£* — X-' has rank
min [2 max (p, ¢), T].
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Proor. Consider T = 2 max (p, q). Since
0’A’A — X7 = 07?572 — ¢’DD')A’A,

the theorem follows from Theorem 2.5 for T = 2 max (p, q). Then apply Theo-
rem 2.3 to cover T < 2 max (p, q).

Finally, the next theorem ties together Corollary 2.1, Theorem 2.2, and Theo-
rem 2.3 on the one hand and Theorem 2.4 and Corollary 2.2 on the other.

THEOREM 2.6. Let the conditions of Theorem 2.2 hold. If {x,}is not an ARMA
(p> q) process with p and q both finite, then X* — ¢7’A’A, 0°A’A — X', and
Z* — X1 are positive definite for T = 1,2, - ...

Proor. Consider Z* — ¢—?A’A. The rows of F [(2.3)]are linearly independent
for all T. If they are not, there would exist b, - - -, b,_;, not all 0, such that

4ba,_; =0, r=T7T,T+1,....
But

350 b7 Y, a2
can be a polynomial of degree at most 7' — 1 only if by = ... =b,_, = 0.

Similarly, £ — ¢’DD’, and therefore 6—?A’A — Z-', are positive definite for all 7.

3. The covariance determinant. In this section we discuss briefly approxima-
tion of the covariance determinant. Some of the results stated are known. As
(1.6) indicates, it is customary to approximate |Z| by ¢°”.

Let X, denote the T X T covariance matrix of (x,, ---, x;)’ formed from
(1.1) and assume (2.1) is valid for |z] < 1 4+ d, d > 0. Let Z,* denote the cor-
responding matrix formed from (1.2). The representation (1.4) holds with
Vare, = g%,

Corollary 2.1 implies |Z,*|7' < ¢*7 < |Z,], T = 1,2, - - -. Theorem 2.4 implies
that these inequalities are both strict if {x,} is an ARMA (p, g) process with
B, + 0and y, + 0 and T < max (p, gq). Moreover, by Theorem 2.6 the ine-
qualities are strict for all T if {x,} is not ARMA (p, ¢q) with p and ¢ both finite.
A more precise result is given by Theorem 3.1 below.

Let D, =07"Z,, T=1,2,..., and Dy=1. Then D, < D,,,, T=
0,1, .... See Grenander and Szegd (1958), page 76. This result also holds
for D,* = ¢?"|Z,*|. In factstrict inequality prevails unless {x,} is autoregressive
of finite order.

TreoreM 3.1.  If {x,} is autoregressive of order p(8, + 0), then D, < D, ,,
r=0,1,..-,p—1,and D, =D,,, = ---. If {x} is not autoregressive of finite
order, then D, < D,,,, T=0,1, ....

Proor. Partition X, as

Ly = [0(0) 0',"] > k=1,2,...
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Let {x,} be autoregressive of order p and write

= [£257 [0(0) — 04 2,70,] D,, j=1,2, ...

g%

D

»+

The residual variance of x, on x,_,, - - -, x,_, is equal to the residual variance of
X, 0n Xy - X pk=p+1,p+2,.... ThusD, <D, ;, T=0,1, ...,if
{x,} is not autoregressive of finite order. Grenander and Szegd (1958) give D, =
D,,, = ... onpage7l.

If {x,} is autoregressive of order p or a moving average of order ¢, Finch (1960)
and Walker (1961) have shown that lim,_,, D, = lim,_, D,*. Grenander and
Szego (1958), page 76, evaluate the limit. Hannan (1973) proves D, > 1, T =
0,1, -..,and

limg_,, (1/T)log D, = 0.

The discussion in this section has focused on results which are valid for every
sample size T.

Acknowledgment. The author thanks T. W. Anderson for helpful comments
and for suggestions which improved the organization of this paper.
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