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ADMISSIBLE MINIMAX ESTIMATION OF A
MULTIVARIATE NORMAL MEAN WITH
ARBITRARY QUADRATIC LOSS

By JaMEs O. BERGER
Purdue University

The problem of estimating the mean of a p-variate (p = 3) normal
distribution is considered. It is assumed that the covariance matrix ¥ is
known and that the loss function is quadratic. A class of minimax esti-
mators is given, out of which admissible minimax estimators are developed.

1. Introduction. Let X = (X, ---, X,)' be an observation from a p-variate
normal population with mean vector § = (6,, ---, 6,)* and known positive
definite covariance matrix X. Assume that the loss incurred in estimating ¢ by
0(X) = (0(X), - -+, 0,(X)) is the quadratic loss (0 — #)*Q(6 — ¢). Assume also
that Q is positive definite and that p > 3.

The special situation Q = X! has been considered by several authors (James
and Stein (1960), Baranchik (1970), Strawderman (1971) among them), and wide
classes of minimax and admissible estimators of # have been found. Results for
arbitrary Q and X, however, are incomplete. Bhattacharya (1966) and Bock
(1975) found some particular minimax estimators for the general situation. In
this paper, a different and simpler class of minimax estimators is given, out of
which admissible minimax estimators are developed.

2. A class of minimax estimators. Define ||x||? = x*£'Q*L-'x, and let /
denote the p X p identity matrix. Estimators of the form

(1) o(X) = (I — r(IX|P)Q-"E7IIX|1) X

will be considered, where r is a measurable function from R! — R!.
THEOREM 1. The estimator 9, given by (1), is minimax if
() 0=r(-) < 2p—2), and
(ii) r(+) is nondecreasing.

Proor. This theorem has since been'extended to a more general theorem,
dealing with a wide class of densities, in Berger (1975). The above theorem is
a special case of Theorem 3 in that paper. ]

It has been brought to the author’s attention that the above result was
independently discovered by Malcolm Hudson (1974).

3. Admissible minimax estimators. The obvious question which arises is how
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should the function r, in (1), be chosen? In this section, choices of r which
give rise to admissible minimax estimators are developed.

Let a denote the smallest characteristic root of the matrix £Q. The following
choices of r will be considered:

£ §g A=Y expl—21/2} d2

@) r(H) = (& 2#72=) exp{—2t/2} dA

R c< 1+ p2.

A simple integration by parts in the numerator of the above expression gives

2a?2=4D exp{—at/2}
fo 2%2-9 exp{—2t/2} dA

(€) r(f)=(p—2+2)—

Note that when Q = X! (and hence @ = 1), r, gives rise to the admissible
minimax estimator found in Strawderman (1971).

THEOREM 2. Assume that 6 is given by (1), withr = r,.

@) If3 —pl2 < c< 1+ pf2, then 0 is minimax.
(b) If 3 — p/2 < ¢ < 2, then § is admissible.
(€) If 3 — p/2 < ¢ < 1, then 0 is proper Bayes.

Proor. To prove (a), it is only necessary to verify conditions (i) and (ii) of
Theorem 1. From (2), it is clear that r,(+) > 0. Using (3) and the assumption
that ¢ > 3 — p/2, it is also clear that r(+) < 2(p — 2). Hence condition (i) of
Theorem 1 is satisfied. From (3) and the fact that exp{(a — 2)#/2} is nonde-
creasing in ¢ for 0 < 2 < «, it follows that 7,(7) is nondecreasing in 7. Condition
(ii) of Theorem 1 is thus satisfied and the conclusion follows.

To prove (b) and (c), 6 must first be shown to be a generalized Bayes estimator.
The notation will be considerably simplified by considering only the case Q = 1
and £ = A4, where 4 is a p X p diagonal matrix with diagonal elements a, > 0.
Since Q and ¥ are positive definite, it is easy to check that the problem can
always be transformed into this diagonal case. Note that || X||* = 3 X;*/a,? and
that « = min {a;}. For notational convenience, define b,(1) = a,(a, — 2)/A.

For ¢ < 1 + p/2, consider the generalized prior density

4) 9:(6) = §§ [117 b ~Hl exp{—3 T2, 02/by(A)}a~ dd .

It is easy to check that g,(-) is a bounded function for the given choice of c.
(Clearly b,(4) behaves like a*/4 near 2 = 0.) Note also that g, has finite mass
if ¢ < 1.

The generalized Bayes estimator of 4, with respect to g,, is given component-
wise by

(5) 6’LC(X) — S 02 exp{_% z?=1 ("YZ _ 02)2/az}gc(0) d0 .

§exp{—3% X2 (X; — 6,)*/a;}g,(0) db
Consider first the numerator of the above expression. Using the definition
of g,(f), interchanging orders of integration (g, is a bounded function), and
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completing squares gives

(6) § 0 exp{—% 201 (Xi — 0.)"/a}g.(0) 4O

= §5 S 03 XP{P)[[[3-1 b, (D) H 1A~ B 2,
where

= =4 X2 (a7 + 5,70, — X1 + a;b,()7H + X/{a; + b,(A))) -
Integrating out over 6, on the right hand side of (6), gives that the numerator
of (5) equals
§5 [X A1 + a6 HIT5=1 {1 + a7} 7]
exp{—} T [X7{a; + bW} dA.
Using the identities
a; + b;() = a; + aj(a; — /A = a2,

{1 +a;b;H7}"=1—1/a;,

{b,(Ma;t + 1} = (2ay)t,
it is thus clear that the numerator of (5) equals
(7) §5 (1 — 2/a;) X; exp{— 4| X|]*/2}2?"~[[]}-, a;7*] d2 .

It can similarly be shown that
®) § exp{—3% X7, (X; — 0,)/a;}g.(0) O
= §5 exp{— 4| X|/2)2 - [ [[30 0, 2.

Combining (5), (7), (8), and (2) gives

o0 = e g = [ = (XXX,

Thus 6 = ¢°is indeed the generalized Bayes estimator with respect to g,. Part
(c) of the theorem follows immediately from this and the observation that g,
has finite mass if ¢ < 1.

To prove part (b) of the theorem, a result from Brown (1971) will be used.
Note first that (8) and a change of variables give

[HX) = (o [T1220 (2ra)H exp{—} L2 (X; — 0.)/a}g.(6) 6 (definition)
= Q2n) " [[I2-1a7] 55 eXp{’—,l”X”z/z}](p/ﬁ—c) da
= 2r)~P 2 [[12, a7 || X]| -2t §aIEI exp{—2/2)2%2=9 d
< K|X|@em?
(Here | X| denotes the usual Euclidean norm of X.) Using Corollary 4.3.4 and

Theorem 5.1.1 (B) of Brown (1971), together with the assumptior: that ¢ < 2,
it can be concluded that ¢ is admissible. []

Note that for the estimator of Theorem 2 to be minimax, it is necessary to
have p = 3. Clearly admissible, minimax estimators of the given form do exist
for p = 3. Proper Bayes versions, however, exist only if p > 5.
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