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A NOTE ON CHI-SQUARE STATISTICS WITH
RANDOM CELL BOUNDARIES!

By F. H. RUYMGAART

Mathematisch Centrum, Amsterdam

Moore (1971) derives the limiting distribution of chi-square statistics
for testing goodness of fit to k-variate parametric families, where the cell
boundaries are allowed to be functions of the estimated parameter values.
The only point at which random cells, multivariate observations etc. re-
quire a deviation from methods of proof given by Cramér (1946) is in the
proof of the asymptotic negligibility of the remainder terms. Attention is
drawn to an alternative proof of this asymptotic negligibility, which turns
out to be an immediate consequence of a modification of Lemma 1 by
Bahadur (1966) in more dimensions.

1. Introduction and summary. Suppose that X, X,, ... is a sequence of mu-
tually independent and identically distributed k-dimensional random vectors.
All random vectors are supposed to be defined on a single probability space
and their common distribution function (df) F, depends on an m-dimensional
parameter ¢ which is restricted to an open set 7~ C R™. (If p is an arbitrary
positive integer, p-dimensional number space is denoted by R?.) Given any
positive integer n, the empirical df F, based on the first » random vectors in
the sequence is defined in the usual way.

In the context of testing goodness of fit, as described in a paper by Moore [4],
R* is partitioned into a fixed finite number of cells, where the cell boundaries
are allowed to be functions of the estimated parameter valués. Proceeding along
the lines of Moore’s paper, for i = 1,2, ..., k a nonrandom partition of the
x,-axis is defined by functions of § € .7, satisfying

—o00 = &) < &) < -0 < Eiuma(0) < 64 (0) = o0

These partitions of the axes induce v = JJ%, v, cells in R*, formed by the
Cartesian products
(1.1) Xz (€,3,09)s €0,5,109)) 5

where j, is an arbitrary number in {0, 1, - .., v, — 1} fori =1, ..., k. Accord-
ing to a specific enumeration the cells in (1.1) will be denoted by /,(¢) for ¢ =
1,2, ..., v. Suppose that 6, = 9n(X1, X,, -+, X,) is an estimator of ¢ for each
n. To each I,(#) there corresponds the random cell I,(én) when @ is replaced by
g, in (1.1).
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The mass assigned to any Borel set B C R* by the df F, will be denoted by
F,{B}and, similarly, the mass assigned to B by the empirical df F, will be denoted
by F,{B}. The latter, of course, equals the number of elements in the set B n
(X, X,, - -+, X,}, divided by n. For any two subsets 4, B C R* the difference
A — B is defined as 4 n B° and for any y ¢ R™ the norm is denoted by ||y||.

In the search for the asymptotic distribution of chi-square statistics

(1.2) T, = N n[F{10.)} — Fi {LOIF) O
one can write n*[F,{,(0,)} — F3 {I.0.)}] = L1 (Aigw + Bi,n), Where

Aygn = BF{I,(0)} — Fo{L,(0)}],

Agyy = HF, {1,0,)} — F3 {LO.)]

By, = n[F{L,(0,) — 1,00} — Fo{L,(0,) — L0,
By, = n[F, {1,(05) — 1,0,)} — F.{I,(65) — 1,(6.)}] -

Here, and throughout the sequel, §, € .7 is the true parameter value. The ex-
pression on the left of Moore’s formula (2.2) equals B,,, + B,,,, but here the
terms are arranged somewhat differently for reasons that will become clear in
Section 2.

Attention will be restricted to the proof of

(1.3) B,,, + B,,, = op(1), as n— oo .

This is the only point at which random cells, multivariate observations etc.
require a deviation from methods of proof given by Cramér [2] and this also
constitutes one of the main mathematical difficulties.

To prove (1.3), Moore essentially uses the assumptions

(1) &, ;is continuous at f, fori = 1,2, ..., kandj=1,2, ...,y — 15
2) 10, — 6i] = 0p(1), as n — co;
(3) F,, is continuous on R*.

Actually, in Moore’s paper stronger conditions are imposed, implying

(1) 9&; ;(0)/00, exists and is continuous in a neighborhood of 6, for i =1,
2, vk, j=1,2,..c,y,—land s = 1,2, ---, m;

(2") 118, — 65| = Op(n~1), as n — oo;

(3") F,, has a continuous density with respect to Lebesgue measure on R*.

These conditions, however, are only used to deal with the 4-terms.

Moore obtains (1.3) by appealing to rather advanced papers by Dudley [3]
and Neuhaus [5]. Itis the purpose of this note to draw attention to an alterna-
tive proof of (1.3), by showing that it is an almost immediate consequence of
a modification of Lemma 1 by Bahadur [1] in more dimensions. In this form
Bahadur’s lemma has been given by W. R. van Zwet. For completeness the
lemma is formulated. A proof may be found in [6], [7] for k = 2. (The proof
for k > 2 is similar.)
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For eachn = 1,2, ... let be given a random sample of size n from an arbi-
trary k-variate df F. The corresponding k-variate empirical df will be denoted
by F,. By an interval in R* we understand the Cartesian product of k intervals
on the real line.

LemMA (van Zwet). Letl, I, - - . be a sequence of intervals in R* and let .7, =
{1,*: I,* is an interval contained in 1.} forn = 1,2, .... Then
(1.4) SUP; ve . [F{L*} — F{L¥)| = Op(n *[F{L}}}), as n— oo,
uniformly in all sequences of intervals I,, I,, - - - and all k-variate df’s F.

In Section 2 it will be shown that under assumptions (1)—(3) the lemma yields
that B,,, + B,,, = 0p(1), as n — oo, and even B,,, + B,,, = Op(n~t),asn — oo,
under assumptions (1)—(3’).

This illustrates once more the usefulness of (this modification of) Bahadur’s
lemma, which has also proved an essential tool for handling some of the second
order terms occurring in the proofs of asymptotic normality, under fixed alter-
natives, of certain nonparametric test statistics (see e.g. [8] and [6], [7])-

2. Proof of the asymptotic negligibility. Let ¢ be fixed. By symmetry it
suffices to consider B,,, (see (1.3)). For an arbitrary sequence of positive num-
bers b,, b,, - - - define the sets

@.1) Q. = Nk N3t {1€:,:0,) — 6050 < b,},
and (foralli=1,2,...,kandj=1,2, ..., v, — 1) the intervals
(2.2) I.; =R X [§:,;(60) — b,, &, ;(0,) + b,] X R

Note that for all w € Q,, the relation {I,(d,) — 1,(6,)} = UL, I#,,, holds. Here
K is fixed and the I},  are disjoint possibly empty intervals contained in the

7,0,0

1, ; ;- For brevity denote
(2‘3) Cpn = cn(bn) = max; ; {Fﬂo{In,i,J’}} .

From now on let ¢ > 0 be arbitrary but fixed. The lemma of Section 1 en-
sures the existence of a number M = M, such that the set

24 Qo = ML {IFuLE 0} — Foll oo}l £ Mn~ic,t}

has probability P(Q,,) = 1 — }¢ for all n = 1,2, .... Denoting the indicator
function of the set Q,, N Q,, by x(Q,, n Q,,) it follows that

(2.5) X(an n an)lBlanl < KMc,t .

If assumptions (1)—(3) are satisfied, (1) and (2) entail the existence of a se-
quence b, = b,,, = o(1) such that P(Q,,) = 1 — ¢ for all n, choosing b, = b,,
in (2.1). Substitution of b,, in (2.2) and (2.3) yields that c¢,, = c,(b,,) = o(1)
because of (3). Consequently the quantity on the right in (2.5) is o(1). Since,
moreover, P(Q,, n Q,) = 1 — ¢ for arbitrary ¢ > 0 and all n, it follows from
(2.5) that B,,, = o,(1), as n — co.
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Under assumptions (1’)—(3’) there exists a sequence b,, = b,,. = O(n~%) such
that P(Q;,) = 1 — e for all n, by choosing b, = b,, in (2.1). This follows from
(1’ and (2’). Substitution of b,, in (2.2) and (2.3) entails ¢,, = c,(b,,) = O(n™?)
by (3’). Inasimilar way as before it follows that in this case even B,,, = Op(n~?%),

as n — oo.
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