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RATE OF STRONG CONSISTENCY OF TWO
NONPARAMETRIC DENSITY ESTIMATORS

By B. B. WINTER
University of Ottawa

Two nonparametric density estimators, based on Fourier series and the
Fejér kernel, are presented. One of them ( f) is appropriate when the
unknown density f vanishes outside a known bounded interval; the other
(fw% is applicable without any assumptions about the support of f. The
estimator fy¥ is of the type studied by Watson and Leadbetter (Sankhya 4
26, 1964) and f), is almost of that type: both may be said to be of the “‘s-
sequence type’’. If f satisfies a certain Lipschitz condition at x and the
“number of harmonics” used in f}; is asymptotically proportional to N%,

and Pn/log N — oo, then (N%/0y) - lfN(x) — fix)] — 0 a.s.; a similar result
holds for fy#.

1. Introduction. This paper deals with strong consistency of some nonparame-
tric density estimators. Extensive reviews of nonparametric density estimation
can be found in [15] and [8]. Pointwise or uniform strong consistency results
are available for histogram-like estimators [7, 13], kernel-type estimators [5, 6,
7,9, 12], and for a modified kernel estimator [16]. Strong consistency results
are not available for 9-sequence type estimators which are not of the kernel type.
We fill this lacuna by establishing the rate of strong consistency of two estimators
of the d-sequence type which are not of the kernel type. These two closely
related estimators, noted fN and f,?}, are based on trigonometric series and the
Fejér kernel of classical Fourier analysis. The estimator fy is appropriate when
the “unknown” density f vanishes off a known bounded interval, while f,} is
applicable without any assumption about the support of f. The estimator f, is
developed in this section, and its asymptotic bias and variance are obtained in
Section 2; the main result is given in Section 3, while Section 4 contains the
extension from f; to f,*.

Our assumptions and notation are as follows. (Q, &, P) is a probability space
on which are defined a rv X and an i.i.d. sequence (X,),”; f is the density (with
respect to Lebesgue measure) of X and of each X,. T =[—=, n), Rand C are
the real and the complex numbers. If g: T — C then g° denotes the 2z-periodic
extension of ¢ to all of R; if T is a subset of the domain of g, then g° is the 2x-
periodic extension of the restriction g|;. In Sections 1, 2 and 3 it is assumed
that f vanishes on the complement of a known bounded interval; without loss
of generality, suppose that f vanishes off T. In Section 4, nothing is assumed
about the support of f.
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760 B. B. WINTER

The estimator f,, is obtained from the Fejér sums for f, by which we mean
the following. If g e L,(T), then the Fourier coefficients of ¢ are y; =
" . g(x)e~“%(2n)~'dx and the partial sums of the Fourier series of g are S,,(g, x) =
™ . 757" the Cesiro means of these partial sums are the Fejér sums a,(g, x),
i.e.

0,(9, X) = (v + 1)7X(Se(95 X) + Si(9> X) + - 4+ S5,(9, %))

(1.1) =+ D)7 Dheo Zi-om 756"
= Zie (1= ) e

By a well-known result due to Fejér (see, e.g., page 89 of [17]), if ¢° is continuous
at x then o,(g, x) — g°(x) as v — oo. The Fourier coefficients of the density f
are

a; = {*, f(x)e~"=(2n)'dx = E((2n)~ %), j=0, £1, £2,...
and it is plausible to estimate a; by the corresponding sample average:
(1.2) Gy = N7 T, (r)~e% ;

since the dependence on the sample size N is quite obvious, we suppress the
second subscript and write 4; instead of 4;,,. One arrives at a plausible estimator
of f if one replaces a; in g,(f, x) by d;; the result is a 2z-periodic function on
R, and our estimator is that function multiplied by I, the indicator function
of T. That is,

(1-3) fo(x) = Zi--, (1 —3 Iil 1) d;e's"

for —7 < x< 7 and =0 elsewhere.

The number of harmonics, v, should increase with increasing sample size: v =
v, — oo as N — oo; the dependence of v on N will be examined more closely in
Section 3.

It is convenient to reformulate £, in terms of the Fejér kernel, defined by

(1.4) K(x) = o) T, (1 _ D%JL'_I) el xeR.

(Note that some authors refer to 27K, as the Fejér kernel.) Substituting (1.2)
in (1.3) one obtains

fN(x) = 2l5=— (1 — T ‘]+I l) etiEN-t (Zﬂ)—le—ijxk

(1.5) =NV, Y, (1 - |_J|_| 1) (27)tetite=%w
=N'ZiLK(x—X), —r<x<L .

This form is useful in the theoretical study of fy: standard probabilistic results
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come into play because now f,(x) is an average of i.i.d. rv’s, and one can exploit
various well-known properties of the Fejér kernel (all the properties of K, used
in this paper can be found, e.g., in Section 18.27 of [1].). For example, K, is
nonnegative and {* K, = 1; it follows that £, is a (random) density function.

The estimator £y, is quite similar to an estimator proposed by Kronmal and
Tarter ([3], pages 938-940); they use Cesaro means of the density’s Fourier
cosine series. Furthermore, with

k(x,y) = %0 a5(Nei()9;0) »
@;(x) = exp(ijx)/27)}, a;(N) = 1 — |j|(v + 1)~ if |j| < v and O otherwise, and
w(x) = 1, we see from (1.5) that
N7 T WX k(% Xp) = N7 3oy 25 (1 — |JI( + 1)) (@27)letie=Tm)
= fu(x) .

This shows that f, is essentially identical with an estimator considered by
Rosenblatt, i.e. the estimator specified by (87), (88), (90), and (99) in [8].

2. Bias and variance. We will study the asymptotic behavior of f, under a
certain Lipschitz-type condition on f. Therefore we introduce the following
terminology.

If g:T—C, wesaythat ¢ isn-Lipschitzat x iff

AM)(Vy eR)(|x — y| < 7 =|9°(x) — 9" (V)| = M|x — y|) .

There is an important relation between Fejér sums, and integrals of Fejér
kernels: if g € L,(T) then

(2.1) 0,(9,x) = (5. 0°(x — DK, (t)dt = {", 9()K,(x — t)dt.
From this, and (1.5), we see that
(2:2) Efu(x) = EK,(x — X) = 0,(f, ).

By the previously cited Fejér theorem, if x is a continuity point of f* then
N> oo = vy —o00 = 0,(f, x) > f(x),

i.e. fy(x) is asymptotically unbiased.
The rate of asymptotic bias can be obtained from a corresponding result for
Fourier series:

(2.3) if geL(T) and ¢ is n-Lipschitzat x then,as v— oo,
a,(9, X) — g(x) = O(v~*logv) .

This can be found in [2], page 21, or in [10], page 442, where it is attributed to
S. N. Bernstein. From (2.2) and (2.3) we see that

2.4) if f isz-Lipschitzat x then there isa constant & such

that, for all N, |f(x) — Efy(x)| < b - 2B

Yy
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According to (95) and (100) in [8], there is a constant a such that
(2.5) aNv, 'V (x) — f(x) as N—oo.
It follows from (1.5) that
(2.6) av, VK (x — X) — f(x) as N—oo.

These asymptotic variance results are valid whenever x is a continuity point of
f°. One way to establish this is by relating £, to so-called -function sequences.

If (3,),~ is a sequence of functions satisfying (a)—(d) on page 102 of [14] then
Watson and Leadbetter call it a d-function sequence. Such a sequence can be
used to construct a density estimator f,, by putting

(2'7) fN(x) =N D=1 0y(x — Xk) .

No domain is specified in [14] and integrals are simply written {, but it is clearly
implied that R is the domain of §,, and that integrals are over R. It is convenient
to adapt this concept to the case where the domain of each d, is [—=, ) or,
more generally, a bounded interval [a, b) having 0 as an interior point; we say
that (8,), is a d-function sequence on T if (), satisfies the indicated conditions,
with R replaced by T. If fis concentrated on T and (d,),~ is a d-function se-
quence on T, then it can be used to define an estimator of f, in the manner of
(2.7). With —7 < x < 7, x — X, may be outside [ -, 7); therefore d, must
be extended. If §, as well as f are extended periodically (with period 2z) then
(i) dy(x — X,) makes sense and (ii) the principal proofs in [14] work, modulo a
few details, when R is replaced by [ —x, 7). Thus the essential properties proved
in [14] for d-function sequences on R are also valid for J-function sequences
onT.

We will say that an estimator is of the d-sequence type if it is of the form (2.7)
and (d,),” is a §-function sequence on R (i.e., in the sense of [14]), or if (0,),°
is a 9-function sequence on T, each §, is extended 2z-periodically, and the esti-
mator is of the form

(N7 i 0 (x — X)) (%) -

Standard properties of the Fejér kernel allow us to conclude that if vy, — oo as
N — oo then (K, )y, is a d-function sequence on T. It follows that f is of
the d-sequence type and the principal results in [14] apply to this estimator; in
particular, from Theorem 4 in [14] and the simple identity

1 2
© Ki())dy = (27) v.__y<1 —L> ,
2. KX(y) dy = (2m)~" 3= )
it follows that (2.5) holds whenever x is a continuity point of f*.
3. Strong consistency. We will prove that if f vanishes off T and is z-Lipschitz
at x then f,(x) converges a.s. to f(x) at a rate of nearly N-#, provided the number
of harmonics v, is chosen appropriately. The rate of convergence is nearly that
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obtained by Révész in [7] for the almost sure uniform convergence of histograms,
though his conditions on f are stronger than ours. The proof uses the following
bound.

3.1 LEMMA. Suppose (Y,)," are i.i.d. rv’s, with zero mean and common vari-
ance VY, and such that |Y,| < 1 a.s.; then, for0 < s < land ¢ >0,

Pllr~t 1Y, > ¢] < 2e7 (1 + s*VY)".
Proor. From (6) on page 44 of [4] one sees that E(e’"r) < 1 + s"VY when
0 < s < 1. Now by the “exponential form” of Chebyshev’s inequality,
P[2rY,>nel < e™Eexp(s 37Y,) < e*™(1 + s'VY)"
and similarly
P[rY, < —ne]l < e*(1 + s°VY),
which proves the lemma.

(3.2) THEOREM. Suppose that, for a particular x € [ —r, 7),

AM)(Vy eR)(Ix — y| < 7 = [|f*(x) — f*OW)| = M|x —y]) -

If vy [N¥ — ¢ > 0, and (), is a sequence of constants such that p,[log n — oo,
then

T Afu) = f] =0 as.

Proor. At the outset, we suppose v,/N* — ¢ > 0 for some yet unspecified
@ > 0 and we consider p,~'. N?| fy(x) — f(x)| with some as yet unspecified f.
The objective is to prove convergence with g as large as possible; p,, is included
for proper adjustment of the convergence rate. In view of (2.4), and with
Cy = vy[N*,

: ; .
M fo — B = Mo 108U N7 logey + alog N
On Py Yy On Necy

for some constant b; since p,/log N — oo,

(3.3) M B — f)| -0 if fxa.
O
Fix ¢ > 0, and let 4
Ax(0) = ST/ = Bf] > ¢ .

Now
o
P(4,() = P[ 20| - 3 (Kix — X) — BK(x = X)| > <]
Loy IN
=P 2L B (K — X) — EK(x — Xp)| > 2]
Ly + 1IN = , (v + 1)N?
1
=P L ']V ZkN=1 Y| > SN]
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where

2r

27e
g Kux = %) —EK,(x — X)), ey = =
N

DN
Each Y, has zero mean and, since 0 < K, < 27)~'(v + 1), |Yy] £ 1. By (3.1)

Yo =

P(Ay(e)) < 2(1 + VY)Y exp(— Nsey) » 0<s<l1.

In order to apply the Borel-Cantelli lemma, we would like to arrange matters
so that Yy P(Ay(¢)) < oo, regardless of the value of ¢. That can be done if we
let s depend on N in such a manner that the first factor above remains bounded
(as N — oo) whereas the second becomes dominated by 1/N*. Now

VY, = (v"-:

1)2VKy(x —x)

2 ’
éﬂ.iﬁ.(iw(v(x_x)): LA
Vooa v Necy

where 1, — f(x) by (2.6); it follows that

I+ sVY)' < <1 + 71[_ . Ns? . a'dy >N

N« Cy

and that this bound will converge to a finite limit if we take s = N=? (¢ > 0)
with 1 — 20 — @ < 0. On the other hand,

exp (—Nsey) = exp[—% log N] = 1/N¢v

with
Nsey _ N7°  Nlrepy

= logN " TogN Gy & DV
— 2nepy . N« . Ni-o-a-p
logN vy +1

Now exp(—Nsey) will ultimately be dominated by 1/N? if &, — oco; since
px/log N — o, we want 1 — o — a — 8 = 0. The largest 8 that satisfies this
condition, subject to the former conditions § < @, 1 — 20 —a £ 0,and ¢ > 0,
is = }; in order to satisfy all these conditions when § is }, one must also
take « = { (and ¢ = }). So if a = g = } then, for large enough m = m(e),
e Pldy(w)| < X2 1/N% by a standard use of the Borel-Cantelli lemma,

(3.4) N\ ful®) — Efy(x)] 0 as.  when a=f=14%.
On

The theorem follows from (3.3) and (3.4) by the triangle inequality.

4. The estimator f,*. In Sections 1-3 it was assumed that f vanishes off
[—=, m); it does not make sense to estimate f by means of £, if that assumption
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is not satisfied, since £} is a probability density which vanishes off [ —=, 7). But
one can construct an estimator which is quite similar to £, and which is ap-
plicable without any assumptions about the support of f. In this section we
outline the construction of one such estimator, denoted by f,*, and indicate how
the arguments in previous sections apply to fy*.

The Fejér kernel K, is defined on R and is 2z-periodic. We shall now use a
non-periodic version of K,, a function which might be called the “basic pattern”
of K,. More precisely,

4.1 The sharp Fejér kernel is

K (x) = KM —zm1(%) 5 xeR.
Some properties of K, extend to K.,* in an obvious way, and one sees that
4.2) if limy vy = oo then (K} )y-, isa d-function sequence on R.

Recall (2.1): a,(9, x) = {*, 9°(x — t)K,(¢) dt. Supposing that g is in fact defined
on R, we replace g¢ by g and replace K, by K.#, and call the result ¢ %
Thus, for g € L,(R) and xeR,

(4.3) 0,%9, x) = (=, 9(x — HK}t) dt = (g 9(x — )K }(¥) dt
= Y g(OKA(x — 1) dr .
Corresponding to (1.5), we define

(4.4) f) = 5 T KX — %), xeR.

It is easily seen that f,* is a density function and that Ef,*(x) = ¢,}(f, x). The
rate-of-approximation result (2.3) also applies to ¢, therefore the rate of as-
ymptotic bias given in (2.4) also applies to f,*.

In view of (4.2), f,* is an estimator of the d-sequence type; therefore the
results in [14] apply to f,*. Noting that (g (K.}’ = {=, (K,})® = {=, (K,)’, we
again obtain the asymptotic variance by using Theorem 4 in [14]. With £, re-
placed by f,* and K, replaced by K %, (2.5) and (2.6) are again valid at continuity
points of f. Now the proof in Section 3 applies, mutatis mutandis, to f,*, it suf-
fices to replace K, by K,* and ¢, by ¢,%. It follows that the rate of strong con-
sistency established in (3.2) also applies to f*, provided x e R is a point at which
f is m-Lipschitz.

Unlike fy, the derivation of f,* is not based on the assumption that f vanishes
off [—=, 7), and the estimator f,* does not necessarily vanish off that interval.
Unlike K, the function K, is not periodic and therefore the terms in (4.4) cannot
be rearranged into a form corresponding to (1.3). Since (1.3) gives f,; asa sum
of 2v 4 1 terms, rather than N, this form offers some possible computational
advantages (as discussed, e.g., in [3]). Apparently f,* cannot be put in a form
which offers such advantages.
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