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MINIMAX INTERVAL ESTIMATORS OF
LOCATION PARAMETERS

By BENJAMIN ZEHNWIRTH
University of Melbourne

Minimax interval estimators of location parameters analogous to the
Pitman point estimator are found by employing invariance in decision
theory. The half normal distribution is used as an illustrative example.

1. Summary and introduction. The present investigation is concerned with
the problem of interval estimation from a decision theoretic point of view.

Valand [7] employed the invariance principle in the particular case where the
observable random variable X has density function f,(x; ) = f(x — ) for some
density f. Since it is recognized that more than one observation is usually
required to gain substantial knowledge about the parameter ¢, X must generally
be regarded as a one-dimensional sufficient statistic for §. We are therefore led
to investigate a class of problems for which a one-dimensional sufficient statistic
does not necessarily exist; the random sample comes from a distribution with ¢
a location parameter. Such a situation arises, for example, with the half-normal
distribution.

2. Framework and notation. We adopta formulation similar to that of Valand’s
paper [7], but with several modifications. Briefly, a decision problem involves
the following basic elements:

(i) £—a sample space of a random variable X.

(i) ®—a parameter space.

(iii) .%—an action space.

(iv) L—a function on ® X & into the real line called a loss function.
(v) #(x; 6)—a probability density function for each 6 ¢ ©.

The principle of invariance is centred around groups of transformations G,
G, G acting on 7, ©, .7 respectively. The reader is referred to Blackwell and
Girshick [1] for a detailed discussion. In the present paper we suppose that:

(a) & = R*, the n-dimensional Euclidean space.
(b) © = R, the real line.

(c) 6 €0 is alocation parameter for the random variable X = (X, - -+, X,)
with probability density function #x;60) = #(x, — 0, ..., x, — §) for some n-
dimensional joint density z. X, ..., X, need not be independent.

(d) & = {(a, b): a < b} the set of all open intervals.
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(e) L9, (a,b))=9(b —a)+1—1I,,,(0) where
(i) g is a nonnegative, non-decreasing function on the real line;
(i) I,,(9) is the indicator function of the interval (a, b).

This decision problem is invariant under G, the additive group on R*.

3. Characterization of the best invariant rule. Let U(X) possess the trans-
lation property and let ¥(X) be a maximal invariant on R" under G. Then
(U — b(V), U — by(V)), where b, and b, are functions into the real line is an
invariant rule. The risk R(b,, b,) associated with this rule is given by

(3.1) R(by, b)) = EJLO, (U — b(V), U — by(V)))],

where E; denotes expectation when § = 0. The distribution of U| ¥V has ¢ as a
location parameter. The best invariant rule for this conditional problem under
the additive group on R! is given by

(3.2) 0(b,*, by*) = (U — b*(V), U — b,*(V))
where b,*(V'), b,*(V) are numbers (provided they exist) such that
(3.3) R(V) = E[L(0, (U — b*, U — b,*))| V]

= inf, ,, E[L(0, (U — b, U — b,))| V].

Note that 5,*(V') and b,*(V') are each defined separately for each possible value
of the random variable V(X).

The risk R(b,, b,) associated with an invariant rule in the conditional problem
is given by
(3.4) R(b,, b)) = E[L(0, (U — b, U — b,))| V].

The following theorem whose proof appears in Ferguson [2] permits us to work
with an appropriate one-variable problem instead of the original problem.

THEOREM 1. The best invariant rule (3.2) in the conditional problem is the best
invariant rule in the original problem.

4. Minimax property of the best invariant rule. It is the purpose of this
section to investigate the minimax behavior of the best invariant rule d(b,*, b,*).
Since (X, — X, ---, X, — X)) is a maximal invariant on R" under G it is reason-
able to set V(X) = (V,, ---, V,) where r < n and each V is a function of the
X;’s. See Wijsman [9]. In addition let F(U) designate the distribution function
of U|V =v when 6 = 0.

THEOREM 2. In the problem of interval estimation described in Section 2, if for
every ¢ > 0 and realization v of V there exists a finite number N = N (v) such that
N(V) is measurable in (V,, - -, V,) and
4.1) Ry(by, b)) = §¥, L(O, (U — by, U — by))dF(U) = Ry(v) — ¢

for all (b, b)) € 7 then (U — b,*, U — b,*) is a minimax rule among all the non-
randomized rules.
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Proor. The proof follows by an argument similar to that used by Ferguson
[2] page 189.

We are now interested in finding sufficient conditions for expression (4.1) and
the measurability hypothesis to hold. The following theorem which is the main
result of this paper deals with this.

Tueorem 3. If f(U) = F'(U) is continuous in (Vy, ---, V,) almost everywhere
and there exists an even, nonnegative function P(x) on the real line such that

(1) if 0 < x, < X, P(x,) < P(x,),

(il) EP(U)| V] < oo for all realizations of V,

(ili) P(x)~* = O(x~T) for some y > 0,

(iv) (9(2x) + 1)P(x)* = O(x~?) for some 6 > 0,
then the conditions of Theorem 2 are satisfied.

The proof of this result relies fundamentally on the properties of g. It is
quite long and so will be split into several parts.

Proor. Recalling the definition of Ry(¥') we see that
(4.2) Ry(v) < R(by, by) for all (b, b)) e ..
Now, for any N > 0,
(4.3) \¥y dF(U) = 1 — P(N)E[P(U)| V = v].
This is a form of Chebyshev inequality. Combining (4.2) and (4.3) leads to the
following inequality:
4.4)  R(v) = (9(b — b)) + D)(I2y dF(U) + P(NYE[P(U)| V = o))

— (dF(U).

The remainder of the proof is divided into several parts.

(i) We first show that for every ¢ > 0, there exists NJ}(v) such that
Ry(b,, b)) = Ry(v) — e if N> N v)and —N < b, < b, < N.
In view of the monotonic property of g we have from (4.4)
(4.5)  Ry(by, by) = Ry(v) — ¢ if P(N)™Yg(2N) + DHE[P(U)|V =v] Z¢.
Therefore, by applying condition (iv) we have R (b, b;) = R(v) — ¢ if —N <
b, < b, < Nand N = NXv) = [AE[P(U)| V = v]/¢]"?; A4 is some constant.

(i) We now show that R(b,, b)) = Ry(v) —e for —N< b6, < b, < N< b,
and N = N}(v). .

By definition and the monotonic properties of g,

Ry (by, b)) = (9(b, — by) + 1) {¥y dF(U) — () dF(U)
= (9(by — by) + 1) {2y dF(U) — (3, dF(U)
= Ry(v) — ¢ from part (i).

(iii) Similarly it can be shown that R,(b,, by) = Ryv) — ¢ for b, < —N <

b,< b, < Nand N = N}*(v), and
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(iv) it can also be shown that R (b, b,) = R(v) — e for b, < N < b, < b, <
N < b, and N = N}(v) by using the monotonicity property of g and parts (ii)
and (iii) of the proof.

The following two cases are somewhat different from the foregoing.

(v) Leth, < b, < —N < b, < b, < N where N will be chosen appropriately.
Now, o ) )

Ry(by, b)) = (g(b, — by) + 1) {¥, dF(U).
Applying (4.3) leads to
(4.6) Ry (b, b)) = (9(by — b,) + 1)(1 — P(N)E[P(U)|V = v]).
But in view of (3.3) and Theorem 1,

R(by, b)) = (9(b, — by) + 1) — {21 dF(U)
> Ry(v) .
So, .
o(b, — b)) + 1 = Ry(v) + {51 dF(U)
= Ry(v) .
Combining the last inequality with (4.6) we have
Ry(by, b)) = Ry(v) — e if P(N) 'R (v)E[P(U)|V =v] <.
Therefore, by using condition (iii) we have,
Ry(b,, b)) = R(v) —e if b,<b < —N and
N = N2(v) = [BR(V)E[P(U) |V = v][e]'";

B is some constant.

(vi) If =N < b, < b, < N < b, < b,, then Ry(b;, b,) = R(v) — ¢ s0 long as
N = N}(v). The proof follows from a similar argument to that in part (v).
Now, let N,(v) = max(N}(v), NX(v)); then a simple argument will convince the
reader that if N > N,(v), then

Ry(by, b)) = Ry(v) — ¢ for all (b, b,) e .

Finally let us turn to the measurability part of the proof. Ry(V') is measurable
since it is the infimum of a limit of measurable functions. Similarly, E[P(U)| V]
is measurable since it is the limit of measurable functions. It therefore follows
that N, (V) is measurable.

This completes the proof of the theorem.

At this point the reader may note that although the present paper falls within
the framework of Kiefer’s [5] or Wesler’s [8] general considerations, their reg-
ularity conditions are not satisfied under our specific formulation. Theorem 3
replaces a verification of (2.4) of Kiefer’s paper, the other assumptions there
being trivial in this case, but this condition requires verification since our
problem does not satisfy condition 4(b). As for Wesler’s work [8], our problem
does not meet his condition (ii) of the generalized Hunt-Stein theorem.

The reader should now focus attention on Valand’s paper [6]. The function
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k is more general than g but unfortunately there is an error in the proof of
Lemma 2, page 197. It is unreasonable to assume that “a compact set A4 exists.”
In fact, if 4 is taken to be the function (b — a) then it can be shown that such
a set 4 cannot exist. However, the technique used in the proof of Theorem 3
can be applied to verify Lemma 2 provided that # is replaced by g.

We now turn to an example which is quite appealing from the point of view
of the preceding theory.

5. Minimax interval estimator for the location parameter of the half-normal
distribution. Consider the invariant decision problem described in Section 2 with

(i) 1(x;0) = (2/m)"* exp[— Ziiny (x; — 0)[2}],y(min x;)

(i) g(b —a) =b — a.
Further, let

V(X)=(X2_X1’ Sty X.,,,'—Xl), U(X):Xl
and put ¥; = X; — X,,j = 2, - -+, n with ¥, = 0. When ¢ = 0 the probability
density function f(U) of U|V is given by
fU)=U, U+ Vo, U4 V)2 (U, U+ V,, -, U+ V,)dU

CRY) = exp[—n(U + VY2, (U)/ 20 exp[—n(U + V)[2]

X I(-—Vu,,w)(U) au
where _
V=>rVn, Vi = minf_, V,.

Let ® be the distribution function of the standard normal distribution. Let
a =[1 — ®¥(V — V,,))]% then (5.1) can be re-cast in the form

(5-2) fU) = anf2z)t exp[—n(U + VP21 _y (V) -
To find the best invariant rule we minimize '

R(by, by) = (2 {(by — bs) + 1 — Ly (0N} f(U) dU .
Setting dR(b,, b,)/0b, = 0, dR(b;, b,)/3b, = 0, we have
(5.3) flb) =1 and flb) =1.

Solutions to (5.3) will be denoted by (b,*, b,*) where b,* = b,*. Now, if f(b) =1
then

(5.4 (n/2m)t exp[—n(b + 17)2/2]1(,V(1),w)(b) =at.
It follows that

(5.5) b* = —V + [(2/n) log (na[27)]?

and

(5.6) b* = —V — [(2/n) log (na/2x)]} .

To verify that (b,*, b,*) given by (5.5) and (5.6) is the value of (b,, b,) that
minimizes R(b,, b,) we proceed as follows:
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From (5.3)
PR(byy b)) _ _ (b . O*R(by, b)) _ 3f(by) . PR(by, b) _
b, ab, ’ 0b,? ob, ’ b, 0b,

By substituting expressions (5.5) and (5.6) into 3f(b,*)/db, and —af(b,*)/ab,
respectively, we see that 9*R(b,*, b,%)/3b? > 0 and *R(b,*, b,*)/db,2 > 0. So
(b,*, by*) gives the minimum point for R(b,, b,).

For this specific example g(x) = x and by letting P(x) = x?, say, all the con-
ditions of Theorem 3 are clearly satisfied. Hence

X — [(2/n) log (na[2m)]t, X + [(2/n) log (na/2m)]})
is a minimax interval estimator for 6.
In conclusion we remark that only a minor change is required for the case
g(x) = cx, ¢ > 0.
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