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Connectedness is an important property which every block design
must possess if it is to provide an unbiased estimator for all elementary
treatment contrasts under the usual linear additive model. We have
classified the family of connected designs into three subclasses: locally
connected, globally connected and pseudo-globally connected designs. Bas-
ically, a locally connected design is one in which not all the observations
participate in the estimation. A globally connected design is one in which
all observations participate in the estimation. Finally, a pseudo-globally
connected design is a compromise between locally and globally connected
designs. Theorems and corollaries are given which characterize the dif-
ferent classes of connected designs.

In our discussion on the optimality of connected designs we show that
there is much to be gained by partitioning the family of connected designs
in the above fashion. Our optimality criteria are S-optimality suggested
by Shah, which selects the design with minimum trace of the information
matrix squared and (M, S)-optimality which selects the S optimal design
from the class of designs with maximum trace of the information matrix.

Using these optimality criteria, we have been able to derive some new
results which we hope to be of interest to the users and reseachers in the
field of optimum design theory. To be specific, let BD {v, b, (r;),(kx)} de-
note a block design on a set of v treatments with b blocks of size ku, u =
1,2,-.-, b and treatment i/ is replicated r; times. Then we have shown
that for the family of connected block designs BD {v, b, (r;), k} with (i) less
than k — | treatments having replication equal to one and binary (0, 1) the
S-optimum design is pseudo-globally connected; (ii) the S-optimum design
is globally connected if r; > 1 and the designs are binary; and (iii) at least
one treatment with replication greater than b, then the (M, S)-optimum
design is pseudo-globally connected. In the final part of this paper we
mention some unsolved problems in this area.
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1. Introduction and summary. The concept of connectedness in the theory
of block designs is due to Bose (1947). Connectedness is an important property
which every block design must prossess if it is to provide an unbiased estimator
for all elementary treatment contrasts under the usual linear additive model.
While Bose has defined this concept in the form of chains between blocks and
treatments, Chakrabarti (1963) has equivalently defined this concept in terms
of the rank of the coefficient matrix or the information matrix of the design.

The notion of connectedness is not in general related to any optimality cri-
teria, i.e., it is quite possible that, for the given v, b; r,, r,, - - -, 1,5 ky, kyy -+, Ky
the parameters of the design, an arbitrary connected design may happen to be
the “worst” possible one. This means that one should study and classify the
family of connected designs from an optimality point of view. This problem
can be tackled in two different ways. (i) Search for the optimal design under
the given optimality criterion. (ii) Decompose the family of connected designs
into “meaningful” subclasses and study the optimality of each subclass. While
approach (i) seems to be natural, it is certainly hard and in some cases formi-
dable if not impossible, given our present mathematical machineries. Approach
(ii) depends heavily on the way one might classify the family of connected
designs. An arbitrary partition is certainly useless and will lead us nowhere.
We will use the approach (ii) and the following considerations motivated our
classifications. We observed that for some connected designs not every observa-
tion participates in the least squares estimation of contrasts. This consideration
suggested to us the possibility that a connected design which has the property
that every observation participates in such an estimation is “better” than one
which lacks this property. Thus we classified the family of connected designs
into three subclasses: locally connected, globally connected and pseudo-globally
connected designs. Basically, a locally connected design is one in which not
all the observations participate in the estimation. A globally connected design
is one in which all the observations participate in the estimation. Finally, a
pseudo-globally connected design is a compromise between locally and globally
connected designs. In Sections 2 and 3 the different classes of connected designs
are defined and characterized. Some invariance properties and the problems of
composing connected designs are discussed in Section 4.

The optimality of connected designs is discussed in Section 5. Our criteria
are S-optimality and (M, S)-optimality both of which are defined in the section.
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We consider classes of designs for which no particular optimality results are
known and show that the optimal design exhibits a specific type of connected-
ness. Thus the search for the optimal design need only concern designs with a
specific connected nature. In general the widely known optimality results of
Kiefer and others usually involve global or pseudo-global connected designs.
This result also broadly applies to the wider class of designs which we consider.

2. Preliminaries and definitions. Let Q = {1,2, ..., v} be a set of v treat-
ments assigned to b blocks of size k,, ¥ = 1,2, - - ., b and treatment i is repli-
cated r, times. Two different methods are used for denoting this general block
design, D = {B,, B,, - - -, B;} where B, is the uth block and BD {v, b, (r,), (k,)}-
The statistical analysis of interest in this paper is the intrablock analysis with
the model

E()’w) =p+t+8,.
where y,, is the observed response of the ith treatment in the uth block, ¢ =
mean effect, r, = the effect of treatment i, and 8, = the effect of the uth block.

From the normal equations we have

(2.1) Ct=Q
where t is a solution of (2.1) and called the vector of estimated treatment effects
(2.2) C = diag (r,, 1y, - -+, 1,) — Ndiag (k,™, k7%, - -, k,")N/ or

C =R — NKN'.
N’ is the transpose of N, the incidence matrix of the design
Q=T - NK'B,
T = column vector of treatment totals,
B = column vector of block totals.

Equation (2.1) is known as the equation for estimating the treatment effects,
and the matrix defined by (2.2) is the well-known coefficient matrix. Obviously,
the C matrix plays a decisive role in the estimation of contrasts, and hence the
connectedness and optimality of designs.

Bose (1947) defined connectedness as follows:

A treatment and block are said to be associated if the
treatment is contained in the block. Two treatments, two
blocks, or a treatment and a block may be said to be con-
nected if it is possible to pass from one to the other by
means of a chain consisting alternately of blocks and treat-
ments such that any two members of a chain are associated.
A design (or a portion of a design) is said to be a connected
design (or a connected portion of a design) if every block
or treatment of the design (or a portion of the design) is
connected to every other.
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Unbiased estimators of an elementary treatment contrast can be obtained directly
from the chains connecting the treatments of the contrast. For example, con-
sider a block design where block B, contains treatments (i, i;), block B, contains
treatments (i, i,), - - -, block B, contains treatments (i,_,, i,) and block B, ,, con-
tains treatments (i,, j). Then treatments i and j are connected through the chain
iB,i, B,i, - - - i,_; B, i, B,,,j and an unbiased estimator of #, — ¢, is obtained from
this chain by the following linear function of the corresponding observations
Yia = YVig + Vig — Vg T -0 F Vi_p — Vi T Vippsr — Vinar- Chains of the form
iB,i are meaningless and should not appear as part of any chain between two
treatments. It is interesting to note that if the design is connected with respect
to treatments it is also connected with respect to blocks and all elementary con-
trasts between blocks are estimable, i.e., 8, — B,. is estimable for all u, u’ =
1,2, ...,b, u# u'. Chakrabarti (1963) defines a design to be connected if its C
matrix has rank v — 1, and has proved that his definition of connected designs
is equivalent to that of Bose (1947).

The original definition of connectedness is extended and generalized to fur-
ther classify connected designs as either locally, globally or pseudo-globally
connected. Locally connected designs are defined the same as the connected
designs of Bose (1947) and Chakrabarti (1963). However, two treatments are
said to be globally connected if they satisfy the following definition.

DEFINITION 2.1. Two treatments i and j, i + j, of a block design are said to
be globally connected if each replicate of i is connected by a chain, as defined
by Bose (1947), to each replicate of j.

Denote the xth replicate of treatment i as i*.

ExampLE 2.1. Consider the following block design:

B, B, B,
e
D:|2t|| 2| | 2],
3|38 —

The chains between the replicates of treatments 1 and 2 are:
1'B 2, 1'B,3B,2*, 1'B,3B,1B,2*
1°B,2?, 1°B,3B,2, 1°B,3B, 1B,2*
1°B,2°, 1°B;2B,3B, 2", 1°B,2B, 3B,2*.

For treatments 1 and 3

I'B, 3*, 1'B, 2B, 3’
1’B,3*, 1°B,2B, 3!
1°B,2B, 3", 1°B;2B,3" .
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For treatments 2 and 3
2'B 3, 2'B, 1B,3*
2B, 3%, 2*B, 1B, 3!
2B, 1B, 3!, 2!B,1B,3".
Each pair of treatments is globally connected.

Pseudo-global connectedness is defined as follows:

DEFINITION 2.2. Two treatments i and j, i # j, of a block design are said to
be pseudo-globally connected if each replicate of i is connected by a chain, as
defined by Bose, to at least one replicate of j and vice versa.

ExampLE 2.2. Consider the design in Example 2.1, but with the replicates
assigned differently.

B, B, B,
1|12
D:|2t|| 12|32,

2|3 —

The chains between replicates of treatments 1 and 2 are:
1'B,2',  1'B,2*, 1*B,3B,2°, 13B,3B,2".

For treatments 1 and 3

' 1'B,2B, 3", 12B,3',  1°B,3!.
For treatments 2 and 3

2!'B,1B,3!, 2B, 1B,3*, 2%B,3%.

Each pair of treatments is pseudo-globally connected. Also it should be noted
that no pair of treatments is globally conncted.

In the following definition and lemma we use the term “x connected” where
x can mean locally, globally or pseudo-globally.

DEFINITION 2.3. A block design is said to be x connected if every pair of
treatments is x connected.

If we allow a treatment to be x connected to itself then the relation R(x),
treatments / and j are x connected, defines an equivalence relation on Q. We
now have the following lemma.

LEMMA 2.1. A design is x connected if and only if under the equivalence relation
R(x) there is only one equivalence class.

3. Characterization.

A. Locally connected designs. In this section several new results for deter-
mining whether or not a design is locally connected are given. First, let us
review some results from the literature.
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Gateley (1962) and Weeks and Williams (1964) give conditions for an n-way
crossed classification design with no interactions to be locally connected.
Gateley’s theorems involve the rank of the design matrix, and for block designs
(n = 2), it is equivalent to Chakrabarti’s rank of C definition. The procedure
of Weeks and Williams is too lengthy to present here, and the reader is referred
to their 1964 paper or Searle (1971). Lindstrom (1970) has generalized Gateley’s
(1962) and Weeks and Williams’ (1964) results to n-way cross classification ex-
periments with interactions, allowing unequal numbers of observations per cell.
He proves that unbiased estimators of main effects and interactions can be con-
structed if and only if certain chains can be established among the nonempty
cells of design. An algorithm and a computer program to sort out the chains
are also given by him. Birkes, et al. (1972a, 1972b) have also recently obtained
some relevant and useful results in this area.

One should note that Chakrabarti’s 1963 paper contains many important
results on the C-matrix and is considered a major contribution to the theory of
connected designs. From Lemma 2.1 we have the following necessary and suf-
ficient condition for a design to be locally connected.

THEOREM 3.1. Design D is locally connected if and only if its incidence matrix
N cannot be partitioned as follows:

N = . s 1 < a< v, N, are matrices.

N, reflect the connected subsets of the set of treatments.

If N cannot be partitioned as above then there is only one equivalence class
of the relationship of connectedness, and vice versa.

CoRrOLLARY 3.1. NN’and N'N can be partitioned similar to N if and only if N
can be partitioned as in Theorem 3.1.

ReMARK 3.1. N can be replaced by C and Theorem 3.1 still holds.

THEOREM 3.2. D is locally connected if and only if there exists a set D* =
{B,*, B*, ---,B,*|B*eD Vs = 1,2, ..., b and there exists a q < p such that
B*Nn B*+ @ Vp=2,3,...,b}L

PrOOF. (i) Sufficiency. The existence of D* implies that every treatment must
appear in a block that contains at least two treatments. Thus each B,* must
intersect with a B, *r + s, that contains at least two treatments and the union
of all blocks containing two treatments contains . Hence we can construct a
chain that passes through all the blocks containing two or more treatments, and
thus pass through every treatment.

ii) Necessity. If D* does not exist then there is a B * for which no B * exists
y y4 q
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such that B,* n B* + &, g < p, and the B,*’s can be grouped into disjoint sets
of B,*. Thus the treatments contained in these disjoint sets of B,* form subsets
of connected treatments and D is not locally connected.

COROLLARY 3.2. A design is locally connected if and only if there exists a chain
between two treatments that contain all the treatments or blocks.

Let us consider the set 7., which has as elements the blocks that contain

19

treatment i, and denote . = (T, Ty, - - -, T,}.

TueoreM 3.3. D is locally connected if and only if there exists a set 7 * =
(T*, T)*, -+, T,* | T,* e 7 Vi=1,2,...,v and there exists a j < i such that
THNT*+ @Vi=2,3,.--,v).

Proor. This proof is analogous to that of Theorem 3.2.

If treatments i and j are connected by a chain we write this as [ij]. Define
the operator - (dot) by [ij]- [jk] = [ik]; i.e., if i and j are connected and j and
k are connected then, obviously, i and k are connected by a chain. Also, if i
and j are connected by a chain then j and i are connected by a chain; i.e.,
[if] = [ji]- It should be noted that if a design is locally connected then there
are v(v — 1) chains excluding the chains of [ii]. We now have the following
theorem:

THEOREM 3.4. D is locally connected if and only if there is a set, Z/ withv — 1
elements each of the form [ij] € D, such that under the dot operator, as defined above,
the v(v — 1) possible chains can be generated.

The nonzero elements of NN’ represent the number of chains of the form
iB,j, which is the [ij] element. Thus (NN')? is in essence the result of the dot
operation between the chains represented by nonzeros in NN, and in general
(NN’)*, 2 < a < v — 1 is equivalent to the dot operation between the nonzero
elements of (NN’)»~* and those of NN’. The longest possible chain between any
two treatments is one which contains all the treatments; such a chain could be
constructed by the dot operation between v — 1 chains of the form iB,j with
distinct B,’s. Thus the nonzero elements of (NN’)*~! represent those pairs of
treatments that are locally connected. Obviously a similar argument will hold
for N’N to (N'N)*~1. We now have the following theorem:

THEOREM 3.5. A design is locally connected if and only if its incidence matrix N
has the property that (NN')*=* or (N'N)*~* has no zero entries.

B. Globally connected designs. An advantage of globally connected designs is
that when estimating the elementary contrast between the effects of treatments
i and j every replicate participates to a maximum yielding 7, x r; estimates of
t, — t; or t; — t,. In Section 5 it is shown that this class of connected designs
under certain restrictions and constraints contains the optimum design. The
following theorem characterizes globally connected designs.
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THEOREM 3.6. A design D is globally connected if and only if the following con-
ditions hold simultaneously:

(1) D is locally connected.

(2) Every block of D contains at least two treatments that occur in more than one
block; i.e., for all B,e D there exists an i and j e B, such that ic B, and je B,,
u =+ sand r # s.

(3) Any treatment, i say, that appears in two or more blocks (but not all blocks)
must do so in blocks that contain

(i) a treatment that appears in two blocks containing i, and two not contain-
ing i. That is, ie B, and B, and there exists a j e B,, B,, B, and B, where
ig¢B,andi¢B,,

or

(i) two treatments each appearing in a block containing i, and a block not
containing i. That is, i and je B,, i and k € B,, then j ¢ B, and k € B, with
i¢B,andigB,.

(4) If any B, contains exactly two treatments that occur in other blocks, then these
two treatments each occur in at least two other blocks.

Some of these conditions may seem redundant; however, with a few simple exam-
ples it can be shown that this is not the case; see Eccleston (1972). In the fol-
lowing proof, by a singleton we mean a block containing exactly one treatment.

Proor oF THEOREM 3.6.

(1) Swufficiency: Consider any replicate of any treatment, say replicate x of
treatment /, and denote as i*. Then given that the conditions hold, can i* be
connected by a chain to any replicate of any other treatment, say m*? Now by
condition (2), if i* € B, then there exists a j € B, such that we have i* ,J. Since
the design is locally connected we can construct a chain between j and m. If J
is connected to mv, then we are finished. However, if J is connected to m?,
z + y, then since the blocks containing m* and m* satisfy the conditions (2), (3),
and (4), a chain between m* and m¥ can be constructed.

(if) Necessity: (i) Condition (1) is obvious. (ii) If condition (2) is violated
then D has a singleton. The treatment belonging to the singleton cannot be
connected by chain to any other treatment and so it follows that D is not glob-
ally connected. (iii) If condition (3)(i) is negated for treatment i say, then there
is a treatment j which occurs in at least two blocks containing 7, and exactly
one not containing i, say B,, or vice versa. It follows that one cannot construct
chains between all the replications of j and i, namely the replicate of j ¢ B,, and
any replicate of i. If (3)(ii) is negated by j clearly it is impossible to connect
any replicate of i to the replicate of k belonging to the block not containing i.
(iv) If condition (4) is violated by i but not j of block B, then i occurs in only
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one other block, B, say. A chain between j € B, and i € B, cannot be constructed;
consequently, the design is not globally connected.

COROLLARY 3.5. If the same two treatments appear in every block, then the design
is globally connected. (The design must have at least three blocks.)

CoROLLARY 3.6. If N has no zero elements, then D is globally connected. (If N
has no zero elements, then N'N and N'N have no zero elements.)

ExampLE 3.1. Consider the design

T L]2(]5
D:|2||2/|4]||3|/4
13513

By inspecting D it is clear that the design satisfies Theorem 3.6.

C. Pseudo-globally connected designs. A pseudo-globally connected design as-
sures one that in estimating elementary contrasts each replicate of the treatments
involved is utilized. When estimating elementary treatment contrasts, globally
connected designs maximize the use of all replicates of the treatments whereas
pseudo-globally connected designs guarantee that no replicates are “wasted.”
That is, every replicate of each treatment in the contrast is involved at least
once in the estimation. As mentioned before, this class of connected designs,
under certain conditions, contains the optimum connected design. The follow-
ing theorem characterizes pseudo-globally connected designs.

THEOREM 3.7. A design D is pseudo-globally connected if and only if conditions
(1), (2) and (3) of Theorem 3.6 hold simultaneously.

The proof is analogous to that of Theorem 3.6.

ExaMpLE 3.2. Consider the design of Example 3.1, but with treatment 2 of
B, and treatment 4 of B, interchanged.

BleBaB435
1l 1]]2]]3
D:lall2]12113]]4
—' =355

By inspection it is clear that D satisfies Theorem 3.7 (i.e., fails only condition
(4) of Theorem 3.6).

CoroLLARY 3.7. If adesign D is locally connected and each replicate of treatment
i is connected by a chain to every other replicate of i, for all i € Q then D is pseudo-
globally connected. (Note: If, in addition to the above, condition (4) of Theorem
3.6 holds then D is globally connected.)

Further corollaries, rules and examples are given by Eccleston (1972).



THEORY OF CONNECTED DESIGNS 1247

4. Invariance properties and the composition of connected designs.

A. Invariance properties of connected designs. If a design D on Q is locally
(globally) connected then any of the following can occur and D will remain
locally (globally) connected.

(a) For D locally connected: Any new block can be added to D so long as its
elements belong to Q.
(b) For D globally connected.

(i) any treatment belonging to Q can be added to any block of D,
(ii) any new treatment(s) can be added to any block of D,
(iif) any block belonging to D can be repeated any number of times,
(iv) if a treatment appears in a block, it can be replicated any number
of times within that block.

Recall that if a design is globally connected then it is pseudo-globally connected,
which also implies that the design is locally connected. Thus the facts in (b) above
apply to pseudo-globally and also locally connected designs.

B. The composition of connected designs. Let us consider the proposition of
composing two designs that are locally, globally and pseudo-globally connected.

(a) Compositions that yield locally connected designs:

(i) If D, and D, are locally connected designs on the sets of treatments Q,
and Q,, respectively, and Q, n Q, = @, then the design D, = D, U D, U B
is locally connected, where B is a block containing at least two treatments,
i and j say, such that ie Q, and j € Q,. The block B forms the link between
the two designs D, and D,. Since i is connected to all treatments in Q, and
J to all in Q, then the chain iBj locally connects every pair of treatments of
Q, U Q,.

(i) Let D, and D, be locally connected designs on Q, and Q,, respec-
tively, and if Q, n Q, = @, i.e., Q, and Q, have at least one element in
common, then D, U D, is a locally connected design.

(b) Compositions that yield globally connected designs.

(i) Consider D, and D, to be globally connected designs on treatment
sets Q, and Q,, respectively, Q, n Q, = @. As before, D, = D, U D, U B
where B as above, is locally connected. However, if B contains four treat-
ments i, j, k, and [ such that i and j € Q, and k and / € Q,, also i and j each
appear in at least two blocks of D, and similarly k and / in D,, then D, is
globally connected. Moreover, if B contains three treatments of Q, and
three of Q, then D, is globally connected. It is easily shown that D,, with
the above B’s, satisfies Theorem 3.6.

(ify For D, U D, to be globally connected, it is sufficient for D, and D,
each to be globally connected and one of the following:
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(I) Q n Q, = {i}and i appears in two blocks of D, and two of D,.
(2) Q, n Q, = {ij} and i appears in at least one block of D, and two of
D,, while j appears in at least one block of D, and two of D,.
() &nQ={i],k}
(c) Compositions that yield pseudo-globally connected designs.

(i) Suppose D, and D, are pseudo-globally connected designs on treat-
ment sets Q, and Q,, respectively and Q, n Q, = . Asabove D,, = D, U
D, U B, where Bisas in (a), locally connected. However, if i and j belong
to two blocks of D, and D,, respectively, then D, is pseudo-globally con-
nected. Moreover, if B contains three treatments i, j and m where i and
Jj €Q, and m belongs to two or more blocks of D,, then ng is pseudo-glob-
ally connected.

(i) For D, U D, to be pseudo-globally connected, it is sufficient that D,
and D, each be pseudo-globally connected and one of the following:

(1) Q, n Q, = {i}and i occurs in two blocks of D, and two of D,.
(2) Ql n Qz = {i9j}‘

It is interesting to note that two designs, D, and D,, can each be not locally
connected, but their union D, U D, may be locally connected. This is obvious
since given a locally connected design, D, one can often partition D into locally
disconnected subsets. A similar remark is true for globally and pseudo-globally
connected designs. The composition of more than two designs would follow
along the lines of the above methods but be somewhat more complex.

5. Optimality.

A. Background and our optimality criteria. The theory of optimum experiment
and treatment designs is essentially the use of a well-defined criterion to determine
which in a specified class of legitimate or competing designs is the best. So far,
almost all contributions to this field have been related to the optimality of non-
randomized designs. This paper is also formulated in this framework. The first
formal treatment of this subject was given about five decades ago by Smith (1918).
It was revived after a 25-year pause by Wald (1943), Mood (1946), Elfving (1952),
Chernoff (1953), Ehrenfeld (1955), Kiefer (1958, 1959), Kiefer and Wolfowitz
(1959) and others. A voluminous literature has developed around the problem
of finding optimal designs. The newly published book, Theory of Optimum Ex-
periments, by V. V. Fedorov (1972), is a clear indication that this branch of
statistics is growing fast and has attracted many leading mathematicians and
statisticians around the world.

Kiefer, in 1958 and subsequent papers, discusses the three most used and
well-known optimality criteria, namely 4, D and E optimality. The optimality
criteria involve functions of the nonzero eigenvalues, {2,,i = 1,2, ...}, of the
information matrix of the design. In general these criteria are not related and
need not agree in comparing given designs. Only in restricted settings such as
designs with equal replication and block size or designs with 2, constant for all
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i have the above criteria offered readily tractable solutions. Since we discuss
designs restricted only by their degree of connectedness a different criterion is
necessary. In addition we compare only designs with the same parameter set
{v, b, (r;), (k,)} and do not consider interblock information. Some of these ideas,
together with other reasons, led Shah (1960) to introduce an optimality criterion
which will hereafter be called S-optimality.

S-optimality. Minimize Y, 2, if the trace of information matrices of the
competing designs are identical. The corresponding optimum design will be
referred to as S-optimum.

We now introduce an optimality criterion which is a useful, and somewhat
hybrid of the preceding optimality criteria. The corresponding optimization is
carried in two stages and is formally defined as follows:

(M, S)-optimality. First, form a subclass of designs whose information ma-
trices have maximum trace. Then, select a design from this subclass such that
its square of the information matrix has minimum trace. The resulting design
is called the (M, S)-optimum design.

S-optimality and (M, S)-optimality will be our optimality criteria in this paper.
Using these optimality criteria, we have been able to derive some new results
which we hope will be of interest to the users and researchers in the field of
optimum design theory. To be specific, we have shown that for the family of
connected block designs BD {v, b, (), k} with (i) less than k — 1 treatments
having replication equal to one and binary (0, 1) the S-optimum design is pseudo-
globally connected; (ii) the S-optimum design is globally connected if 7, > 1 and
the designs are binary; and (iii) at least one treatment with replication greater
than b, then the (M, S)-optimum design is pseudo-globally connected.

B. S-optimality and (M, S)-optimality of connected designs. Let A denote the
family of all connected designs with the parameter set {v, b, (), (k,)}. Let also
A, c A denote the set of those designs in A which are pseudo-globally connected.
Note that the cardinality of A, ranges from zero to the cardinality of A depend-
ing on the given set of parameters.

DeFINITION 5.1. Let D, and D, be two designs in A. Then we say D, is S-
better than D, if D, has a smaller trace of C squared than D,.

Consider a situation where the connected designs in A are binary with n,, = 0
or 1 and proper, i.e., k, = k. These designs constitute most of the well-known
classical designs. Then we have the following theorem.

THEOREM 5.1. Corresponding to any design in A, = A — A, there is a pseudo-
globally connected design in A, which is S-better if less than k — 1 of the r;’s are
equal to one.

Proor. Let D e A;. Then by the conditions imposed on A the design D satisfies
conditions (1) and (2) of Theorem 3.7. Therefore, condition (3) must be violated
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by one or more treatments in D. We shall devise an algorithm which involves
the rearrangement of the experimental units in D in a manner such that the
resulting design D is pseudo-globally connected and is S-better than D.

Suppose treatment i fails to satisfy condition (3) of Theorem 3.7, but since
the design is locally connected there exists a treatment / that

(a) belongs to only one block containing i and at least one not containing i, or
(b) belongs to at least one block containing / and only one not containing i.

The design can be divided into two parts, T, the set of blocks which contain 7,
and D — T, the set of blocks which do not contain i. We discuss (a) only, but
an analogous proof holds for (b). For the designs we are considering there exists
a replicate of treatment ze B, e T, r, > 1, z #+ [ and a replicate of treatment
peB,eD —T,r,>1,p=1[which can be interchanged to yield a design in
which treatment i satisfies condition (3). Such a z and p always exist since there
are less than k — 1 treatments with r, = 1. Whether or not the interchange
yields a smaller trace of C* depends on the change in the elements of C, in par-
ticular, the elements of the row corresponding to treatment /. The possibilities
are as follows:

(i) Suppose /¢ B, and /¢ B,. The elements of C that are changed are as fol-
lows (recall that all diagonal elements are fixed for all designs of this theorem).

Before interchange After interchange

1
C T czi 5
P - + 3
Com — cm—}—% where me B, m=£l,ms£z,m=+£1i
Cow — Cou + % where we B, wl, wp
¢,.(=0) - —% for all w of which there are &k — 3
Com(=0) — _1 for all m of which there are k — 2.

All other elements of C are unchanged. Thus trace of C* before the interchange
can be written as

(5‘1) tr C2 = cii + Zm cim + Zw ciw + ch;m + Zw Ciw + Remainder'
After the interchange

52 wC=(ct ) + Ta(emt 1) + Do+ Za(y)

+ 3. <pr + %)2 + Remainder.
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The remainder term is the same for both equations (5.1) and (5.2); therefore,
their difference is

) 1 2k — 3)
5.3 5.0) —(5.2) = —2¢, L2 _ 5 1
63 GH-G=-2e, -2 oy e L2
1 k—3
_22“”’”?_2< i )

We know that ¢, < 0 for m  n; therefore, —c,, > 0. Since —c, > 1]k,
—Cum = l/k forallm, —c,, = 1/k, and —c,, = 1/k. Therefore (5.3) > 0. Thus
the design is S-better after the interchange.

(if) Suppose /¢ B, and [ € B,, then

Before interchange After interchange
1
Cpy — Cp + ©
(=5%) :
czl = — i czl _
k k

All other elements of C are as in (i). Thus the difference between the trace of
C* before and after interchange is the same as in (i) except for the c,, and ¢,
terms. Therefore, before interchange

(5.4) trC = ¢y + ¢ 4 [(5.1) — ¢ — ]

and after interchange
12 1\?
(5.5) tr C? = (cp, + ?> + (e,, - 7) FI5.2) — ¢ — ).

From (i) we have
2c 4

T
k k?
If ¢,, = —1/k then (5.4) — (5.5) may not be greater than zero. But recall that
[ belongs to only one block in 7,, namely B,, and since r, > 1 there exists a
replicate of z € B, and / e B, which can be used for the interchange rather than
z € B,. The interchange between z € B, and p ¢ B, is equivalent to (i).

(iii) Suppose /¢ B, and I ¢ B,. This is analogous to (i) and the design after
the interchange is S-better.
(iv) Suppose /€ B, and [ ¢ B,, then

(5.4) — (5.5) >

Before interchange After interchange
—1 1
Ca <: —k—> - ¢+ 7(: 0)
1
Col — Cpp — ?

All other elements of Careasin (i). As in (ii) we have that before the interchange

(5.6) trC* =cj, + ¢ + [(5.1) — ¢, — 2]
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and after the interchange

2 1 2 1 2 2 2
(5.7  trC= <c,, + '1?> n <cp, - 7) F[(5.2) — ¢, — .

From (i) we have

(5.6) —

We know that ¢,, < —1/k; thus (5.6) — (5.7) may not be greater than zero.
But recall that I belongs to only one block in T, namely B,, and since r, > 1
there exists a replicate of ze B,e T,, s # r, wh1ch can be used for the inter-
change. The interchange is now between z e B, and p € B, with [ ¢ B, an [ ¢ B,
which is equivalent to (ii).

If now there exists another treatment, ¢ say, that fails to satisfy condition
(3) it can be corrected so that the interchange for i is not negated. Reversing
the interchange between z and p is the only way to negate the correction for i.
Let treatment m be to treatment g as [ was to treatment i, / 3= m otherwise the
correction for i would be sufficient for ¢ (see Example 5.1). Suppose the cor-
rection for g reverses the interchange between z and p. This implies

(a') eitherge B, eT,and B,e D —T,orqe B,e T,and B,e D — T butle B,
and B,; therefore ¢ does not fail condition (3). This is a contradiction.

Or

(b) g,iandpeB,eT,and ze D — T,. Then all blocks containing z must
belong to D — T,, but z and i belong to the same block at least once and simi-
larly if B,e D — T,and B, e T,. This implies that g satisfies condition (3), which
is a contradiction.

So, in general, any treatments which fail condition (3) of Theorem 3.7 can be
corrected to yield a pseudo-globally connected design which is S-better. This
completes the proof.

From Theorem 5.1 we have the following corollary:

CoOROLLARY 5.1. Within the family of connected designs BD {v, b, (r,), k} with
= 0 or 1 the S-optimal design is pseudo-globally connected if there are less than
k — 1 treatments with r, = 1.

If A, contains a globally connected design then we have the following theorem
and corollary:

THEOREM 5.2. Corresponding to any design in A, = A — A, there is a globally
connected design which is S-better if all r;, > 1 and k = 3.

The proof is analogous to that of Theorem 5.1.

COROLLARY 5.2. Within the family of connected designs BD {v, b, (r;), k} with
n,, = 0 or 1 the S-optimal design is globally connected if all r; > 1 and k = 3.
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Instead of r, > 1 and k = 3 it is sufficient if all r, > 2 for Theorem 5.2 and
Corollary 5.2 to be true.

ExaMpLE 5.1. Let D be the following locally connected design in BD {9, 6,
2,2,3,1,2,6,2,2, 1), 3}.

trace of C = 12 and trace C* = 24.

Treatments 1, 2, 7 and 8 fail to satisfy condition (3) of Theorem 3.7. In the
notation of the proof of Theorem 5.1 for treatments 1 and 2, / = 3 and for
treatments 7 and 8, / = 6. Therefore, a correction for treatments 1 and 7 will
be sufficient for treatments 2 and 8 respectively. By interchanging 2 € B, with
5 € B, and 8 € B, with 3 ¢ B, results in

trace of C = 12 and trace C’>= 68/3

is globally connected and S-better.

If the condition of Theorem 5.1 and Corollary 5.1 is relaxed so as to include
designs with more than k — 1 treatments with 7, = 1 then the lemma and theo-
rem no longer hold in general. A counterexample which is too lengthy to present
here can be found in Eccleston (1972).

Recall that the procedure for determining the (M, S)-optimal design is to first
find the class of designs with maximum trace of C and then within that class
determine those with minimum trace of C squared. Let A, A, and A, be as defined
in the first paragraph of this section; then we have:

THEOREM 5.3. Any design in A, can be transformed into a design in A, with the
same trace of C. 4

Proor. For design BD {v, b, (r,), (k,)} to be locally but not pseudo-globally
connected either or both conditions (2) and (3) of Theorem 3.7 fail to be satisfied.
Each can be corrected by an interchange(s) as described in Theorem 5.1. Sup-
pose z € B, and p € B, are interchanged to correct either condition (2) or (3).
The only diagonal elements of C affected by the interchange are c,, and c,,.
Block B, is of size k, and B, is of size k,:

¢,, becomes c,, — 7(1_ + 7:_ and ¢,, becomes c,, — ki +
t r

r

1
k,
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Therefore, the trace of C after interchange remains invariant. The same argu-
ment follows no matter how many interchanges are performed.

THEOREM 5.4. For the family of designs BD {v, b, (r,), k} the (M, S)-optimal
design is pseudo-globally connected if there is one r, = ab + B, @ > 0 and integer
B = 0 and less than k — (a + 1) treatments with replication equal to one.

Proor. Givenr, = ab +

max tr C = )}, max ¢,
where
€y =1, — DMk .
Maximizing c,; is equivalent to minimizing n,, for allu. This implies that all n,,
should be as close to equal as possible, i.e.,

|niu—niu'|§1 for u, u'
and
n,=a Oor a-41 forall w,u=1,2,...,b.

Such a design satisfies Theorem 3.7. Therefore the design with maxtr C is
pseudo-globally connected and trivally it follows that the same design is (M, S)-
optimal.

CoROLLARY 5.3. For the family of connected designs BD {v, b, (r,), k} the
(M, S)-optimal designs is globally connected if there exist two r, = b.

6. Concluding remarks. Results analogous to Theorem 5.2, and Corollary
5.1 for nonproper designs (i.e., designs with k, == k for all ) have not been
proved as yet. The (M, S)-optimality of the family of nonproper connected
designs remains unsolved. Perhaps some method of generating pseudo-globally
connected designs other than those considered here may yield better optimality
results. However, by partitioning the family of connected designs as we have
done, many new results have been obtained. Virtually nothing is known about
the optimality of nonproper designs; thus there remains a vast and challenging
area of optimal design theory open to research.

Acknowledgment. The authors wish to thank Professor J. Kiefer for his help-
ful suggestions and discussions concerqing the theory of optimum design.
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