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EMPIRICAL PROBABILITY PLOTS AND STATISTICAL
INFERENCE FOR NONLINEAR MODELS IN
THE TWO-SAMPLE CASE!

By KJELL Doksum
University of California, Berkeley

Let X and Y be two random variables with continuous distribution
functions F and G and means ;2 and £. In a linear model, the crucial prop-
erty of the contrast A == & — pr is that X + A = . Y, where = _- denotes
equality in law. When the linear model does not hold, there is no real
number A such that X + A = . Y. However, it is shown that if parameters
are allowed to be function valued, there is essentially only one function
A(e)such that X + A(X) =_- Y, and this function can be defined by A(x) =
G-1(F(x)) — x. The estimate AN(x) = Gn Y (Fm(x)) — x of A(x) is considered,
where G, and Fn are the empirical distribution functions. Confidence
bands based on this estimate are given and the asymptotic distribution of
An(s) is derived. For general models in analysis of variance, contrasts that
can be expressed as sums of differences of means can be replaced by sums
of functions of the above kind.

1. Introduction. Consider the two-sample problem, which is the problem of
comparing two populations on the basis of two independent samples X}, - -, X,
and Y}, ---, Y, one from each population. Let F denote the distribution of the
X, and G the distribution of the Y,. For this case, the assumption of a linear
or shift model amounts to supposing that there exists a constant A, called the

shift or translation parameter, such that
(1.1) F(x) = G(x + 4) for all «x.

When the linear model holds, then X + A has the same distribution as Y, where
X is distributed according to F and Y according to G. In other words, the X,
when shifted the amount A, have the same distribution as the Y,. Any com-
parison to be made between the two populations then depends on the parameter
A, and much statistical theory concerns itself with this parameter. In general,
if the linear model assumption is not satisfied, there is a function A(.) such that

(1.2) X + A(X) has the same distribution as Y,

provided only that F is continuous. We write X + A(X) = Y for (1.2) and
call A(+) a shift function since the X, when shifted the amount A(X,) have the
same distribution as the Y;. When the linear model assumption is not satisfied,
A(+) can be used as a measure of the difference between the two populations.
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268 KJELL DOKSUM

A function A(.) satisfying (1.2) can be found in Lehmann’s book (1974, Section
2.2). See Section 5.

Unfortunately, X + A(X) = . Y doesnot in general define A(.). For instance,
if X is normal N(y, ¢*) and Yis N(¢ + &, ¢%), then A(x) = §and A (x) = —2x +
& + 2u both satisfy (1.2). However, if we defined A(x) as the “horizontal dis-
tance” between F(x)and G, then A(.) is well defined and satisfies (1.2). Thus we
let A(x) be the smallest function satisfying (see Figure 1).

(1.3) F(x)y = G(x + A(x)) .
It follows that A(x) can be expressed as A(x) = G~!(F(x)) — x, and that Aux) =

G, (F,(x)) — xisa natural estimate of A(x), where F, and G, are the empirical
distribution functions.

FiG. 1. The horizontal distance 4(x) at x.

In Section 2, conditions are given under which A(x) = G~'(F(x)) — x is the
only function satisfying X + A(X) = Y; and A(.) is compared with a function
6(+)satisfying Y — 6(Y) = , X. Moreover, it is shown that the following three
conditions are equivalent:

(i) The linear model holds, (ii) #(+) = A(-), and (iii) A(x) = constant.

The estimate A (+), which is an empirical probability plot minus the identity
function, is considered in Section 3, where confidence bands for A(x) based on
A, (x) are given. In Section 4, it is shown that the process NHA (x) — A(x)]
converges weakly to a Gaussian process.

Finally, in Section 5, the important special case where the X’s are control
responses and the Y’s are treatment responses is considered, and as an illustra-
tion, A ,(x) and a confidence band for A(x) are computed using data from [3].

2. Properties of the shift function. Let S(F) = {x: 0 < F(x) < 1} be the
support of F.
DEerINITION 2.1. The shift function A(.) for F and G is
(2.1) A(x) = inf{A: F(x) < G(x + A)}, xe S(F).
Let G-(u) = inf {t: G(1) = u, t € S(G)}, u € [0, 1], where §(G) denotes the clo-
sure of S(G), then
2.2) A(x) = G} (F(x)) — x, xe S(F).
When F is continuous, G~}(F(X)) has the same distribution as Y, and therefore



NONLINEAR MODELS 269

X + A(X) has the same distribution as Y. If A(x) is to be a useful measure of
differences between populations, we must show that it is essentially the only
function satisfying X + A(X) = . Y.

THEOREM 2.1. If F is continuous, if A*(.+) is any function such that X +
A*(X) = Y and A*(x) + x is non-decreasing fora.a. x(F), then A*(x) = A(x) for
a.a x(F).

Proor. Let A(x) = A*(x) + x, then A(x) and G~}(F(x)) are two a.s. non-de-
creasing functions satisfying A4(X) = _ G-'(F(X)). Thus & and G~(F) are a.s.
equal. Since A*(x) = A(x) — x and A(x) = G~'(F(x)) — x, the result follows.

The next approach to the uniqueness problem is axiomatic. We give two de-
sirable properties that a measure of shift between two populations should have
and show that A(.) is the only function satisfying these two properties. Let
A*(+ | F, G) denote a candidate for measure of shift between F and G, then A*
should satisfy

(A.1) A*(x|F, F) =0, xeS(F).
Let p1,(x) = A*(x| F, G) + x, then p,(x) is a measure of the location of Y cor-
responding to the measurement x on the first population (see Section 5). If ¥

is transformed by the increasing function 4, then we require that p,(+) be
transformed in the same way:

(A.2) (X)) = h(pp(x)) for xe S(F) andall £ continuous
and increasing on  §(G) .

PRrOPOSITION 2.1. Suppose F and G are continuous and increasing on S(F) and
S(G) respectively. If A*(«|F, G) is a function satisfying (A.1) and (A.2), then it
must equal A(x | F, G) = G~Y(F(x)) — x on S(F).

PrROOF. Seth = F~'Gon §(G), thenby (A.1), A*(x | F, Gh=*) = A*(x| F, F) = 0.

But using (A.2), A*(x| F, Gh™') = F'G(A*(x|F, G) + x) — x. These two equa-
tions yield the result.

A(+)hasa natural competitor which is a function 6(.) satisfying Y — 6(Y) = .
X. 6(y) can be defined as the horizontal distance from G(y) to F and is given
by 6(y) =y — F7(G(y)). A(-) and 6(-) are not in general equal, but one can
obtain one from the other. For instance, A(.) is the inverse of the funct.on
[t — 6(r)] minus the identity function. Moreover, () and A(f) both measure
horizontal distance between F and G, but at different points:

PROPOSITION 2.2. Let S*(F) = {t € S(F) with F~(F(t)) = t}, suppose that F and
G are continuous, then A(1) = 0(t + A(t)) for t € S*(F) and 0(t) = A(t — 0(r)) for
te $*(G).

Proor. Since G is continuous, G(r 4 A(r)) = F(r). Combining this with
F7Y(F(1)) = tyields —@(t + A(t)) + [t + A(r)] = tor A(t) = 0(t + A(1)). 0(¢) =
A(t — 6(r)) is similarly proved.
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When does A(+), in addition to X + A(X) = Y, have the property Y —
A(Y) =_ X, or when is A(+) = 6(+)? It turns out that answering this question
is equivalent to solving Euler’s equation, and A(.) = 6(-) only when the linear
models hold:

PrOPOSITION 2.3. Suppose that F, G and A(+) are continuous on the reals R. If
A(t) = 6(t) for t € R, then there is a constant A such that F(1) = G(t 4 A) for all
teR.

Proor. Since A(+), 6(+), F and G are continuous, F and G must be strictly
increasing and G™(F(1)) — t = t — F7(G(1)). Set H™!(t) = G '(F(t))and K(1) =
H(t) — t, then H™!(t) — t =t — H(t)or H(H(t)) = 2H(1) — t,and K(t + K()) =
H(H(1) — (1 + K(1)) = 2H(1) — 1 — (¢ + K(1)) = 2K(1)+ 1) —t — (1 + K(1)) =
K(t). The equation K(t 4 K(t)) = K(z) is called Euler’s equation and is a special
case of an equation solved by Nabeya (1972). Nabeya also points out that it
has been considered by Kuratowski (1929) and Wagner (1959). The solution
when K is continuous is given by K(r) = A for some constant A. It follows that
H(t) =t + A and F(r) = G(1 + A).

In order to test, on the basis of a confidence band for A(x) (see Section 3),
whether the linear model assumption is satisfied, one needs the result that A(x)
is a constant if and only if the linear model holds:

ProposiTION 2.4. [f F(x) = G(x + A)forall x, then P(A(X) = A) = P(H(Y) =
A) = 1. If A(x) = A for x € S(F), then F(x) = G(x + A) forall x. If Fis strictly
increasing on S(F), then F(x) = G(x 4 A) for all x if and only if A(x) = A for
x e S(F).

Next, we give some general properties of A(.).

PROPOSITION 2.5. (i) Forarbitrary Fand G, X + A(X) is stochastically no smaller
than Y. (ii) The slope of the tangent to A(x) is bounded below by —1 in the sense
that [A(x + ¢) — A(x)]e™ = —1foralle > 0, all x e S(F). (iii) When the expected
values of X and Y exist, then E(A(X)) = E(Y) — E(X).

Finally, A(x) and its estimate A (x) have the following invariance properties.
We write A(« | F, G) for A(.):

PROPOSITION 2.6. Suppose h is continuous and increasing on S(G), then A(x|F,
Gh™') = h(A(x | F, G) + x) for x e S(F). If his also increasing and continuous on
S(G), then

A(h(x)| Fh7', Gh™') 4 h(x) = h(A(x| F, G) + x) for xe S(F).

As an example, let F, and G, denote the distributions of X 4+ a and Y + a
respectively, then A(x| F, G,) = A(x|F, G) +aand A(x | F,, G,) = A(x —a| F, G).

REMARK 2.1. The assumption that X and Y are independent is not needed in
this section.

3. Empirical probability plots and distribution-free confidence bands for the
shift function. To obtain an explicit expression for the empirical shift function
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A (x) = G,7(F,(x)) — x, let Y(1) < ... < Y(n) denote the ordered Y, and let
{t) denote the greatest integer less than . For x e S(F,), we have

(3.1) By(x) = Y(nFu(x)y + 1) = x,

which is the formula used in Figure 2. Rather than plotting this function, it
would be just as useful to plot the points (x(i), A (x(i)), i = 1, - - -, m, where
x(1) < -+ < x(m) denote the ordered x,. Since A (x(i)) = G,~'(i/m) — x(i), we
see that (x(i), [XAV(x(i)) + x(i)), i = 1, -« -, m, is an empirical probability plot with
G, taking the place of the usual parametric distribution function H in the prob-

ability plot (x(i), H-'(i/m)), i = 1, .-, m. The present probability plot, rather
than being a check of the distributional assumption H, is a check of the linear
model assumption: If (x(i), G,"(i/m)), i = 1, ..., m, fall near a straight line

with slope one, then this supports the linear model assumption.

To get an idea of how reliable an estimate A(r) is of A(7), we construct a
confidence band based on A (1) for A(s). This confidence band can then be
turned into a test of the linear model assumption by checking if there isa hori-
zontal line that falls in the band. Such a confidence band can easily be con-
structed from the one-sample Kolmogorov confidence bands for F and G. Let
¢, and ¢, be two numbers in (0, 1) such that for continuous F and G

(3.2) P(F (x) —¢ < F(x) £ F(x) +¢ forall x)=1—qa,,
PG (V) — &, £ G() £ G (y) + ¢ forall yy=1—a,.
By convention, G,”'(1) = —oo for 1 < 0 and G, *(r) = oo for ¢t > 1.

THEOREM 3.1. (G, (F,(X) — & — &) — x, G, (F(x) 4+ & + &) — x) isa si-
multaneous confidence band for A(x) with confidence coefficient at least (1 —a,)(1 —a,), .
ie.

PG, (Fu(x) — & — &) — X = A(X) = G, (Fo(x) + & + &) — x
forall x) = (1 — a))(1 — ay).

Proor. With probability (1 — a,), G,(¥) — ¢, £ G(y) < G,(v) + ¢, for all y.
It follows that G, }(u — ¢,) < G(u) < G, (u + ¢,) for all u with probability
(1 —a,). Similarly, with probability (1 — «a)), F,(x) — ¢ < F(x) £ F,(x) + ¢
for all x. Since F, and G, are independent, the probability that both inequalities
hold is (I — a,)(1 — a,), and the result follows.

When F,(x) + ¢, + ¢, > 1, the only information the confidence band yields
is A(x) = G,"Y(F,(x) — & — &), and similarly, when F (x) —¢ — ¢, < 0, the
confidence band reduces to an upper confidence boundary.

Other distribution-free confidence bands can be obtained if instead of the
Kolmogorov confidence bands we use confidence bands obtained from statistics
of the form

sup, |F(X) - m(x)l/q(F(x)) or sup, lF(X) - m(x)l/q(Fm(x))
for appropriate functions g. See for instance Steck (1971) or Birnbaum and
Lientz (1969).
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REMARK 3.1. If one wanted to check whether a log-linear or scale model
F(x) = G(ax), a > 0, is satisfied, one would check whether the empirical prob-
ability plot falls close to any line through the origin, since in this model
A(x) = (a — D)x.

REMARK 3.2. It is not necessary to assume that F and G are continuous in
Theorem 3.1, since when F and G are discrete, the confidence bands (3.2) are
conservative. .

4. Asymptotic theory. AAV(X) is a consistent estimate of A(x), in fact
NYA(x) — A(x) converges weakly to a Gaussian process. This result, which
is established in this section, is a start towards developing asymptotic methods
for A(x) (x fixed), sup, A(x), and inf, A(x). Before the result can be applied, one
would have to investigate the effect of estimating the parameters in the asymptotic
normal distribution of N}A ,(x) — A(x)).

Define 4, = (m/N) and suppose that there is a constant 2¢ (0, 1) such that
Ay — Aas N — co. Assume that the supports of F and G are two non-empty
finite intervals (a, b) and (c, d) respectively. Extend the definition of A ,(x) from
S(F,) = [X(1), X(m)) to [a, b] by A (x) = inf{r: G (1) = F,(x), t€]c, dl} — x,
and the definition of A(x) from S(F) = (a, b) to [a, b] by A(x) = G~Y(F(x)) — x,
x€|a, b]. N (x) — A(x)) is a member of the space D of functions on [a, 6]
that are right continuous and have left-hand limits. On this space, we use the
usual Skorohod topology (e.g. [1, page 111]).

W,(t) will denote a Brownian Bridge on [0, 1], that is, a Gaussian process with
mean zero and covariance function s(I — 7), 0 < s < ¢ < 1.

THEOREM 4.1. Suppose that G(t) has a continuous derivative g(t) satisfving 0 <
9(1) < oo on[c,d]. Then N*[AN(X) — A(x)] converges in distribution (weakly) to
the Gaussian process

(4.1) [9(GTHFCONIT 2T — HITHW(F(x)) -

Proor. Let U, ---, U, be independent random variables with each U, uni-
formly distributed over [0, 1] and U, - .-, U, independent of X,, ..., X,. Let
H, denote the empirical distribution function for U,, - -+, U, and let H,"Y(u) =
inf{r: H(t) = u,1€[0, 1]}, ue [0, 1]. Since u < G(¢) if and only if G-}(u) < 1,
G(U,), ---, G™(U,) has the same distribution as Y,, ---, Y,; and the process

G~'(H,™'(u)) has the same ‘probability distribution as the process G,~'(x). More-
over G'(H,™") is independent of G, so the process
(4.2) Dy(x) =ger NH{GT(H,(Fp(x))) — GTH(F()], x¢e[a, 0],
has the same probability distribution as N#(A y(x) — A(x)), x € [a, b]. Set u =
F(x) and u, = H,7'(F,(x)), then, since u, # u a.s.,

(4.3) Dy(x) = G70) = C7) iy s,

Uy — U
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It will next be shown that Niu, — u) converges in distribution to W, (F(x))/
[A(1 = D] Ny — 1) = NI{H,(Fy(x) — Fo(x)] + N{F,(x) — F(x)]. Bya
well-known result (e.g. [1, page 141]), N[ F,(x) — F(x)] = (N/mym}[F,(x) —
F(x)] converges in distribution to W(F(x))/4*, where W(r) is a Brownian Bridge
on [0, 1]. Set V,(u) = n*[H,~(u) — u]. It is known [9], [10] that the U, can be
constructed on a probability space Q in conjunction with a Brownian Bridge V
such that sup,., <, |V ,(#) — V(4)] —, 0 where —, denotes convergence everywhere
on the probability space Q. Note that

SUP,<.zp [Va(F(X)) — V(F(x))|
= SUPozyza [Val#) — V()] + SUPag.sy [V(Fa(x)) — VIF(X))] -

The first term on the right-hand side of the inequality converges to zero, as
already remarked. By the Glivenko-Cantelli theorem, sup, [F, (x) — F(x)| — 0
a.s. Since V is a.s. uniformly continuous, the second term on the right-hand
side converges a.s. to zero. It follows'from this that N H ~(F,(x)) — F,(x)] =
(N[n)tV (F,(x)) converges in law to V(F(x))/(1 — A)t. By construction, ¥ and
W are independent, and (W(F(x))/4}) + V(F(x))/(1 — 2)! has the same law as
WA FODIIAT = DI SUPocyzy [H, () — 4] = SUPyz,z [H,(#) — 4] and two ap-
plications of the Glivenko-Cantelli theorem imply that u, = H, ~'(F,(x)) satis-
fies sup, |u, — u| — 0 a.s., where ¥ = F(x). Next we establish that A,(u) =,
[G~Y(uy) — G~Y(u)]/(uy — u)converges uniformly to 1/g(G~Y(u)) =4, A’(#). Since
A’ is continuous on [0, 1], it is uniformly continuous. Thus given ¢ > 0, there
exists 6 > Osuch thatsup,_, ., |4'(f) — A’(s)] < e. By the mean value theorem,
[Ay(u) — A'(u)| = |A'(t) — A'(u)| for some r¢€ (u, uy). Since sup, |uy — uj— 0
a.s., then for a.a. w there exists N, , such that |4 — u,| < 6 whenever N > N .
Thus for a.a. w and N > N,

,w?

SUPggyzr [Ay(#) — A'(U)] = supj_y <, |A'(1) — A'(5)] < e
The result follows from this.

REMARK 4.1. (a) If convergence of N(A y(x) — A(x)) to a normal variable is
only needed for fixed x, the assumption of Theorem 4.1 can be relaxed to “G(r)
has a derivative g(r)at t = G~'(F(x)) satisfying 0 < g(¢) < oo.” (b) The assump-
tion that the supports of F and G are finite intervals can be omitted if one re-
stricts the definition of N#(A y(x) — A(x)) to a finite closed interval.

5. An example involving control vs. treatment. When the X’s are control
responses and the Y’s are treatment responses, the following model has been
considered by Lehmann (1974, Section 2.2): “Suppose that there exists a func-
tion d(+) such that the treatment adds the amount ¢(x) when the response of the
untreated subject is x. Then the distribution of the treatment response Y is that
of the random variable X + (X).” Thus if we assume that ¢(x) + x is non-
decreasing, then according to Theorem 2.1, d(.) equals the shift function A(.).
When the above model holds, d(-) = A(-) will be called the treatment effect
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function. Note that it is a rather special model since it assumes that two subjects
with the same control response will react the same way to the treatment. How-
ever, it isa much better approximation to the real situation than the linear model
which essentially assumes that all subjects react the same way to the treatment
regardless of their control response.

As an illustration, A (x) was computed for the survival times in days of the
guinea pigs used in Bjerkedal’s (1960) study of the effect of tubercle bacilli.
The two samples considered are the first two columns of Bjerkedal’s Table 6
which contain a control group (column one) of 107 guinea pigs, and a treatment
group (column two) of 61 guinea pigs which received a dose of tubercle bacilli
(see Table 1 of the present paper). The relevant linear model parameter is the
difference of the means. Itsestimate, the difference of the sample means, reveals
that the mean life of the treated animals is significantly shorter than the mean
of the untreated group. A,(+) and its confidence band yields much more in-
formation about the two populations (see Figure 2). The confidence band shows
first of all that the linear model assumption is not satisfied since a horizontal
line can not be drawn in the band. About the effect of the treatment, A ()
indicates that the weak members of the population benefit from the treatment,
while the treatment is extremely harmful to the strong members of the popula-
tion. Furthermore, the stronger the member of the population, the more harmful
the treatment. Here, an animal in the control group is called weak if he is prone
to die at an early age, and strong if he is prone to die at an advanced age. The
upper boundary of the confidence band shows that the treatment is significantly
harmful only for guinea pigs with control response greater than 250 days. The
present confidence band does not allow one to conclude that the treatment is
significantly beneficial for weak members of the population.

The above example illustrates some general principles that lead one to believe
that the linear model assumption is often not satisfied (not even approximately):

TABLE 1
Survival time in days up to 735 days

Control group x 18 36 50 52 86 87 89 91 102
Treatment group y 76 93 97 107 108 113 114 119 136
x 108 114 114 115 118 119 120 149 160 165 166 167
y 137 138 139 152 154 154 160 164 164 166 168 178

167 173 178 189 209 212 216 273 278 279 292 341
179 181 181 183 185 194 198 212 213 216 220 225

355 367 380 382 421 421 432 446 455 463 474 505
225 244 253 256 259 265 268 268 270 283 289 291

545 546 569 576 590 603 607 608 621 634 634 637
311 315 326 326 361 373 373 376 397 398 406 459

638 641 650 663 685 688 725 735
466 592 598

= %

o % % < %
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Frequently, the members of a population can be said to have a certain property
such as “prone to die at an advanced age”, “prone to grow tall”, “prone to get
high blood pressure”, “prone to learn fast”, etc. For such populations, if we
consider two members that have this property to a different degree, then we
would expect a treatment designed to influence this property to affect these two
members differently. In other words, there is interaction between the proneness
property and the treatment. A(.) is a measure of this interaction. For the ex-
perimental results in Table 1, Bjerkedal and Palmer (1959) call this interaction
an interaction between experimental tuberculosis and extraneous forces. The
usual way to treat this problem in analysis of variance is to use block designs.
However, this is only possible for characteristics that can be measured before
the experiment. Often, there are characteristics that cannot be measured before
the experiment, such as the proneness to die early in the guinea pigs example.
Thus blocking should be used to remove variation due to measurable charac-
teristics, and then estimates based on shift functions should be used to measure
the effect of the treatment and the interaction between the treatment and these
unmeasurable characteristics or proneness properties.

REMARK 5.1. Looking at Figure 2, one sees that a model assuming that A(x)
is a line ax 4+ 3 could be a good fit in the example. This amounts to assuming
a shift and scale model, i.e. F(x) = G((a« + 1)x + ). A good estimate of A(x)
would be the regression line through the points {(x(i), Ax@y),i=1, -, m).
This estimate and more general models in analysis of variance will be treated
in a forthcoming paper.

Acknowledgment. The author is grateful to Steinar Bjerve for programming
the plots in Figure 2.
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