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TRANSFORMATION OF OBSERVATIONS IN
STOCHASTIC APPROXIMATION!

By SamMI NAGUIB ABDELHAMID
Alexandria University
The general stochastic approximation procedure:
Xni1 = Xo — ancn™th(Yy), n=12,--.

is considered, where 4 is a Borel measurable transformation on the random
observations Y. Under some mild requirements on # and on the error
random variables, the asymptotic properties, the a.s. convergence and the
asymptotic normality are studied. The analysis is confined to the case
where the error random variables are (conditionally) distributed according
to a distribution function G which is symmetric around 0 and admits a
density g. The optimal choices of the design sequences a, and ¢, as well
as the transformation # are studied. The optimal transformation turned
out to be equal to —C(g’/g) (a.e. with respect to G) for a C > 0 and it is
the transformation which minimizes the second moment of the asymptotic
distribution of n8(X, — ¢#). The Robbins-Monro and the Kiefer-Wolfowitz
situations are emphasized as special cases. With the optimal transforma-
tion, the new proposed generalized procedure is shown to yield asymp-
totically efficient estimators.

1. Introduction and summary. Consider the following general stochastic ap-
proximation procedure:

(1) Xn+1 = Xn - a"cn”lh(yn) ’ n = 1’ 27 e

where X, is an arbitrary random variable, Y, are random observations, a, and
¢, are positive numbers and 4 is a Borel measurable transformation. With the
choice # = the identity, (1) includes both the Robbins-Monro (1951) procedure
(RM) and the Kiefer-Wolfowitz (1952) procedure (KW). Fabian (1960, 1964)
considered (1) with 2 = sign; we shall call (1) with the choice # = sign procedure
(F).

In this paper we establish the asymptotic properties, the a.s. convergence and
the asymptotic normality of this proposed generalized procedure. Then we char-
acterize the optimal transformation 4. Our analysis is general enough to include
both the RM situation and the KW situation as special cases. To be more specific
let f'be a Borel measurable function defined on the real line. The exact analytic
form of f may be unknown, but it is assumed that / belongs to a rather general
family of functions. The only available information about f is that at any level
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X, we can observe f(x) subject to a random error; that is we can obtain unbiased
observation of f(x). Inthe RM situation, the goal is to estimate sequentially the
unknown root of the equation f(¢) = 0 (or, generally f,(f) = 0, where f, are
Borel measurable functions); and in the KW situation the goal is to estimate
sequentially the unknown point of minimum (or maximum), ¢, of a function f.

The results on the RM situation were obtained independently by the author
and by Anbar (1971) and will not be repeated here. The appropriate details can
be found either in Anbar (1973) or in Abdelhamid (1971). As a special case of
our analysis we shall emphasize the KW situation.

Let us denote

=X Xy o X)L M) =E[Y,],  V,=Y,— M(7).

We shall confine our analysis to the case where the random variables V, are
conditionally (given .2 distributed according to distribution function G which
is symmetric around 0 and admits a density function g. This requirement of
symmetry is natural in the KW situation (see Section 3.4 below).

We shall state conditions on # under which both the almost sure convergence
to ¢ and the asymptotic normality are preserved. Within the class ©” of such
h’s we consider the optimal transformation which minimizes the second moment
of the asymptotic distribution of n#(X,, — 6). This will be shown to be equivalent
to finding # € '« which maximizes H(h) = [d/dr § h(t + v)G(dv)],-,. This leads,
under some regularity conditions, to # = —(g’/g) (or any positive constant mul-
tiple of —(g'/g)).

The surprising fact is that with such an optimal # the stochastic approximation
procedure is not only optimal within the class of stochastic approximation pro-
cedures considered, but also X, is an asymptotically efficient estimator of € in
the sense that the variance of the asymptotic distribution of n?(X, — 6) cor-
responds to the Cramér-Rao lower bound for the variance of unbiased estimator
of #, based on the first n observations.

Knowing the optimal transformation, the KW procedure, as well as the RM
procedure, is optimal if and only if the error random variables are normally
distributed. As for procedure (F), we show it is optimal if and only if the error
random variables have a double exponential distribution.

One of the regularity conditions is 0 <:I(g) = § (¢'(v)/9(v))*G(dv) < oo; if it
is not satisfied, it can be shown (cf. Abdelhamid (1971), Section 5.16) that one
can design transformations which yield improved procedures.

Here we only note that our results would make it possible to compare different
transformations and to study the asymptotic relative efficiency of procedure (F)
relative to the optimal procedure. It may be of interest to report that the as-
ymptotic relative efficiency of procedure (F) relative to the optimal procedure
is the same as that of the sequential sign test relative to the sequential probability
ratio test (cf. Groeneveld (1971)). For more details we refer the reader to
Abdelhamid (1971).
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Finally we give some examples of new optimal procedures.

2. Basic assumptions and notations. All random variables are supposed to be
defined on a probability space (Q,. 7, P). Relations between random variables,
including convergence, are meant with probability one. E denotes the expecta-
tion and £, the conditional expectation given a random vector 7. The real line
is denoted by R and the indicator function of a set A by y,.

We shall write N(y,, ¢,*) to denote a normal random variable with mean = /¢,
and variance = y,’ and we also write 7', — _ £ if T, is asymptotically é-distributed.

For an easy reference, the KW situation is described below.

2.1 Kiefer-Wolfowitz (KW) situation. We assume that / is a Borel measurable
function on R satisfying

(1) Sup—-k<x—(/<(l k) Df('x) < 0 4 inf(l k) <z—0<k Qf(x) > 0 >

for an unknown number ¢, and every natural number k; where D f(x), and Df{x)
denote the lower and upper derivative, respectively, of f at x. Furthermore,
there exist constants A4, B such that

) fix +1) — ()] < Alx — 6] + B forall xeR.

The relation (1.1) holds with positive a,, ¢, satisfying

no

©) =0,  Xil.a, =o0, waate, < oo
and the random variables Y, satisfy

4) M,(75) = (X, + ) — X, —c),

and

5) E, V<0

for a number ¢ and every natural number n.

3. Almost sure convergence of the modified stochastic approximation proce-
dures. To establish the a.s. convergence of the general procedure (1.1), we give
the following theorem which can be proved under a somewhat weaker set of
conditions than those of Theorem 1 in Burkholder (1956). By applying Lemma
10 in Dubins and Freedman (1965) (see also Robbins and Siegmund (1971)),
the proof can be carried out in steps similar to those in Theorem 1 of Blum
(1954), and we omit the proof here. This slightly more general theorem may
be considered as a sharpening of the basic results in Blum (1954), and in
Burkholder (1956).

3.1 Almost Sure Convergence Theorem. Let 6 ¢ R, and =, be a nonnegative num-
ber sequence. Let (1.1) hold and M, be Borel measurable functions; M,(X,) =
E . [W(Y,)]. Suppose that

(1) ife >0, |x — 0| >candn > nyc) then (x — 0)A71n(x) > 0;
(2) if0 <3, <0, < o0, then 31 a,¢, [inf, -y, |[M,(%)]] = oo;
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(3) there exist positive constants Hy and H, such that
IMn(x)' = H, + len'x - 0'

forall xe Randn =1,2, ...,
4) a,c,~'r, > 0asn— oo if t, isan unbounded sequence; otherwise a,c,™ — 0

asn-— oo,

(5) Timate,E, [A(Y,) — M(X,)] < co.

Then
X, —0.

3.2 REMARK. Theorem 3.1 still holds if a,, ¢, are positive Borel measurable
functions of X}, Y}, Y,, ---, Y,_,, 7, is a nonnegative Borel measurable function
of X}, Y, .--, Y,_, with conditions on a,, ¢,, and r, holds for every sequence
X, Y, Y,, ---. In fact it is enough to assume that (3.1.2)—(3.1.4) hold for
every sequence X;, Y, Y;, - -+, such that sup [X,| < co.

3.3 REMARK. Given £, the a.s. convergence of the procedure (1.1) holds if
the conditions of Theorem 3.1 are satisfied irrespective of whether they are also
satisfied for # equal to the identity. But since we are interested in the optimal
choice of # it seems useful to investigate conditions on #, which guarantee that
conditions of Theorem 3.1 are satisfied with this 4 if they are satisfied for & =
the identity.

Henceforth the following two assumptions will be assumed to hold.
3.4 AssumpTION. In the general procedure (1.1), let

where V, are random variables conditionally (given _¢ ) distributed according
to a distribution function G which is symmetric around 0 and admits a density
g. The functions M, are Borel measurable.

Here, we may remark that the requirement of symmetry is natural in the KW
situation where Y, is an unbiased estimator of [ f{X, + ¢,) — f(X, — ¢c,)]. The
requirement of symmetry is then satisfied if the errors in estimating f(X, 4+ ¢,)
and f(X, — c,) are independent and identically distributed.

3.5 AssuMPTION. Weassume that 4 is an odd Borel measurable transformation
defined on R and nonnegative on [0, co). In addition we assume that W(r) =
§ At + v)g(v) dv = § h(v)g(v — 1) dv exists for all t€ R.

3.6 LEMMA. Assume that
(1) (i) liminf, , W) >0,
and either

(i) h  is non-decreasing ;
or
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(iiiy g is continuous and non-increasing on [0, c0), and
h is bounded and continuous; furthermore h(v) > 0
forall v>0.

Then (3.1.1) and (3.1.2) hold for h if (3.1.1), (3.1.2), and (3.1.3) hold for the
identity transformation.

Proor. From (i) we obtain, for some positive numbers A and p,, that
(2) 1% (1) = p, forall 0<r<A.

If & is non-decreasing then so is ¥, and thus (2) implies that inf {¥(7), t > 1} > 0
for every £, > 0. Therefore (i) and (ii) imply that if 0 < T, < T, < co, then

3) inf (W(r); 1€ [T, T,]} > O.

Now suppose (iii) holds; we shall prove that (3) holds in this case too. Since
h is odd and g is symmetric, ¥(¢) can be written in the form:

4) W) = (g h()[g(v — 1) — g(v + )] dv, teR.

The integrand is nonnegative for r = 0, since #(v) = 0 for v = 0, by Assumption
3.5,and g(v — ) — g(v + 1) = 0 for v = O and every r = 0. The latter is obvi-
ous from (iii) if 0 < r < v; if 0 < v < rthenglv — 1) —g(v + ) = g(t — v) —
g(v + 1), which is again nonnegative by (iii). In particular ¥(s) = 0 for t = 0.
But suppose ¥(r) = 0 for some ¢ > 0. Then, since A(v) > 0 for all v > 0,
g(v — 1) — g(v + 1) = 0 for almost all (Lebesgue) v = 0. The function F(v) =
g(v — 1) — g(v + t), v = 0, is then continuous and thus identically zero. More-
over g is periodic with period 2¢; but since g is non-increasing for v > 0, then
g = constant on R. This is a contradiction to the fact that g is a density func-
tion. Hence W(r) > O for all r > 0. Furthermore, since 4 is bounded and con-
tinuous, then by the dominated convergence theorem ¥ is continuous on [T, 7],
0< T, <T, < oo. But[T,, T,]is compact; then ¥ achieves its minimum on
[Ty, T,] and thus (3) holds.

Since ¥ is odd, (3) implies ¥(r) sign (r) = 0. (3.1.1), (3.1.2) and (3.1.3) hold
for M, since (3.1.1)—(3.1.3) hold when # = the identity. M,(X,) = ¥(M,(X,))
and thus (3.1.1) for M, implies (3.1.1) for M,. Further (3) and (2) imply that
for every T > 0 there is an » > 0 such that

5) WOl =gl forall || <T.

Suppose 0 < 0, < d,. Then using (3.1.3) for M, we obtain |M,(x)| < T for some
T > 0 and all |x| < 6,. Thus |M,(x)| = |¥(M,(x))| = »|M,(x)| for some 7 > 0,
and (3.1.2) for M, follows from (3.1.2) for M,. []

3.7 LEMMA. Assume there exist constants K,, K, such that
(1) W) < K|t + K, forall teR.
Then (3.1.3) holds for M, if it does for M,.
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ProOF. Since M,(x) = W(M,(x)),
|M,(x)] = KIM,(x)] + K, .
Thus (3.1.3) is satisfied, since M, satisfies (3.1.3). []
3.8 REMARK. Let }] a,’c,™ < oo and supr, < oco. Now concerning (3.1.5)
we notice that it is satisfied if # is a bounded transformation. We also add this
remark: if / is bounded by a straight line, M, is bounded, and G has a bounded

second moment and it is then easy to verify that (3.1.5) holds; furthermore,
(3.1.3) also holds provided that M, satisfies (3.1.3).

Here are some examples.

3.9 ExaMPLE. Let A(v) = sign(v), ve R. If g is continuous at 0, g(0) # 0,
and (3.1.1)—(3.1.3) hold for M,, then (3.1.1)—(3.1.5) hold for M,.

Proor. £ is a bounded function, hence (3.1.3)—(3.1.5) are easily verified
because }; a,’c,”* < co and z, could be taken = 0. Since 4 is non-decreasing,
Lemma 3.6 will imply (3.1.1) and (3.1.2) if lim,,, ¥ () > 0. But from the
continuity of g at 0 we obtain

W(r) = 2671 (2, g(v) dv — 2g(0) > 0 ; 9(0) £ 0.

3.10 ExampLE. Let T, be a positive number and A(v) = v if |v] < T, and
lh(v)| = Ty if |v| = T,. Assume that (3.1.1)—(3.1.3) hold for M, and let
{7og(v) dv > 0. Then (3.1.1)—(3.1.5) hold for M,.

ProoF. £ is bounded and non-decreasing, so as in the previous example it is
enough to show lim, , r*¥(r) > 0. But one may easily check that

V() = 1§25, g(v) dv 4 §725 (T — v)g(v) dv ,
and then it follows that
lim,_o =W () = §29 g(v) dv =2 §;° g(v) dv > 0. 0

3.11 ExaMPLE. Let % be a bounded odd function, 4’ be bounded and
§{ 7’ (v)g(v) dv > 0. In addition let g be continuous and non-increasing on [0, co)
and A(v) > O for all v > 0. If M, satisfies (3.1.3)—(3.1.3) and }] a,%c,™® < oo,
then (3.1.1)—(3.1.5) hold for M,. '

Proor. Since # is bounded, one can choose z, = 0 and thus (3.1.3), (3.1.4)
and (3.1.5) hold. Also since (3.1.1)-—(3.1.3) hold for M, and (3.6.1)-(iii) is
satisfied, Lemma 3.6 will imply (3.1.1) and (3.1.2) if lim, , r=*¥(r) > 0. But #’/
being bounded implies that

W0y = § #(v)g(v)dv > 0. 0

4. Asymptotic normality of the modified procedures. In this section we shall
use the following 1-dimensional version of a theorem of Fabian (1968Db).
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4.1 THEOREM. Let .7", be a non-decreasing sequence of o-fields, .»~, < 7.
Suppose U,,, 7, T,,I',, @, are random variables, ¢, I', ® € R, and " > 0. Suppose
r, ®,., v, are 7 -measurable, C, a, 8 ¢ R, and

(1) r,-r, O -0, T,—>T or E[T, —T|]]—0.
@) E.[7)=0, C>E_[77] =00,

and with

(3) 63‘,7 = E[X[\)‘j[2;'rj“]|ﬂ/‘j|2] ’

let either

4) lim, o2, =0 forevery r >0,

or

(3) a=1, lim, ., % 2,00, =0 forevery r>0.

Suppose B, = Bifa =1,and 3, =0 if a + 1.

(6) O<a<l, O0<p, pB,<2I,
and
(7) UnJrl - (1 - n_arn)Un + n_((H—ﬂ)’?q)n 7; + n—a——ﬁ 2T’IL *

Then the asymptotic distribution of n®*U, is normal with
8) mean = 2T(2I' — 8,)™* and variance = o’®*2I' — B, ).
(For the proof see Fabian (1968b).)

4.2 Asymptotic Normality Theorem. Let o, a, ¢ and 3 be positive numbers, y be
a nonnegative number and € R. Consider the modified procedure (1.1) with

a, = ajn, c, = c/n’, 0<yr<in=1,2,.--;

suppose that X, — 0 (this will be satisfied if M, satisfies (3.1.1)—(3.1.4), since
(3.1.5) will be implied by (4.2.4) (cf. Theorem 3.1)).

) Let h be continuous a.e. with respectto G, W' existat
0 and W)= H(h) >0; -

—1_2  an b
(2) B=1-=2 and a> Sees HOR) .
Set
) SH0) = §[A(t 4+ v) = W(OFg(v)dv,  S(h) = $*(0);

and assume that
“) the function S* is bounded by a number o¢* and is continuous at 0.

In addition, let a,, C, be .2°,-measurable random variables, and with s = B|(2y) if
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7 # 0; s = O otherwise, assume that
() ¢, IM(X,) = a,(X, — 0) + C,¢.’;
(6) a, — a, and C,—C.

Then the asymptotic distribution of n**(X, — 0) is normal with

(7 mean = —2ac* H(h){[2aa,H(h) — B]™*
and
8) : variance = a’c*S(h)[2aa, H(k) — B]7*.

Proor. The proof will be established by verifying the conditions of Theorem
4.1. We have

9) Xy — 0) = (X, — 0) — a,¢,'M,(X,) + a,¢,7'Z,;
where

Define the following .2”,-measurable random variables
(11) H, = H(h) if M,(X,)=0,

= M, \(X,)M, X, if M(X,)#0; n=12.-..
Then the term a, ¢, *M,(X,) in (9) can be written as a, H,c, M, (X,); and using
(5) we obtain

a,c,”*M,(X,) = a,a,H,(X, — 0) + a,c'HL,.
Since a,¢,* = ac'n™'~#? and a, ¢, = ac™'n"t~#2, we can rewrite (9) as
(12) Ky — 0) = (X, — O)(1 — aa, H,n™)
4+ acin~WRRZ  — acn~"82H, (.

Apply Theorem 4.1 with

a=1, A=, ', =aa,H,, u, =X, -9,
D, =ajc, v, =2Z, and T, = —ac’H,(, .

n

Now ¢, *M,(X,) — 0 by (5), since X, — 6, and this with (1) implies that H, —
H(h). Thus

T, —aa,H(h) , T, — —ac’H(h)E,, O, -0 =alc.
Also from (3) and the continuity of §* at 0 we obtain
E, [Z.] = S{M(X,)) — Si'(h) -

Thus we have shown that (4.1.1) and (4.1.2) of Theorem 4.1 are satisfied with
T = aa,H(h), ® = afc, T = —actH(h){,, C = ¢* and ;' = $*(0) = S’(h).
Concerning (4.1.4) we have

(13) 05,r = E[X[z,-2;rj]Zj2] = E[E;z’j[X[Zj“grj]Zf]];
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the conditional expectations form a uniformly integrable sequence since they
aredominated by £, . Z? = S¥(M (X,)) < o®, by (4). Thus (4.1.4) will be verified
if we show that the conditional expectations converge to 0. But the jth condi-
tional expectation is equal to Q,(M,(X,)) where

(14) Qi(1) = §&(t Vlizimzrn G(dV)
with
E(t,v) = [h(t + v) — ()] forall r,veR.

The integrands in (14) are uniformly integrable as + — 0; since they are dominated
by &(r, v) forall v e R and § (¢, v)G(dv) = S*(r) — Sy’(k) as t — 0. Thus to show
Q;(f) > 0as+t+— 0and j— oo, it is enough to show for almost all (with respect
to G) ve R, &(1, V)Xzit,012,, — 0 @5 £ — 0 and j — oo; and for this it is enough
to show for almost all (with respect to G) ve R, &(t, v) — #(v) as t — 0. Let A
be the set of points at which # is discontinuous. A has a probability zero under
G. By the continuity of # on R — A, and since by (1) ¥ is continuous at 0,
then &(z, v) — A(v) as t — 0 for all ve R — A. This completes the proof of
(4.1.4). The measurability condition follows from the definition of I',, ®,_, and
V1. Also, by (2), 2aa,H(#) > 5. Hence the conclusion of the theorem fol-

lows by Theorem 4.1. []

4.3 REMARK. Because of our interest in the question of optimality of the
transformation 4 in the modified procedure (1.1), the preceding theorem is stated
in terms of the behavior of M,, (see conditions (4.2.5) and (4.2.6)), with sufficient
conditions on /4 in order to guarantee the asymptotic normality of (1.1). But the
theorem can also be applied to the modified procedure directly, because this
procedure can be written as the original procedure with a change of the meaning
of Y,’s and with /4 equal to the identity transformation.

4.4 TueoreEM. (KW situation). Letf, Y, satisfy the conditions of the KW situa-
tion in Section 2.1 with possibly the exception of (2.1.5). Let [ exist and be con-
tinuous in a neighborhood of 0 with f"(0) = M > 0. Consider the modified procedure
with a transformation h which is continuous a.e. with respect to G; further assume
that (3.1.1)—(3.1.3) are satisfied for M, if they are for M,. Let W’ exist at O with
¥(0) = H(h) > 0 and

(1) a,=%, =", r=1i, a>[BMH#]".

In addition let S*(t) = § [A(t + v) — W(1)’g(v) dv, t € R, be bounded by a constant
o® and continuous at 0. Then X, — 0, and the asymptotic distribution of n*(X, — 0)
is normal with

) mean = 0, and variance = a’c S (h)[4Ma(h) — L]

Proor. It can be easily shown that M, (X,) = f(X, + ¢c,) — f(X, — c,) satisfy
conditions (3.1.1)—(3.1.3), and thus by Theorem 3.1 we conclude that X, — 6,
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since conditions (3.1.4) and (3.1.5) are satisfied too. The rest of the conclusion
of the theorem follows simply by verifying the conditions of Theorem 4.2. The
only conditions of Theorem 4.2 which are not directly assumed in our theorem
are (4.2.5), (4.2.6)and (4.2.2). LetA(x,c,) = fix +¢,) — f(x —¢c,), xe R. Let
I =[0 — &, 0 + ¢] be an interval on which f” exists and is continuous. Define

B)  e(x) = (x— 0 (x) — () for xel with o) =0,

=0 otherwise.

Then by expanding A(x, ¢,) as a function of ¢,, and substituting for f’(x) from
(3), it follows that

4) ¢, (x, ¢,) = 2(x = O ["(0) + ¢(x)] + 7(x, ¢,)e,

where ¢(x) — 0 as x — 6 and 5(x, ¢,) — 0if ¢, —»0and x — 6. Obviously ¢ and
7(+, c,), the latter as defined by (4), are Borel measurable functions. Then

Cn_an(Xn) = an(Xn - 0) =+ Cncn

with /27 -measurable a, = 2[ f"(0) + ¢(X,)] and {, = 5(X,, c,); further, a, —
2f"(0) = 2M and {, — 0. Thus (4.2.5) and (4.2.6) hold with @, = 2M, {, = 0
and s = 1, since § = 4. Condition (4.2.2) then follows from (1). Hence the
conditions of Theorem 4.2 are satisfied. This completes the proof. []

4.5 TueoreM. (KW situation). [n Theorem 4.4 let (4.4.1) be replaced by

r=1% and a>[6MH(h)]™.

n

(1) a, =2, c =5,

n n’
Moreover, let ' exist and be continuous in a neighborhood of 6. Then X, — 6, and
the asymptotic distribution of n¥(X, — ) is normal with

@) mean = —3ac’H(h)f"(O)[4MaH(k) — 3], and
variance = a*c~*S}(h)[4MaH(k) — 2]7*.

Proor. It is again easy to conclude, by Theorem 3.1, that X, — 6, and then
it remains to verify (4.2.5), (4.2.6) and (4.2.2) of Theorem 4.2 in order to com-
plete the proof of the theorem. Let A(x, ¢,) = f(x + ¢,) — f(x — ¢c,), x€ R. Let
I'=1[0 — ¢,0 + ¢] bean interval on which " exists and is continuous. Similarly,
as in the proof of the preceding theorem' and with the same ¢, we obtain that

(3) cn~1Mn(Xn) = an(Xn - 0) + Cncnz

with .27 -measurable a, = 2[ f"(0) + ¢(X,)] and {, = [ f""(0) + 5(X,c,)]; fur-
ther a, — 2"(6) = 2M and {, = }/""(f). Thus (4.2.5) and (4.2.6) hold with
a =2M, §, = 3/"(0), f = §and s = 2. Condition (4.2.2) follows from (1).
Hence the conditions of Theorem 4.2 are satisfied. This completes the proof. []

The following theorem is presented here to cover a case of the RM situation
which is treated in Albert and Gardner (1967).
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4.6 THEOREM. Let f, be a sequence of Borel measurable functions defined on R
such that (3.1.1)—(3.1.3) are satisfied for M, = f, withz, = 1,c, = 1 and f,(6) = 0.
Let d > 0 and

(1 D(x) = (x = 0)7fu(x) if x=+10,
=d if X:(?; n=1,2,...

be continuously convergent at 8 to d. Consider the modified procedure (1.1) with a
transformation h which is continuous a.e. with respect to G, and let h be such that
(3.1.1)—(3.1.3) are satisfied for M, if they are for M,. Also let W exist at 0,
W(0) = H(k) > 0 and

) a, =%,  a>[2dHI)]".
n

In addition let S*(t) = § [A(t + v) — W(1)]*9(v) dv, t € R, be bounded by a constant

o and continuous at 0. Then X, — 6 and the asymptotic distribution of n*(X, — 6)

is normal with

3) mean = 0 and variance = a’S,*(h)[2adH(h) — 1]7*.

Proor. Under the given conditions we obtain, by applying Theorem 3.1, that
X, — 6. To obtain the rest of the conclusion of the theorem, we apply Theorem
4.2, for which we need only to verify (4.2.5), (4.2.6) and (4.2.2). We have

M,(X,) = fu(X.) = Du(X)(X, — ).

Since y = 0, then 8 = 1 and s = 0. Thus (4.2.5) and (4.2.6) hold with .2 -
measurable «, = D,(X,) and {, = {, = O; further a, — d, = d, since (D,)7_, is
continuously convergent at # to 4. Condition (4.2.2) follows from (2). Hence
the conclusion follows by Theorem 4.2.

4.7 The optimal choice of (a, c). Let & be a normal random variable with mean
and variance given by (4.2.7) and (4.2.8) respectively. Then

Q g MO @S

(2ac,H(k) — §) (2aa,H(k) — f)
By elementary manipulation it can be shown (cf. Abdelhamid (1971))if {, # O,
the optimal values of (a, ¢), i.e. values for which E* is minimized with the other
quantities being fixed, are given by

. 1 (5 + 2) . 2172 1/(2s+42)
@ @) = (o L 1y Soieran | 7).
With this optimal choice of (a, ¢), (1) becomes
2 (149 2(Q 2 20 [ ))s /s +1)
() ES = s(s—|-—2)2a02 [4C*(So*(h)[H*(h))'] :

On the other hand, if {; = 0, then the optimal value of a, i.e. value of a which
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minimizes EZ* with the other quantities being fixed, is given by:

1

4 =
@ ¢ a, H(h)
With this value of a, (1) reduces to
&9 1 2 2 -
5) & = () 1A e

In particular, in the KW situation under the conditions of Theorem 4.5 and if
f"(0) = 0, we have

1

iy * BSHOUOHO).

(6) (@)= (

4.8 REMARK. We have investigated the optimal values of @ and ¢ for cases
covered by Theorem 4.2. There are results on convergence and asymptotic nor-
mality where a,, ¢, are not necessarily of the form an~! and ¢n~7 (Burkholder
(1956), Sacks (1958), Schmetterer (1968)), but they do not lead to improvement
in speed and so are not considered here. The determination of the optimal
values of @ and c¢ in cases where asymptotic normality does not hold have not
been considered and an investigation of this point is welcomed.

We also notice that if the mean of the asymptotic distribution of n? *(X, — 0)
is zero (see, for example, Theorem 4.4), then (unless ¢ is known) there is no
optimal value of c¢. In such cases ¢ may be designed according to the physical
nature of each problem considered.

4.9 REMARK. We notice that the unpleasant feature of the optimal values of
aand c is that they depend on values, (/"(0), f”(0), ["'(0)), which are, in general,
unknown. But the value of @ in the RM situation and the value of (a, ¢) in the
KW situation can be estimated during the approximation process and fed back
into the procedure.

For the original RM procedure Venter (1967) used a procedure (later gener-
alized by Fabian (1968b)), which estimates the optimal value of a. Recently
in Fabian (1971) a procedure was described which itself estimates the optimal
value of a for a modified version of the original KW procedure. The same ideas
can be used to obtain a procedure which estimates the optimal value of a or
both (a, ¢) for the modified procedure.

4.10 Effectof taking m observations at each stage. Suppose that an experimenter
observes m random variables Y, |, -- -, Y, , instead of one, Y, at stage n such that
these m random variables are conditionally, given /, independently distributed
according to G. Suppose he then uses (1/m) ™ A(Y, ) instead of A(Y,) in the
modified procedure (1.1). The conditional expectation of the average will be
the same as that of 4(Y,) and the conditional variance will only be changed by

a factor of (1/m), and it is easy to see, under the conditions of Theorem 4.2,
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that this will result in changing the variance of the asymptotic distribution by
the factor (1/m). Thus, in the KW situation, under the conditions of Theorem
4.5 we obtain

O w00y, N(COHE detsin

4MaH(h) — 2~ m(4MaH(h) — %
On the other hand, if the experimenter wishes to continue the modified procedure
for nm stages, rather than using averages, then by Theorem 4.5 we have

nm)(X,, — 0) — N39S (OHR) - @SR
@) (1) (Kom = 0) = N< 4MaH(h) — % 4MaH(h) — %>
Let f"'(0) # 0. Then in (2) the optimal choice of (a, ¢) (see (4.7.6)), is given
by
3) @) = (5

2MH(h)

RS OH W)Y )
while the optimal choice of (a, ¢) in (1) is given by

i - BB mpr @) T )

4) (a,¢) = <W}—[(—}z) )

Let €, €, be the normal random variables on the R.H.S. of (1) and (2), respec-
tively. Then with the corresponding optimal choice of (a, ¢), one can easily
check that

E§? = EE;.
Therefore using an average of m independent observations at each stage is as-
ymptotically equivalent to continuation of the modified procedure for nm stages.
The only effect is in decreasing the optimal value of ¢ by a factor of (1/m)t.

S. Optimal transformations. We have seen, in Section 4, that the asymptotic
results for the modified procedure (1.1) in borh the RM situation and the KW
situation are special cases of the situation described in Theorem 4.2. The second
moment of the asymptotic distribution of n#*(X, — @) can be written (see (4.2.7)
and (4.2.8)) as

4a’c»(? a’c’ S (h)

. F- = 4 T oA
M (2a, — (3H(W) | (2aa, H(R) — f)

If {, = 0, then with the optimal choice of (a, ¢), (1) becomes

51 4 s5)? 20 Q2 204\ )L s+ 1)
(2) a}mza_oz [45C* (S (h) [ H*(h) )] .

It can be easily shown (cf. Abdelhamid (1971)) that it is enough to consider
transformations with S*(h) = 1. Then the above expressions are minimized by
the choice # which maximizes H(h).

Let # be the family of all Borel measurable transformations 4 such that 4
satisfies Assumption 3.5, () = 1, and H(k) can be computed by differentiating
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under the integral sign; that is
0 < H(h) = W(0) = § h(v)(—g'(v)) dv.

5.1 LEMMA. Let the density g have a derivative a.e. with respect to G. In addition
let

) 0 < Kg) = § (9'(v)/9(v)) dG(v) < oo,

and set I = [I(9)]*. Suppose thathy = —1/I'(¢’/g)a.e. with respect to G and hyc %"
Then within # , H(h) is maximized by h* if and only if h* = h, a.e. with respect
to G.

The proof is the same as that of Theorem 1 in Anbar (1973).

5.2 DEFINITION. Suppose that 0 < I(g) < oo, #, = —1/T'(¢’/g) a.e. with re-
spect to G, and h, € 7. In addition suppose that the modified procedure is used
with # = h,, for which X, — ¢, and n?*(X,, — ) has asymptotic distribution as
givenin Theorem4.2. Then we shall call #, the optimal transformation. A modified
procedure with such an optimal transformation will be called optimal procedure.

5.3 Asymptotic efficiency of optimal stochastic approximation procedures. The
surprising fact is that the optimal stochastic approximation procedures are not
only optimal within the class of approximation procedures considered but also
they are asymptotically as efficient as the best unbiased estimators of @, the
parameter to be estimated. This is true despite the very simple recurrence relation
that generates the approximation sequence X,,.

In more detail, we show that the variance of the asymptotic distribution of
nf*(X, — 6) corresponds to the Cramér-Rao lower bound for the variance of an
unbiased estimator based on the first n observations.

As an application of Theorem 4.6, let

(1 Y, = [0) + 7, n=1,2, ...

be observations on known functions f, except for § which is assumed to belong
to some interval, ©. Let the error random variables V, = Y, — f,(f) be inde-
pendent and distributed according to G, which satisfies the conditions of Lemma
5.1. Furthermore, for each n let f, have the same unique root 6 € ©, and f,
exist at ¢ and f,'(f) — d where d is positive and known. Also let f, satisfy the
conditions stated in Theorem 4.6. Then by using the optimal procedure one can
show (cf. Abdelhamid (1971)) that ni(X, — 8) — . N(O, (d[')~?). That means
(see Theorem 5.2 in Albert and Gardner (1967), page 68) our optimal procedure
is asymptotically efficient. The case f, = f has been treated independently by
Anbar (1973).

Albert and Gardner (1967; see Chapter 5 there) tried to increase the efficiency
of the RM type procedure which they used in their monograph by making trans-
formation of the parameter space ®. Their procedure stayed less efficient except
when the error random variables are normally distributed.



1172 SAMI NAGUIB ABDELHAMID

The optimal procedure applied to the case f(x) = d(x — ¢)* can also be used
to generate asymptotically efficient estimators by applying Theorem 4.2.

It is worth noting that the KW procedure, as well as the RM procedure, is
optimal if and only if the error random variables are normally distributed. As
for procedure (F), it is optimal if and only if (—g/g)(v) = Csign (v) with a
constant C > 0, and this is true if and only if G is a double exponential
distribution.

5.4 Some examples of new optimal procedures. In the following we give examples
of new optimal procedures which are different from the original RM and KW
procedures (see also Anbar (1973)). The first two examples fall under the case
of Example 3.11 (for more details see Abdelhamid (1971)).

(a) Student’s type distribution. Let G have a density function given by:

— 1 I-‘((1 + y)/Z) 2 —(1+v)/2
9(f) = o) o) (1 + £2)v) s teR,v>0.
The case v = 1 gives the Cauchy density.
Recall that for v < 2 the variance of G does not exist and such types of densities
(with v < 2) are not allowed by either the RM procedure or the KW procedure,
since both stipulate the existence of the variance of G.
With some manipulation and application of Theorem4.2 (see also Section3.11),
one can check that the optimal transformation is given by:

t

hy(t) = C ,
0() y}J—]—t2

teR,

where C, is a positive constant satisfying {=., h*(v)g(v) dv = 1.
(b) Logistic distribution. Let G have a logistic density function given by:

1

e veER.
2(1 + cosh (v))

g(v)

It can also be checked (see Section 3.11) that the optimal transformation is given
by
hy(v) = C - sinh (v)

s veR,
1 + cosh (v)

(c) Let G have a density function given by

C .
W0 = s if o) < T
— _N,CLO, e-Tle+(T2/'2) , lf lrv| > T S
(2r =

where C, and T are positive constants.
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This g behaves like a normal density for small v, and then like a double
exponential for large v. (This is what some authors call Huber’s density.) It
follows that

— & (@) = Kv it o < T
= KT sign (v) if |v=T,

where K also depends on 7. Denoting this transformation by A, we see that #,
isan odd, bounded and non-decreasing transformation which satisfies Assumption
3.5. Thus ke %7”and h, = —1/T'(¢’/g) a.e. maximizes H(k). Also h, preserves
the a.s. convergence (see Lemmas 3.6 and 3.7) and it satisfies the conditions of
Theorem 4.2. Hence 4, is an optimal transformation.
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