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SOME ASYMPTOTIC ASPECTS OF SEQUENTIAL ANALYSIS!

By RoBerT H. BERK
Rutgers University

The asymptotic behavior is given for the error rates and ASN of the
Wald SPRT and of invariant sequential tests. Anasymptotic justification
of Bhate’s conjecture is also provided for invariant sequential tests. Ex-
pressions are obtained for the asymptotic relative efficiency of the Wald
SPRT as compared with the corresponding best non-sequential test.

1. Introduction. An SPRT of two (simple) hypotheses H, and H, about a data
sequence X, X,, - - - has a stopping time of the form -

(1.1) N=inf{n: L, ¢ (—ay,a,)}.

Here L, is the log-likelihood ratio for (X, ---, X,), compute under the two
hypotheses and (a,, a,) are prechosen stopping boundaries. One accepts H, if
L, < —a, and H, if L, = a,. In the classical case studied by Wald (1947),
X, X,, -+ - are i.i.d. so that {L,} is a simple random walk. More complicated
problems give rise to data sequences of dependent elements. For example, the
sequential #-test is based on the sequences X, =Y,,,/Y;, j=1,2,.... Here
Y,, Y,, .- is the original data sequence, assumed to consist of i.i.d. N(y, ¢%)
observations. In this case L, is the log-likelihood ratio for the -statistic or its
magnitude based on Y;, ---, Y,,, (computed under two hypotheses of the form
plo = 0, or |ufo| = &, i = 1,2). The structure of L, in this and other cases is
sufficiently complicated so that very few of Wald’s elegant results for thei.i.d. case
carry over. In fact, only Wald’s inequalities for the error rates under the two
hypotheses seem to generalize. Termination results have had to be established
separately and no close approximations for the power or ASN functions seem
to exist, in general.

In this paper we show that, at least asymptotically, one can narrow this gap
somewhat. We consider the behavior of the error rates and ASN as a, and a,
become infinite. Results are given for the i.i.d. case (Section 2) and for invari-
ant sequential tests (Section 3). Our considerations also provide an asymptotic
justification of “Bhate’s conjecture,” at least for invariant sequential tests. Fi-
nally, in Section 4, we develop expressions for the asymptotic relative efficiency
of the Wald SPRT as compared with the corresponding best non-sequential test.

2. The Wald SPRT. We suppose X, X,, --- are i.i.d. with common pdf f;
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under hypotheses H,, i = 1,2. A Wald SPRT of H,vs. H, gives the stopping
time (1.1), where L, = Y1 Z,, Z;, = log [ fy(X;)/f\(X,)] and (a,, a,) are two posi-
tive numbers. (We suppose that Z is finite w.p. 1.) The error rates are given
by a, = P(Ly = a))and a, = Py(L, < —a,). We shall call (a;, a,) the strength
of the test. Wald’s (1947) inequalities for (a;, a,) may be written

(2.1) a, < (I — aj)e™, ay < (1 — ay)em.

(These inequalities are quite general and do not depend on the i.i.d. structure.
In fact, they do not even require that N be finite w.p. 1.)

It is well known [10] that if X, X,, .. are i.i.d. and P(Z = 0) < 1, then
EetN < oo for some ¢t > 0. (Here P and E refer to the actual distribution of X,
which need not be either f; or f,.) In particular, then EN < co. To avoid trivi-
alities, we assume throughout this section that P(Z = 0) < 1. Suppose now
a = min {a,, a,} — co. We write lim, for lim,_.. Then lim,a;, =0 (i =1, 2)
and w.p. 1 lim, N = oo (hence lim, EN = o). The following theorem gives
more precise information about the asymptotic behavior of N and EN.

2.1 THEOREM. Suppose X, X,, --- arei.i.d. and p = EZ exists. Thenif pn > 0,
w.p. 1
lim, 1z, = lim, P(Ly Z a) =1,
lim, N/a, = lim, EN/a, = 1/p .
If p <0, wp.1
lim, l(LNg—a1> = lim, P(Ny < —a,) =1,
lim, N/a, = lim, ENJa, = —1/p .

REMARK. We can have [g¢| = oco. The case # = 0is covered by Theorem 2.4
below.

Proor. We treat the case ¢ > 0. Sincelim, L, /n = pw.p.1,alsolim, L, =
+oco w.p. 1. Thus L, = min, L, is finite w.p. 1. We then have 1, ._,, =<
lpss—a) = Ow.p. 1 as @ —co. Thus lim, 1, .,, = 1and by dominated con-
vergence, lim, P(N, = a,) = 1.

Since w.p. 1 lim, N = oo, lim, Ly/N = p w.p. 1. By the definition of N,

Ly, l(LN;a2) <a 1<LN;a2) =Ly l(LNgaZ) .
On dividing across by N and letting a — oo, the extreme terms both approach
¢ w.p. 1; thus w.p. 1lim, a/N = ¢ or lim, N/a, = 1/p. By Fatou’s lemma,
lim inf, EN/a, = 1/pu.
Now let t = inf{n: L, = a,}. Clearly N < ¢. It follows from the results in
Siegmund (1967) (for # < oo, plus an easy truncation argument if # = co) that
under our assumptions, lim, Et/a, = 1/p. Hence also lim sup, ENja, < 1/p. []

Theorem 2.1 shows that Wald’s approximétion for the ASN is asymptotically
correct. This approximation [11, page 53] applies when 0 < |¢| < co and may
be written

(2.2) EN = [—a, P(Ly = —a)) + a, P(Ly = a))]/1 -
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According to Theorem 2.1, the ratio of the two sides of (2.2) approaches one

as a — oo.
Wald’s inequalities (2.1) provide the yet cruder inequalities

(2.3) a, < e, a, T e,
The next theorem shows that asymptotically, the inequalities in (2.3) become,
in a sense, equalities.

2.2 THEOREM. Suppose X, X, --- arei.i.d. and E|Z| < oo, i =1,2. Then

lim, a,*log o, = 1 = lim, a;"* log a,™" .

Proor. Let p, = E; Z. Necessarily p#, < 0 < p,. Wald [11, page 197] gives

the following inequality: .
2.49) E,L, = pEN=> (1 —a)log[(l — a,)/a,] + a,log[a,/(1 — a))].
By (2.3), ay = o(l) = a, as a — co. Upon dividing across in (2.4) by a,, we
obtain

t EyNja, = a,7  log a7 [1 4 o(1)] .
From Theorem 2.1, we have that lim, p, E, N/a, = 1; hence limsup,a,*loga,* < 1.
By (2.3), a,7'log a,™* = 1, so therefore lim, a,* log ;"' = 1. The result for a,
is done similarly. []

REMARK. This result also shows that Wald’s approximations for the error
rates (obtained by treating the relations in (2.1) as equalities and solving for
(@), a,)) are asymptotically correct in the sense of the theorem.

Wald [11, page 50] obtained an approximation for the power curve of the
SPRT under the additional assumption that for some (necessarily unique) real
number % # 0, Ee*” = 1. In our notation, the approximation may be written

P(Ly = a)) = (1 — e7*o1)/(eto2 — e~har) ,
Theorem 2.2, in conjunction with Wald’s device of considering the SPRT as
being generated by L,’ = AL, with stopping boundaries
(—a/, a)) = (—hay, ha,) if >0
(resp., (—a/, a)) = (ha,, —ha,) if h < 0)
establishes

2.3 COROLLARY. Suppose X, X, --- are i.i.d., E|Z| < oo and for some h + 0,
Ee*? = 1. Then

lim, (—hAa,)"tlog P(Ly = a,) = 1 if h>0,
lim, (ha))*log P(Ly, < —a,) =1 -if h<O.

Proor. We recall that L, is a log-likelihood ratio for X;, - - ., X, under two
i.i.d. distributions, with the true distribution of X in the denominator. Thus
Theorem 2.2 applies directly. []
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REMARK. Given the existence of %, we have EhZ < log Ee*” = 0, so that
¢ = EZ + 0 and is opposite in sign to 4.

When EZ = 0, the asymptotic behavior of EN is substantially different from
that given in Theorem 2.1.

2.4 THEOREM. Suppose X, X, --- are i.i.d. with ¢* = EZ* < oo and EZ = 0.
Let A = a, + a, and for j > 0, let
o(A) = max [sup (E(Z* — u}’| Z* = u): 0 < u < A},
sup {E((Z- — uli| Z- 2 u): 0 < u < A)].
If either A = O(a) or ¢,(A) = o(a), then, letting p = P(L, = a,) and = = a,/A,
(2.5) lim, p/r = 1 = lim, (1 — p)/(1 — X).
If the above conditions are strengthened to A = O(a) or ¢,(A) = o(a?), then also
(2.6) lim, 0*ENja,a, = 1.

REMARK. As indicated below, ¢; gives a bound on the jth moment of the
“overshoot.” If Z is bounded or both Z* and Z- have increasing failure rate
distributions, then ¢ ,(4) = O(1).

Proor. Let
(2.7) A~ =Ly —aq 1(LN§—al) ) At = L,* —a, 1(1,Nga2> .

)

Thus A = A* 4 A~ is the magnitude of the “overshoot.” Upon taking expec-
tations in (2.7) (and noting that by Wald’s first lemma, EL, = 0, so that
EL,* = EL,~ = E|L,|/2), we obtain by subtraction

(2.8) a(l — p) —a,p = EAY — EA- .
Upon dividing across by a,, this last relation is seen to entail
(2.9) |p/m — 1] £ EAJa, .

A bound for the expected overshoot is given by

(2.10) EA < ¢y(A) .

This is a variant of the bound given by Wald (1947); see, e.g., equations (A.75)
and (A.76). Thus if ¢,(4) = o(a), (2.9) and (2.10) imply that p/z — 1 = o(1)
and hence the first relation in (2.5) holds. The second relation in (2.5) follows
similarly in this case, upon dividing across in (2.8) by a,.

Suppose now that 4 = O(a). We show that this entails

2.11) EA* = o(a?)

We begin by noting that (L, — a,)(Ly + a,) = 0, hence 0 < E(L,* + (a, — a,) Ly —
a,a,) = 0’EN — a,a, (by Wald’s lemmas). Thus

2.12) 0*ENJa,a, > 1
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and in particular, lim, EN = co. Next we note that A < |Z,| and it follows

from the results of Gundy and Siegmund (1967) that under our conditions,

(2.13) EZ; = o(EN).
Thus to establish (2.11), we need only show that
(2.14) EN = 0(a%) .

Let t = inf{n: |L,| = A}. Clearly N < t. Moreover, 0 < (|L,| — 4)* < Z?, so
that
0 < o%Et + A* < 24E|L| + EZ? < 2A(EL?)t + EZ}? = 2A40(Et)t + EZ?,

i.e., [o(Ef)t — A} < EZ}? = o(Et), which entails A/o(Ef)! — 1 = o(1). Thus
lim, o?Et/A* = 1, so Et = O(A* = O(a?) and a fortiori, (2.14) holds. (Note that
this result for E7 is a particular case of (2.6).) As noted above, (2.11) thus holds,
which, together with (2.9) entails (2.5).

We consider now EN. Upon squaring the relations in (2.7), adding and taking
expectations, we obtain

(2.15) 'EN — AE|Ly| + a'p + a’*(1 — p) = EA?,
so that
(2.16) ¢’ENja,a, — AE|L,|/a,a, + (1 — m)p/x + n(1 — p)/(1 — 7) = EA’/a,a, .

Suppose first that ¢,(4) = o(a?). Then, analogously to (2.10), EA* < ¢,(A), so
that EA? = o(a?. Thus the RHS of (2.16) is o(1). Adding the relations in (2.7)
and taking expectations gives E|Ly| — a,p — a,(1 — p) = EA, hence

2.17) AE|Ly|ja,a, — p/r — (1 — p)/(1 — ) = AEAja,a, < 2EAja = o(1) .

Adding, (2.16) and (2.17) yield (2.6).

Suppose next that 4 = O(a). As shown above, (2.11) then holds, so again
the RHS of (2.16) is o(1) and (2.17) holds as well. Again we conclude that
(2.6) holds. [J

Theorem 2.4 shows that when EZ = 0 and EZ? < oo, Wald’s approximations
[11, page 176] for the power and ASN are, under certain conditions, asymptot-
ically exact.

3. Invariant tests. We now suppose that H, and H, are two invariant com-
posite hypotheses about an i.i.d. data sequence X, X, X,, - - -, both generated
by the same group G. That is, G is a group of 1-1 bimeasurable transformations
acting on range X and under H,, the distribution of X belongs to & = GP,,
i=1,2. (P, can be any distribution in £4.) For further elaboration, see [7].
Let .#, denote the G-invariant subsets of &, = <&(X,, - - -, X,). (G acts co-
ordinate-wise on each X;.) For P, e .7, we let P, denote the induced product
measure on .7, and Q,, denotes the restriction of P,, to .”,. (Note that because
G generates ./}, every distribution in &, gives the same Q,,.) We suppose there
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exists P, in &7, i = 1, 2 so that P,, = P,, for all n. Then the likelihood ratio
under H, and H, of the G-maximal invariant for (X, .- -, X,) is

An = dQ2n/dan - El(dPZn/dPInljn) .

Since {A,} is a sequence of likelihood ratios on increasing o-fields (%, ¢ .7, ,,),
an SPRT of H,vs. H, can be based on {A,}. Letting L, = log A,, one can use
the procedure described in Section 1. Wald’s inequalities (2.1) for the error
rates remain valid. Of course, as L, need not be a sum of i.i.d. random vari-
ables, Wald’s approximation for the ASN is not available. Under certain con-
ditions, we develop an asymptotic expression for the ASN. As above, P denotes
the actual distribution of X and need not be in either hypothesis. The following
result does not use the invariance structure; thus it applies to any SPRT satisfy-
ing the hypotheses. These hypotheses are satisfied for many invariant SPRTs
(e.g., the sequential r-test) and for many (other) SPRTs obtained by Wald’s
method of weight functions. Verification of the hypotheses will be discussed
elsewhere. An application to a sequential rank-test is given below.

3.1 THEOREM. Suppose that w.p. 1, L,/n — p e (0, co]. Then w.p. 1
(i) lim, 1, oo, =lim, P(Ly =2 a) =1,
lim, Nja, = 1/p .

If also, for some v e (0, p), the “large-deviation™ probabilities p, = P(L,/n < v)
satisfy lim, np, = 0 and Y, p, < oo, then also

(i) lim, EN/a, = 1/p .
Analogous statements hold if L,/n — p < 0.

Proor. The argument in Thorem 2.1 carries over verbatim to establish (i).
To prove (ii), it then suffices to show that N/a, is uniformly integrable. For this,
we need only show that

3.1) SUPgsy (RP(N > nay) + 34, P(N > ka,)} = o(1) as n-— oo .

It is sufficient to establish (3.1) when a, ranges in the positive integers (since N
does not exceed the stopping time obtained by replacing a, with {a,} =
inf{n: n = a,}). For any integer n > /v, letting s = na,, we have

(3.2) P(N > na) < P(L, < a)) = P(LJs < 1/n) < p, .

It follows from the hypothesis that 5, = sup,., kp, | 0 as n — co. Thus 3.2)
entails

(3.3) nP(N > na,) < np, < b,
and also that

(3.4) 2isn PN > kay) < Yiss P = Disn P L O as nfoo.
Together, (3.3) and (3.4) entail (3.1). ]
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We establish next an analog of Theorem 2.2 for invariant SPRTs. We choose
Pe P, i=1,2and let Z = dP,/dP (X).

3.2 THEOREM. Suppose that fori = 1,2, P(L,/n— p,) = 1, where —co < p, <
0 < p, < oo and that for some v, € (0, |u,]), p, = Pi(L,/n > —v)) + Py(L,/n < v,)
satisfies lim, np, = 0 and 3, p, < oo. Suppose also that (P,, P,) can be chosen so
that E\|Z| < oo, i = 1, 2 and that invariance and almost-invariance are equivalent for
P, i=1,2. Then
lim,a,7'log a,™* = 1 = lim, a,7' log a,™* .

ReMARK. Conditions for the equivalence of invariance and almost-invariance
are given in [3].

Before proving the theorem, we establish

3.3 LEMMA. Let {U,} be a collection of nonnegative uniformly integrable random
variables, all measurable with respect to a o-field ==, Let { &7} be a similarly
indexed system of sub-o-fields of > and let V, = E(U,|.57,). Then {V,} is uni-
formly integrable.

Proor. Since EV, = EU,, sup, EV, =sup, EU, = b < co. For x>0,
$w>0Ve=Vu,5» U, Since for every a, P(V, > x) < b/x, it follows that
sup, S(Van, Ve =sup, {4,505 Us— 085 x - 0. []

ProOOF OF THEOREM 3.2. We treat a,. From (2.1), we see that lim, a, =
lim, a, = 0 and in fact,
liminf, a;"'loga,™ > 1.

It is also true that

(3.5) EL,~>= —EL,
= (1 —aylog[(1 — aj)fa,] + a,log[a/(1 — a,)]
=loga,™' [1 + o(1)].

Thus

E Ly, Ja; = a7t log a,™ [1 + o(1)]
and the theorm will be established if we show that
(3.6) lim, E\L,"Ja, = 1.
By hypothesis, P,(lim, L,/n = p, < 0) : I,soalso P(lim,L,~/n = —p)) = 1.

Since P(lim, N = c0) =1, Py(lim, L,"/N = —p) = 1. By Theorem 3.1,
P,(lim, N/a, = —1/p;) = 1 and hence

3.7 P(lim, Ly~ja, = 1) = 1.

In view of (3.7), to establish (3.6), it is enough to show that L,~/a, is uniformly
integrable.

Let, &, &, denote the sufficient o-field of all sets invariant under permu-
tations of (X, - - -, X,). If Xisreal-valued, . is generated by the order-statistic
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obtained from (X, ---, X,). Let 7, =.7, n.~,. It follows from Theorem
3.2 of [7] that under any P, e &/}, ., and &, are conditionally independent
given /.. (Theorem 3.2 of [7] requires two conditions. First: that &, be
equivariant, which in this case is immediate. Second: that invariance and
almost-invariance be equivalent for .2/, which we have assumed to be true.)
Since R, = dP,,/dP,, = exp{);* Z,} is symmetric in (X;, ---, X,), s0ois A, =
E(R,|-7,). Thus A, = E(R,|_7/,). We then have
L,=1logA, = E(logR,|_/,)

= E(XT Z;| /) = nE(Z,] /7).
(The last equality follows by symmetry: E\(Z;| _7,) = E(Z,| _/,),j=1,---,n.).
Thus
(3-8) L~ = n[E(Z,|_/,)] S nE(Z,7|_/,)

- El(sn [ /n) >
where s, = Z,- + .- + Z,~. Letting

Ve = E(Zy"| /) = Ex(sufn] _2.)

L.~ < nV, soalso
(3.9) L, < NV,.

We complete the proof by showing that NV, /a, is uniformly integrable.

Let 7y ={U, AN =n): A, e _/,}. / is the stopped o-field for the
sequence {_/,}. We show that
(3.10) NVy = E(sy|_/Y) -

From Berk (1969), Proposition 2.2, we obtain

E(sy| Aw) = Zal By Liyam | S)IPAN = 1| L) (o)
= DB Lyam | L) PAN = 1| _Z)H y_a)
= 2 EG | L yew = 2utVliyow = NV,
where we use the conditional independence of .&, and .7, to obtain the third
equality (note that (N = n) e .~,). From (3.10), we then have

(3.11) NVyla, = E(Syla,| _Fy) .

We note that sy/a, is uniformly integrable. (For 0 < s,/a, = (sy/N)(N/a,) —
—E, Z7|p[P] and E, syja, = E,NE, Z~|a, — —E, Z~ |, by Theorem 3.1). Thus
we see from (3.11) and Lemma 3.3 that NV,/a, is also uniformly integrable.
This, in conjunction with (3.7) and (3.9) establishes (3.6). []

We do not present an analog of Theorem 2.4, but simply note following easily
established fact.

3.4 THEOREM. If P(L,/n— 0) =1, then w.p. 1, lim, Nja = lim, EN/a = oco.
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Proor. We have |L,| = a. The result follows upon noting that P(lim, L, /N =
0) = 1. Hence P(lim, NJa = oo) = 1 and then, by Fatou, lim, ENja = oo. []

As one application of the foregoing results, we mention a class of two-sample
sequential rank-tests discussed by Berk and Savage [4]; see also [7]. At stage n,

independent samples (X, - - -, X,)and (Y}, - .-, Y,) are available, from which is
obtained the rank-order statistic R, = (R,;, -+, R,,). (The coordinates of R,
are the ranks of ¥, -.., Y, among {X,, ---,X,,Y,,---,Y,}) Let Fand G

denote the respective distributions of X and Y. To test the (null) hypotheses
H,: G = F, the following class of SPRTs has been proposed: Choose an alter-
native hypothesis H,: G = ¢(F), where ¢ isa given df on [0, 1]. The distribution
of R, is then determined under both hypotheses and an SPRT can be based on
L, = log[P,,(R,)/P,(R,)], where P, (r) = P(R, =r) is computed under H,
i =1,2. Asshown in [4], under certain conditions on ¢, w.p. 1 L, /n converges
to a limit ¢ and in fact, the following large-deviation result holds: For all
¢ >0, there is a ¢ > 0 and p < 1 so that P(|L,/n — p| > ¢) < cp”. Here P
denotes the actual distribution of (X, Y), which need not be given by either
hypothesis. (In [4], it is shown that g is the difference between two Kullback-
Leibler information numbers.) When g = 0, the large-deviation result for L, /n
obviously implies the conditions of Theorem 3.1, so the limiting behavior of
EN given there applies to this class of sequential rank-tests. Letting p, denote
the limiting value of L,/n under H,, it can be verified that —co < g, < 0<
2, < oo and the conditions of Theorem 3.2 are satisfied as well for these SPRTs.

The preceding provides an asymptotic justification of Bhate’s “conjecture”
for invariant sequential tests. One version of this conjecture is as follows. By
“neglecting” the overshoot, we have the approximate equality

(3.12) E L, = —(1 —a)a, + a,a,.

Letting
Zl(n) - El L% s

Bhate (unpublished; see [12], e.g.) conjectured that a reasonable approximation
is given by

(3.13) E Ly = 4(E\N),

(where 4,(+) is supposed extended to R in a convenient manner). This yields an

approximation n, to E, N, obtained by equating the right-hand expressions in
(3.12) and (3.13).

3.5 THEOREM. Under the conditions of Theorem 3.2, Bhate’s approximation is
asymptotically correct. That is,

lim, n/E,N = 1, i=1,2.

Proor. We give the argument for n,. First we show that lim, A, (n)/n =
lim, E, L,/n = p, < 0. Since P,(L,/n— ) = 1, we see that P,(L,*/n—0) = 1and
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P(L,”/n — —p) = 1. Wenote that for x > 0, P(L,* > x) = P(A, > e) < e "

since E; A, = 1. Thus {L,*} is uniformly integrable and, a fortiori, so is {L,* |n};

thus £, L,*/n — 0. Wesee from (3.8) that L,~/n<E,(Z,~|_/,), so thatalso {L,~/n}

is uniformly integrable. Thus E, L,~/n — — p, and hence lim, ,(n)/n = p,.
The equation for n, is

(3.14) A(n) = —aj[l 4+ o(1)]

so clearly lim, n, = co and therefore

(3.15) . lim, 2,(n,)/n, = p, .

From (3.14) we see that lim, 4,(n,)/a, = —1, hence by Theorem 3.1 and (3.15),
(3.16) lim, n,Ja, = —1/p, = lim, E, N/a, .

It follows that lim, n,/E,N = 1. []

REMARK 1. Since 4,(n) ~ ny,, a modified Bhate approximation would replace
A(E,N) by p, E\N in (3.13). Similarly, the RHS of (3.12) can be replaced by
the no-overshoot approximation

(1 —a)) log [a,/(1 — a))] + a,log [(1 — a,)/a], with  (a,, a,)

then being replaced by appropriate asymptotic expressions; (e~%, e~%), e.g.
Since the approximations obtained for E; N all, apparently, have only an asymp-
totic justification, it seems simplest to use the asymptotic expression given by
Theorem 3.1: E;N = a,/|x1,|. One does have to determine p, for this, but the
necessity of inverting 2,(+) is avoided. Numerical investigation of these approxi-
mations would be desirable.

REMARK 2. The proof of Theorem 3.2 shows that lim, £, L,/a, = —1. Since
lim, 2(E,N)/E,N = p,, it follows from (3.16) that

lim, E, Ly/2,(E,N) = 1.
That is, Bhate’s conjecture (3.13) is asymptotically correct.

4. Asymptotic efficiency of Wald SPRT. We consider again the Wald SPRT
for testing two simple hypotheses about i.i.d. data. The theorems of Section 2
allow us to obtain the asymptotic relative efficiency of such tests, as compared
with the best non-sequential tests of the same strength. Theorem 2.2 gives the
asymptotic behavior of (a,, a,) as @ — oo, while Theorems 2.1 and 2.4 give the
corresponding behavior of EN. To effect the comparison, we need a correspond-
ing (asymptotic) expression for the sample size required by the best non-sequential
test of strength (a,, @,). In making the computation, we assume that

4.1) lim, [(log a,)/(log )] = 2,
0 < 2 < oo, or, in view of Theorem 2.2, that lim, a,/a, = 2.

For a sample size n, the most powerful test of H, vs. H, rejects H, if L, > c,.
We must choose (n, c,) so that asymptotically, the non-sequential test has strength
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(a;, a;). That is, we must have

(4.2) (@) P(L,>c¢,)=a,
(®) PyL, =¢,) =y,

in the sense that the ratios of the corresponding logarithms tend to unity. (Thus
(n, ¢,) depends on (a,, a,).)

We argue that ¢, = O(n), or more exactly, that we may achieve (4.2) by
choosing ¢, = n{, where { is a real number depending on H,, H, and 2. The
reason for this is to be found in Chernoff’s (1952) large-deviation result for a
series of i.i.d. summands. Let

o,(t) = log E, e'“ .

Since Z is a log-likelihood ratio, ¢)(f) < oo, at least for 0 < ¢ < 1. Chernoff’s
theorem then says that for z > E, Z,

(4.3) lim, n~*log P,(L, > nz) = —k(z),
where

(4.4) ki(2) = SUP_wcico {12 — ¢y(D)}
Similarly, if z < E, Z,

(4.5) lim, n=tlog Py(L, < nz) = —ky(2).

In view of (4.1), (4.3) and (4.5), we see that a non-sequential test asymptotically
of strength (a,, a,) is obtained by choosing ¢, = n{(2), where p, < {(1) < p, is
the unique soultion (see below) of

(4.6) ky(2) [k \(2) = 2

and n is choosen so that (4.2a) holds. Thus (4.2) and (4.3) give for n the relation
nk,({) = log @,~* or, in view of Theorem 2.2,

4.7 nky(£) = a, .
Hence the sample size required to asymptotically obtain strength (a,, a,) is
(4.8) v(a, A) = a,[k,(C)

(and the corresponding critical value for L, is {(4)a,/k,({)).
Regarding a solution of (4.6), we note: first that

¢y(1) = log § [fA(X)[fi(x)]fa(x) dx = ey(t + 1),
from which it follows that
4.9) ky(z) = ky(z) — z.

Moreover, when z = p, < 0, tp; — ¢,(f) is maximum at 1 = 0 (since ¢,(0) = ,,
where ¢,(f) = dc,(1)/dr); hence k(p,) = 0. Similarly, k,(z,) = 0, so that k,(p,) =
#y > 0. In view of (4.9), (4.6) becomes

(1 — Dky(2) =z,
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which has the solution { = 0 if 2 = 1. Otherwise (4.6) gives the equation
(4.10) ky(2) = z/(1 — 2).

Since, as shown by Chernoff (1952), if z > p, ky(z) = sup,., {tz — ¢,(¢)}, it fol-
lows that k; is convex in z and increasing for z > p,. Since also k,(y,) = 0,
ki(p,) = p, and 0 < 2 < oo entails (1 — 2)~'¢ (0, 1), it follows that the curves
defined by the two sides of (4.10) intersect in a single point, whose abscissa,
C(A) (say) is in (s, p,) and is thus the unique solution of (4.6). In view of (4.10),
(4.8) becomes

(4.11) via, 1) = a,(1 — LA, 2=+1
= 02/.%\:”, A=1.
where, as shown by Chernoff (1952),
= ky(0) = ky(0) = —loginf,_, ., § fi'(x)f;} " (x) dx .
The asymptotic efficiency of the SPRT relative to the corresponding best non-

sequential test is now obtained via (4.11) and the theorems of Section 2. If
EZ = p + 0, then

EN ~ a,/p ©r>0
~ —afp, p<O0,

while the corresponding non-sequential test requires v(a, 1) observations. Hence
the ARE of the SPRT is given by

ARE = lim, v(a, 2)/EN = (1 — )p/S(3) >0, 1% 1
= —p(l — DAY, p<0, 1#1
= |pl/ %7, r#0, 2=1.

If EZ = 0, we see from Theorem 2.4 that EN ~ a,a,, so then lim, v(a, 1)/EN = 0.
That is, the SPRT has ARE zero under distributions for which £Z = 0. This
phenomenon is well known and has been pointed out explicitly by Bechhofer
(1960) in the normal case. Similar results (qualitatively) are given by Sakaguchi
(1967) for exponential models. However, his formulas appear to be in error,
due to his misapproximating the large-deviation probabilities in (4.3) and (4.5)
by using the central limit theorem. Other notions of asymptotic efficiency for
sequential tests have been considered, notably a Pitman approach, in which the
error rates do not tend to zero. See, e.g., Sakaguchi (1967).
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