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ON SEQUENTIAL DISTINGUISHABILITY!

By RasuL A. KHAN

Mathematics Research Center, University of Wisconsin

Let X1, X2, - - - be a sequence of independent and identically distributed
random variables governed by an unknown member of a countable family
P = {Py: 0 € Q} of probability measures. The family & is said to be se-
quentially distinguishable if for any ¢ (0 < ¢ < 1) there exist a stopping time
t and a terminal decision function §(X, -+, X:) such that Py{t < oo} =1
V6 eQ and supgen Po(3(X, - -+, Xi) # 0) < e. Robbins [12] defined a gen-
eral stopping time (see Section 2) as an approach to this problem. This
paper is a study of this stopping time with applications to some expo-
nential distributions.

1. Introduction. Let &= {P,: 0 € Q} be a countable family of probability
measures defined on some fixed probability space. We are observing sequen-
tially a sequence of random variables X;, X,, .. asumed to be governed by
some unknown member of the family Z°° We want to stop at some finite stage
and decide in favor of a member of the family .&” with a uniformly small proba-
bility of error. A sequential procedure (7, §) consists of a stopping rule ¢ and a
terminal decision function 6(X;, X, - - -, X;). The following definition is due to
Robbins [12].

DerINITION. The family Zis said to be sequentially distinguishable if for any
given ¢ (0 < ¢ < 1) there exist a stopping rule 7 and a terminal decision function
0(X,, - -+, X,) such that Py(t < c0) =1 VOeQ and P,(o(X;, ---, X,) = 0) < ¢
uniformly in 6.

Motivated by Wald’s sequential probability ratio test (SPRT) Robbins [12]
defined a general stopping time (to be introduced in Section 2) which gives a
uniform bound for the probabilities of error. He used this stopping time for
estimating an integer mean of a normal distribution and gave several interesting
results. This work is devoted to the study of this stopping time with emphasis
on its applications to the sequential distinguishability problems for the expo-
nential distributions.

2. A general stopping time of Robbins. With no loss of generality we can as-
sume the existence of a countable family of probability densities {f,(x): ¢ € Q}
with respect to some o-finite measure p. Let y, denote the u-measure in n
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dimensions and f, , the joint probability density function of (X, X,, ---, X,)
with respect to s, (for every n > 1). For notational convenience we write
fin =fo,n and P; = P, , etc. In what follows we shall take a doubly indexed
sequence of constants {a;;} such that a;; > 1 and },,;a;' < ¢ for a given
0 < e < 1 and every j. Define the stopping time:
(2.1) N=inf{n>1:f,, = sup,,;a;,f;, forsome i}
= oo if nosuch n,
and assert ,(P;) if N stops with i, i.e. 6(X;, - -, X)) = 0, if N stops with i.
Writing a; = accept 6;, and assuming N terminates, it follows that
Pi(e) = Py(error) = 3,.; Pi(a;) = Xis; 25a S(N:n,ai)f;‘,'n dp,

= Zi#j Z:v,o=l S(N=n,ai) (.f:i,'n/j:i,n)f‘i,n d/"n

= 2z aifPia) = Vj,
and thus
(2.2) sup; Pe) < e.
Thus the stopping time N does provide a uniform bound on the probabilities of
error. But the first question at issue is: under what conditions is the stopping
time N a bonafide stopping rule under all P,? Sections 3 and 4 are devoted to
this problem.

3. Preliminaries and necessary conditions for termination.

3.1. Preliminaries. There are certain measures of divergence between distri-
butions which play an essential role throughout the paper. From now on it is
assumed without explicit mention that we are dealing with i.i.d. (independent
and identically distributed) sequence of random variables governed by a member
of the family & Define the following:

() A J) = § fi(x) log (fi(x)/fi(x)) dp:
(b) o, )) = S LL(fi(0] dp and
(c) D(i, j) = §1fi(x) — fi(x) dpe -

The measure (-, «) is usually called the Kullback-Leibler information mea-
sure. The measure p(., «) was introduced by Hellinger and is frequently used
in probabilistic and statistical contexts (see [8], [2], and [9]). Finally, the mea-
sure D(-, ) is a well-known metric. We refer to Kraft [9] and Kullback [10]
for these information numbers.

It is obvious that 0 < p(i, j) < 1, with equality at the respective extremes
according as P; | P; (orthogonality) or P, = P,. An application of Jensen’s
inequality shows that 4(7, j) = 0, with equality only if f;(x) = f;(x) a.s. z. The
relation between p, D and 1 is given by the following lemma.

LemMma 1. 2(1 — p*(i, j))t = D(i,j) = 2(1 — p(i, ])). Further,exp(—44(i,j)) <
p(i,j) = 1, so that exp[ — % inf;; A(i, j)] < sup,,; p(i,j) < 1. Moreover, sup,., p(i,
J) < 1implies that inf,; A(i, j) > 0.
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Proor. The topmost inequalities follow from

[§1f: = fil el = § 1 — (M) de S 1Y + (Fpif de = 2(1 — 0%, )
and

§1fi = fildp 2 S 1) — ()i dpe = 2(1 — (i, ))) -
The rest follows from
o, j) = EL(fi{(X)If(X)] = exp{log E{(fi(X)/[f(X))]
= exp{E; log [(f;(X)[[( X))} = exp(—34(i, ))) -
3.2. Necessary conditions for termination. We define the following conditions:
(i) inf,,; 2(i,j) > 0 Vi.
(ii) sup,,; p(i,j) < 1 Vi.

(iii) inf,,; D(i, j) > 0 Vi.

It is easy to see that (ii) < (iii) and (ii) = (i). That these conditions are rele-
vant to the stopping time (2.1) is given by the following lemma.

LeEMMA 2. Ifany of the conditions (i), (ii) or (iii) fails for all i, then P,(N = o) = 1,
so that these conditions are necessary for PN < co) = 1.

Proor. It is enough to prove only for (ii). If (ii) fails for some 7, then there
exists an infinite subsequence {p(i, j,)} such that j, + i and p(i, j,) — 1 as k — co.
But this — D(la ]k) —0 :fjk(x) __)yf:i(x) :fgk(X) QP,L(X) =’fjkl(X) a.s. szz(X)’
For notational convenience we denote by f; (X) the preceding resulting sub-
sequence. Therefore it follows that

fjk,n = Z:lfjk(Xa) —)a.s.Pi i,n = HZ:lfi(Xa) Vl’l g 1 *

Hence we have

SUP;ei (f,alfin) = SUPj i (finlfim) 2 1 as. P, Vnz1.
But the fact that a;; > 1 and };,,;4;7 < ¢ (0 < ¢ < 1) = inf;,;a;; > 1. Thus
we have

SUDP;si (@55 f;,nlf3n) = SUP;us (Inf4; @) (f; 0/f5,n)

> sup;i(fialfia) = 1 a.s. P;.
Hence V fixed 1 < n < oo, we have
SUP;4: (@i f5alfsm) > 1 as. Py,

so that P,(N = oo) = 1 by the very definition of N.

REMARK. Lemma 2 entails that &7 is not sequentially distinguishable through
N if the above conditions do not hold.

4. Sufficient conditions for termination. We recall the definition
4.1) N=inf{n > 1: f;, = sup,,;a;;f;, forsome i}

= oo if nosuch n,

where f; , = [, fi(X,) .
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Clearly, the stopping time (4.1) terminates with probability one if

4.2) P, {nm inf, ... sup;,; a,; Jin = o} =1 Vvi.

Two natural conditions which ensure (4.2) are given by the following theorem.

THEOREM 1. If
(a) Py(inf,, SUp,.; a;; finlfin < ) =1 Vi and
(b) Py(inf, ., sup,.; fialfin <1)=1 Vi,
then (4.2) holds, and hence
P(N< o0)=1 Vi.
Proor. Define the following stopping times:

ky = inf{n = 1: sup,,; a;; [Tez1 f(Xo)/fi(Xs) < o0},

k; = inf{n = 1: sup,,; Zi’;ﬁg+1fj(Xa)/ﬂ(Xa) < 1},

ky=inf{n = 1:sup,,; Hﬁiiiiﬁgufj(Xu)/ﬁ(Xa) <1}e.e,

kp =inf{n = 1:sup;.; [Tetkn-11 100 (XD fi(X) < 1} .
Condition (a) implies P;(k, < o) = 1. Now we have

Py(k; < 00) = Py(sup;.; Tk f(X)/fi(X.) < 1 for some n = 1)
= 251 Pi(sup,. T1th 1 f5(X)[fi(X) < 1
for some n = 1|k, = k')P,(k, = k')
= D=1 Pi(sup,q; ITa- fi(X)[fi(XL) < 1
for some n = 1)P,(k, = k')
= v Pi(ko = k') = Pi(ko < OO) =1.
Ingeneral, Pk, < c©) =1,m =0,1,2, ... follows from the fact that k,, k,, - - -
are i.i.d. Now set N, = k, + &k, + --- + k,, and write

a;; a ([ X)[fi(Xa))
= (a;; 1o [ (X [f( X )T a0 f1(Xo) [fi( X)) - -
X (T, 5 g [ XD IfAXL)) -
Therefore,
SUp,.; a;; [Ta % f{(XD)[f(Xe) = Clko) TI7- Y,
where
Clko) = sup;.; a;; 1Te f5(Xo)[fi(Xe) »
Y, = sup,,; H’zil:kl:,ql-lfj(Xa)/fi(Xa)’ et
Y, = sup;. Hl;’;‘,f,;;‘;f‘?..ﬂoﬂf A X)[f((Xe) -
It is easy to show that Y, Y,, - .. are i.i.d. random variables, and P,(C(k,) <
w)=1Vi,r=1,2,.... Moreover, N,,— co (a.s. P;,) as m — co. To show
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that lim,, ., SUp;.; a;; I1am f(X)/fi(X.) = 0 as. Py, it is enough to show that

a=1J7
(4.3) Pi(limm_,w Z:Ll IOg Yr = —-oo) =1 Vi.

But since E; log Y, < log (E;Y;) < log 1 = 0, (4.3) follows from the strong law
of large numbers. Thus we have

P, (lim inf, . sup;.; a;;

/;J =o)=1 Vi,

i,n

which completes the proof of the theorem.

Condition (a) is necessary for termination since if it fails the rule never ter-
minates with positive probability. We now give certain conditions which ensure
condition (b) of Theorem 1. Define the stopping time: )

t,=inf{n = 1: f;, > sup;.i fia}
— o0 if nosuch n.

Clearly, condition (b) holds if P,(r; < o) = 1 Vi. To this end, we define

@i, (X) = SUP; a5y [5(X) 5 r>0,
and
oF (X)) = @i (x) i g (x) > 1
=1 otherwise .
We assume

,. For sufficiently large r, E; log ¢f,(X) < oo Vi.
fi(x) # fi(x) a.s. Vi £ .

inf,,; D(i, j) > 0 Vi.

lim ;. f5(x) = 0 a.s.

5. Eillog fi(X)| < oo Vi.

THEOREM 2. Under the above assumptions,

»

ke

REZERE

Pi <1imn—~oo Supj#i :;:jm = 0) =1 Vi ’

and hence
P(t;< ) =1 Vi.
Proor. The proof is an adaptation of the ideas of Wald [14] and hence we
omit the details. First, it is not hard to show that

4.4 lim,_, E;log ¢; (X) = —oc0 Vi.
Hence there exists a positive integer r such that

(4.5) E;log ¢, (X) < E;logfi(X) .
Since

suPi*s‘ (f;i,n/ft'.n) é : Zj*i:lj—ilgr Hz=lfj(sz)ﬁ_l(sz) + HZ:I ¢i,r(Xa)fi_l(Xa) ’
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hence the conclusion follows from the above inequality and the strong law of
large numbers.

5. Moments and the concept of asymptotic optimality.
5.1. A crude estimate of PN > n). Recall that (i, j) = § (fif;)} dp, and
0u(is J) = Sz, (finfin)t dptn = p(i, j). It follows from (4.1) that
PN > 1) = Py(SUP;ss @i f,0 > fin)
= Z:i#i Pi{(f:i,nm,n)t > ai_jt

= 2 aiip (0, ), o<,
and hence

(5.1) PN > n) < 20 .10, al;07(, j) £ X infocier a0, j) -
where p,(i, j) = § [ (x)f;/(x) dp (0 < ¢ < 1). In particular, we have

(5.2) PN > n) < 3154 ()20 J) < 2 jei ()00 ) -
Inequalities (5.1) and (5.2) are crude. Some improvement is possible under two
assumptions, namely (i) sup,,;a;; = C; < oo Vi, and (ii) Q) (‘" denoting

closure) is bounded Vi, where Q(i) = Q — {6,}. We then have

Py (N > n) < Py{sup,.am; (fo,ulf5,.)t = Ci7} .
Let S(0y, ¢;) denote open intervals with centers 6, and radii ¢, > 0. Since Q(j)
is compact, U2, S(f;, ¢;) D Q@) (1 < % < ). Thus
Py (N>n) < Poi{supaeu,’:ﬂsw,,,e,,) (fo,lfo,m)t > Ci7H)
S 2ka1 Po{SUPsesiog ) fo.0lf0,0) > Ci7HY 5
(5-3) Py (N> n) £ Tt (C)lon,, (0n 0.) = Xker (oo, (04, 0))
where One (01 05) = §n (SupﬁeS(ok,ek)fﬂ,nfﬁi,n)* dp,.

5.2. Termination and the existence of moments of N. It follows from (5.1) that
if 3. (a;;)t0(i, j) < oo Vi, then P(N < o0) =1 Vi. Moreover, the conver-
gence of 3 ,.; (a;;)*0(i, j) (Vi) entails that sup,,; p(i, j) < 1 Vi. Using these facts
we can prove the following.

THEOREM 3. If 3., (a:;)t0"(i, j) < oo Vi for somen = 1, then PN < o) = 1
Vi. Moreover, E,exp(tN) < oo for some t >0 (Vi), and hence E;N* < oo

Vk > 1.
Proor. It is enough to show that there exist C > 0and 0 < 6 < 1 (both may

depend on i but not on #) such that
P(N >n) < Co~ Vi.
Assuming the series converges for n = m, it follows that it converges for all
n = m. Hence for n > m, it follows from (5.2) that
PN > 1) = Fj4i (400" J) £ 2 i (:5)0™(0 J)(SUPs p(0, )™
<0 B (@)omi ) s 8 = () = sup;,; o(i, j)
< 007" i (i)t (is ) 0<o<t,
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and hence
P(N >n) < Co~, 0<C<o0,0d< .

5.3. Exponential class cases. We do not have to depend upon the preceding
crade inequalities for the exponential distributions. Let f,(x) = exp(dx — b(0))
be a probability function with respect to some o-finite measure z, and let ©
denote the natural parameter set. Further, let Q ={0,: ... < 0_, <0, <
0, <---} c ©. Recall the notation f; , = exp(0,S, — nb(9,)), S, = X;+ - - - + X,,
and (i, j) = E; log (A(N)/f5(X)) = (0; — 0,)6'(6,) — (b(0;) — b(8)). We have
the following.

THEOREM 4. Assume that sup,,({loga;;/A(i,j)} < oo Vi, and let m =
ksup,,;{loga;;/2(i, j)}, k > 1. Then there exists a number p such that

P(N>m)<20™ Vi, 0p<1.

ProoF. Assume for simplicity that m is an integer. It follows from definition
(4.1) that
(5.4) PN > m) = Py(SUP;5: @i f5,m > fim) + Pi(SUP,<; @i f5,m > fiim) -
Passing to logarithms and noting that (i, j)/k > (log a,;)/m, (5.4) gives

“13(i _ (X,)
5.5 P(N sPi( .,.{kl,z, Ly Ia_(__} 0
(55 PAN > m) 5 Py (supysy {70, )) + ™ Bty log L2gek| > 0)
P, (sup... k=124, i -1 | _f:(_XQ} 0).
-+ w(supiﬂ { (l ]) +m a=1 108 f;(Xa) > >
Now, m~* 317,108 (f{(X)[fi(Xn)) = (0; — 0)m™S,, — (b(0;) — b(9,)), and 4(i, j) =
(0; — 0,)b'(0;) — (6(0;) — b(0;)). Further, note that E; X, = b'(6;), ¢%,(0;) =
b"(0;) > 0 so that b(+) is a convex function with &’(+) strictly increasing. After
making necessary computations, (5.5) gives
(5.6) P(N > m) < P(S,, = ma) + P(S,, < cm)
where
a = kW(0) + (1 — k)(b(0:12) — O/ Osrs — 0 »

and
c=k7W'(0;) + (1 — k=) (b(0;) — b(0;_,))/(0; — 0;_,) .

It is easy to show thata > 4'(6;) and ¢ < b'(6;). Hence from (5.6) and a theorem
of Chernoff in [2] we obtain
PN > m) < [m(a)]" + [m(c)]"
where m(a) = inf, e-*M(t), M(t) = E;e'*1. It can easily be shown that 0 < m(a),
m(c) < 1, and hence
P(N > m) < 20™, p = max (m(a), m(c)).

CoROLLARY. If fy(x) = exp(0x — b(0)), then there is always a choice of a;; for
which the stopping time N is a bonafide stopping rule. Furthermore, the family
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P = {P,: 0 € Q} where P, is the probability pertaining to f,(x), is sequentially dis-
tinguishable through N iff each 0 € Q is isolated in the usual topology of the real line
(equivalently, iff sup,,; p(i, j) < 1 Vi).

5.4. A lower bound for E;N and the concept of asymptotic optimality.

Lemma 3. If 0 < inf,,, A(, j) < A(i, /) < oo Vi and j, then Vi

(5.7) EN > supj#[log aij] > _ —loge _,
A, j) 4 i, 20, j)

where ¢(0 < ¢ < 1) is the same as in (2.2).

PrOOF. We may assume that E;N < oo Vi, since otherwise the lemma is
trivial. It follows from the definition of N (4.1) that

L log (fi(X)[f(X) =z loga,; Vj#i.
By Wald’s lemma ([13], pages 170-171) we have

A, )E;N = loga,, Vj#i.
Hence '

log a;; :I —loge
E;N = sup,.; = ; 0 1,
= p’*’[ 26, j) 1 = inf,, 26, j) <e<
where the last inequality follows from }3,.; a;! < e.

LemMa 4. Let (t,0) be any procedure such that Pt < co) =1 Vi, and

P(error) < ¢ Vi. If the assumption of Lemma 3 holds, then
Er> (1 —¢log(l —e)fe + o(loge) Vi.
v inf;; 2(i, j)

Proor. We may assume that E;7r < co. Set S, = X!, log (fi(X,)/f:(X.),
A; = {accept P;} and B; = J,.; 4;- Then P,(4;)) = 1 — ¢, P(B;) < ¢, and there
is no loss in assuming P,(B;) > 0. Denoting by E;4 the conditional expectation
given A, using Wald’s lemma and Jensen’s inequality it follows that

A, DE:t = E;S, = Py(A,)E*S, + Py(B,)E":S,
= PA)E(—l1og [Lawr (f5(X)[f((X)))
+ PoB)E(—log [Taas (fi(X/fi(X0)))
= Py(A;)(—1og Ei%i [Ttwr (f(XW)[fA(X2)))
+ Py(By)(—log E% []omr (J{(XIf(XL))) -

Now,

B Mo (DI = PiA) Zis S Usslffonditn = 0

Similarly, £ [Tt (f(X/f{(X,)) = P,(B)/P{B;). Thus
A, NE;t = Py(A;)log {Py(A4,)[P;(A,)} + Pi(B;) log {P(B;)/P;(B;)}
> (1 — ¢)log (1 — ¢)fe - Py(B,) log {P«(B.)/P,(B:)} -
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Since Py(B;) < ¢, Pi(B;) = P,(4;) = 1 — ¢, P,(B;) log {Py(B,)/P,(B;)} < ¢ log /(1 —
¢) > 0ase¢— 0. The lemma now follows from the above inequalities.

The problem of sequential distinguishability for = {P,: 6 € Q} where
Q = {6,}, can be considered in relation to a sequence of SPRT’s. Let r,; be the
stopping rule of an SPRT ([13]) for H,: § = 0, against H,: 6 = ¢, when error
probabilities are « = § = e. Note that E;N > Et;;, so that E;N > sup,.; E;t;;
The following definition is due to Robbins [12].

DEerINITION. The stopping rule N is said to be asymptotically optimal (a.o.)
if lim,_, E;N/sup;,; E;t;; = 1 Vi.

The definition is interesting because of the known optimality of SPRT (see
[15]). That the stopping rule (4.1) is a.o. (if the lower bound (5.7) is an asymp-
totic upper bound) is given by the following.

THEOREM 5. The stopping rule N is a.0. if Vi,

E;N ~ (—loge)/inf,; A(i, j) as ¢—0.
Proor. It is well known ([13]) that
Eit;; =2 [(1 —e)log (1 — ¢)fe 4+ eloge/(1 — €))/A(i,j) Vj+i.
Therefore, sup;,; E;t;; = n(e)/inf;; A(i, j) Vi, where n(¢) = (1 — ¢)log (1 — ¢)/e +
cloge/(1 —¢) ~ —logeaSe — 0. Thus, if E;N ~ (—loge)/inf,,; A(i, j) Vi, then

limsup, ,E;N/sup;,.;E;t;; < 1. Since E;N = sup,,, E;t,,, there is limiting equality
and hence N is asymptotically optimal.

6. Applications to some exponential distributions.

6.1. Sequential distinguishability for the Poisson family. Let P, denote the
probability under which X, X,, - .- are i.i.d. Poisson random variables with
mean 4 > 0. Let the distribution of X; be governed by some unknown member
of the family &= {P,: ze A} where A = {4,: 0 < 2, < 4, < ---}, 4, =0. As-
sume that 4, — 4,_, = 1 Vi > 1. Later we modify our choice of g;, to overcome
this assumption.

We choose a;; = a'*i~%!, a > 1. So, },.;a;} < Y a79 < 2/(a — 1).
Setting S, = X, + --- + X,, after some computations we obtain

6.1) N=inf{n>loga: {_1%7—7/%%} (1 + n'loga) < n-1S,
i/ 7i—1

(i —4) V) _ 1 . '
{log(lwl/zl)}( n~'log a) for some ,},

and assert 4, if N stops with i. It is easy to see that

6.2) P, (N<o0)=1 Vi, and sup;., Pylerror) < 2/(a — 1).

IA

Setting
g(i + 1) = [(41 — A)[log (2:41/2))] > 4,
g — 1) = [(4 — A-)/log (A:/4,_)] < 4;
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from (5.7) we obtain

6.3) E.Nx log a

= — ; ; = K,'loga,
min [{1 — 2,7 + D}, {4¢7( — 1) — 1}]

and thus
(6.4) lim inf, ., (K;E;N)/loga = 1.
To compute an upper bound for E, N, recall that
(6.5) N =inf{n = loga: g(i — 1)(1 4 n~'log @) < n-1S,
< q(i + 1)(1 — n~'log @) for some i} .
Set r = Rlog a(R > K, ) and assume for simplicity that r is an integer. From
(6.5) we have
(6.6) P,(N>1) < P (S, > ar) + P, (S, < br)
where a = g(i +- 1)(1 — R™*) > q(i + 1)(1 — K;) > 2,, and b = @ —1)(1+RYH <
q(i — 1)(1 + K;) < 4,. Since E;, X, = 4;, a theorem of Chernoff in [2] implies
that
(6.7) P, (N> r) < m7(a) + m"(b)
where m({) = inf, e“E, e*1 < 1 for { =aand { =b. Thus, N ~ K, 'loga
in probability as @ — co. Moreover, non-asymptotically, (6.7) implies: (i)
E;,e"" < oo for some ¢ > 0, and hence (ii) E; N¥ < oo Yk = 1. It is easy to
show that
E;;N < Rloga + (Rlog a 4 1){m(a)®0s 4. m(b)ricsm}

+ (m(@)* s (1 — m(a)) 4 (m(b)*I=+1)/(1 — m(b)),
and hence

(6.8) lim sup, ., (K;E; N)/loga < 1,
which combined with (6.4) gives
(6.9) E; N~ K;'loga as a—oo.
Moreover, if 2,,; — 2, = 1 Vi > 1, then the rule (6.1) is asymptotically optimal
(Theorem 5).
Special case. If 2, = i,ie. A = {1,2, ...}, then
N = inf{n = loga: (log™'i/(i — 1))(1 4 n~'log a) < n-1S,
< (log™' (i + 1)/i)(1 — n~*log a) for some i} .
Also,
N~ — log a

min [{1 — ilog (1 + 1/i)}, {ilog i/(i — 1) — 1}]
Since min [{1 — ilog (1 + 1/i)}, {ilogi/(i — 1) — 1}] =1 — ilog(14i™),ix=1,
hence E;N ~ (loga)/{l —ilog(l + i"")} as @ —> co. This is the asymptotic
expression also obtained by McCabe [11].

as a —>oo.
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6.2. Sequential distinguishability for the normal family. Let P, denote the proba-
bility under which X, X;, - .. are i.i.d. N(#, 1), —co0 < 0 < co. Here we take
Q={0,: —0=0_.< -+ <0_,<0,<0,< -+ <0,=00}. As in the
Poisson case, assume that §, — ¢,_, = 1 Vi, so that Q is an ordered set in the
usual direction with at least unit spacing. Choose a;; = a'%i~%, @ > 1. Setting
S, =X, + .-+ + X, some computations yield
(6.10) N =inf{n = 1t n"loga — }(0; — 0,.,) < (n'S, — 0,)

< 301, — 0;) — n"'loga for some i},
and assert ¢, if N stops with i. It follows that (i) P, (N < co0) =1 Vi, and (ii)
sup; P, (error) < 2/(a — 1).

We omit the details of exact lower and upper bounds for E, N. These bounds
are easily obtained in a fashion similar to that in Section 6. 1. However, it is
easy to show that E, N ~ (2log a)/min [(0;,, — 0,), (6; — 0,_,)] as a — co. If
0., — 0, = 1 Vi, then the rule (6.10) is asymptotically optimal. In particular,
setting 6, = i, we get Robbins’ procedure (see [12]) where some other details
are also given.

6.3. Asymptotically optimal rules without uniform spacing. In the preceding two
sections we obtained a.o. (asymptotically optimal) rules for sequences which are
uniformly spaced. We now give a.o. rules without uniform spacing.

6.3.1. The normal case. For simplicity, consider Q@ = {0,: 6, < 0, < ---}.
Modify the previous choice of a;; as follows:

a; = alli=09/0ir1=00 if j>1i,
= @'0i—0p/0;=0;—) if j<i, a>1.
From (6.10) it follows that
(6.11) N=inf{n = 1: (logea)/n(0; — 0,_,) — (0, — 0,_)/2 < (n7*S, — 0,)
< (0;11— 0,2 — (loga)/n(0,,, — ;) for some i}.
It can easily be shown that
(6.12) E, N ~ (log a)/inf;; 1(0;, 0,) as a— oo,

where 1(0;,0,) = (0, — 0,)*/2 is the Kullback-Leibler measure. Thus, if our
modified choice of a;; satisfy
1) X0t =¢@) |0 as a— oo, and
2) 203 <2a as a— oo,
then by Theorem 5 the stopping rule (6.11) is asymptotically optimal. Here are
some conditions under which (1) and (2) hold.

a. Assume: (i) there exists 6 > 0 such that inf;inf,,;|0; — 6,| = 6, and (ii)
0,0y — 0, < AVi=1, then

ZH&J ij é 2/a + o(a—l)
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To see this we note that (i) fori < j — 2,

0 0 \i—i-1
0. — 0)/0.., — 0.)=> — ve i
( J 1)/( i+l 0:) = l + A + + (A) >

and (ii) for i = j + 2,

3 3 \i-it
0, —0))0, —0,_)=14 "+ ... — .
( 1 .7)/( 1 1-—1) = + A + + <A>

Therefore,
Diw; i = 2/a 4 207 p, @R = 2a + 2/a(at — 1) .

b. Assume: (i) Successive differences are non-increasing and (ii) either there

exists a 0 > 0 such that inf; inf,; |0, — 0;| = J, or
Z=_12 a—(05=0:)/0541-05) é g(a) i 0 as a— oo,

then 3., a5 < 2/a + o(a™).

ExampLE 1. Let 6, = logi, i = 1. Successive differences are non-increasing
but 6 = 0. However,

ZZ;IZ a—(ﬁj—ﬂi)/(ﬁi_*_l—ﬁi) é Z{;f a-—‘i(j—i)/j
S Diciigin@ TV 4 Dicirisjma I
<2 sea” =2/((a)t — 1).

c. Assume: (i) Successive differences are non-decreasing and (ii) there exists
a A such that fori > j+ 2, (0, — 0,)/(0; — 0,_,) = A(i — j). Then },,; a7} <
2a — 1)ja(a — 1) + 1/a*(a* — 1). However, 3 ,.;a;;} < 2/a 4 o(a™).

ExampLE 2. Let @, =i* i>=1. Fori>j+ 2,
(0: — 0)/(0: — 0:0) = (i + (i — HI2i = 1)

2 (i = J)intiey 52 = 46— ).

d. If Q = (0, > 6, > ---), then the same modified choice of «;; gives an a.o.
rule provided that 33, a; < ¢(a) | 0Oasa — oo, and };.; a;i < 2/a + o(a™?).
ExXAMPLE 3. Let 0, = i, i.e. Q = (1,4, %, ---). In this case
a;; = atD=bri it j>i,
— qli-DUi=9)/3 if j<i.
Thus,
Zi#i ai_jl — kasl_/z a—G+DG=0/]F + Zi<j:i>j/2 a~—-DE+n/j
+ Zzo=j+1 a—i-NE=0/j
S Diaa 4 Fia 4 Fihet = G+ at +atha = 1)

Nevertheless, };.;a;} < 2/a 4 o(a™).
6.3.2. The Poisson case. Let A = {0 < 2, < 2, < ---}. Modifying the choice
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of a;; as in Section 6.3.1, (6.1) now takes the form

N = inf {n > loga: {l(ig(_x_/lzi))} (1 + (log a)/n(A; — A;_,)) < S./n

(Ap1 — 4) _ N _ i
{m} (1 — (log a)/n(2;,, — 4;)) for some } .

A

It is easy to see that the stopping rule N is asymptotically optimal provided
that 33,.,a;} < 2/a 4+ o(a™). The treatment of a general exponential model is
deferred to a subsequent publication.
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