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ON THE ATTAINMENT OF THE CRAMER-RAO LOWER BOUND

By R. A. WIISMAN

University of Illinois at Urbana-Champaign

A rigorous proof is given of the often stated fact that if the variance
of an unbiased estimator of a function of a real parameter attains the
Cramér-Rao lower bound then the family of distributions must be a one-
parameter exponential family.

The classical Cramér-Rao inequality [1], [3] and [6] states that under suitable
regularity conditions a lower bound for the variance of an unbiased estimator
#(X) of a real-valued function m(6) of a real parameter @ is given by the inequality

(1) Var, (X) Z [m(O)F/Var, - 10g piX)

in which p, is the density of the random variable X. It is usually stated that
the lower bound can be attained only if the family of distributions of X is one-
parameter exponential [2], [3] and [7, page 187]. That this is to be expected can
be seen by realizing that (1) is nothing else but a statement that the square of
the correlation between #(X) and (3/d6) log p,(X) cannot exceed 1, and equality
is attained if and only if (3/06) log p,(x) = a(6)#(x) + b(¢) for some functions a
and 5. Then by integration over § the desired exponential form of p, is obtained.
However, this heuristic approach conveniently ignores the fact that the above
affine relation between #(x) and (9/d6) log p,(x) may fail to hold on a null set
which may depend on ¢ and that a priori nothing can be assumed about the
functions @ and b, not even measurability, let alone integrability. Since a rigor-
ous proof does not seem to have appeared in the literature it may be appropriate
to produce one here, the more so since the proof seems to be neither completely
trivial nor standard.

The following assumptions will be made. The sample space is an arbitrary
measure space (2, %, p), with p sigma-finite. The parameter space is the
measure space (0, &7, v), with © a Borel subset of the real line, <2 the Borel
subsets of © and v Lebesgue measure. There is given a random variable X with
values in 22” and distribution P,(dx) = p,(x)u(dx), 6 € ©. For convenience dif-
ferentiation with respect to § will be denoted by D. Any integration with respect
to u will always be understood to be over the whole of 2°. We shall make the
following.

REGULARITY CONDITIONS.

(i) © is an open interval (possibly infinite or semi-infinite);
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(ii) py(x) > O for every 6 € O, x € 27, py(+) is %-measurable for every 4 € O,
and p,(x) is a continuously differentiable function of ¢ for every x € 27;
(iili)y 0 < Var, Dlog py(X) < oo for every 0 € ©;
(iv) § ps(x)u(dx) can be differentiated under the integral sign with respect to
0;
(V) § #(x)py(x)u(dx) is finite and can be differentiated under the integral sign
with respect to 6.

Slight variations on these conditions appear in the literature. In particular,
differentiability of p, with respect to ¢ is often assumed to hold for all x except
for x in a g-null set. If this null set were allowed to depend on # then one gets
into trouble with (iv) and (v). So usually it is assumed that the null set does
not depend on #. We may then as well remove this sét from .27, and implied
in (ii) is that we have taken this liberty.

THEOREM. Let m be a real-valued function on ©, not identically constant; let t(X)
be an unbiased estimator of m(6) and let Regularity Conditions (i)—(v) be satisfied.
Then the inequality (1) is an equality for all 6 € © if and only if there exists K € &
with pK = O such that for xe 27— K, 6 € 09,

(2) Po(X) = c(B)h(x)er @

in which ¢(0) and h(x) are > 0, q is strictly monotonic, and both ¢ and q are con-
tinuously differentiable.

Proor. The “if” part is of course well known and easily verifiable so that we
shall proceed to prove the “only if” part. In the following we shall need the
measurability of p,(x) and D log p,(x) as functions on (27 x 0, % x <#). This
follows from the fact that these functions are .%““measurable for each fixed @
and continuous on © for each x [5, Chapter IV, Theorem T 47] (I am indebted
to L. L. Helms for this reference). Also note that p, > 0 on 2~ implies that
for any 4 e %7, P, A = 0 for some ¢ implies 4 = 0.

It is given that (1) is an equality for each 6 € ©. This implies, for each 6,
that #X) — m(6) and D log p,(X) are linearly dependent elements in the space
L(Z, 57, P,); hence there exist constants ¢,(§) and c,(6) with ¢;? + ¢, > 0, and
a Py,-null (and therefore p-null) set N,, such that

3) c,(0)D log py(x) + ci(0)[t(x) — m(6)] = O for x¢N,.

If ¢,(6) = 0, then c,(@) # 0 and (3) implies #(x) = m(f) a.e. ¢ and therefore a.e.
P, , for any 6, € ©. Taking expectation with respect to P, we get then m(6,) =
m(0), hence m is constant on ©. Since this is excluded by hypothesis, we must
have ¢,(6) + 0. It follows that (3) can be rewritten in the form

4 D log py(x) = a(6)t(x) + b(0), x¢&N,.

We cannot have a(6) = 0 for any @, otherwise for that & D log p,(x) would be
constant a.e. ¢ on 27, so that Var, D log p,(X) = 0, contradicting Regularity
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Condition (iii). Let #, be any point of ©. The right-hand side of (4) is integrable
with respect to p, dp and therefore so is the left-hand side, and the two integrals
are equal since the integrands differ only on a null set. Define

&) 9(0, 0,) = § (D log py)p,, dpe -

Since D log p, is jointly measurable, g(., 6,) is ZF-measurable. By the assump-
tion on m it is possible to choose 6,, 6, € ©® such that m(6,) = m(6,). Integrate
(4) on both sides with respect to p, dy, i = 1,2: (0, 0,) = a(0)m(6;) + b(0).
Then subtract the second of these two equations from the first and divide by
m(6;) — m(8,):

(6) 0(0) — g(o, 01) - g(o’ 02) .

m(6,) — m(6,)

It follows from (6) that a is Z%-measurable. Also integrate (4) on both sides
with respect to p,du. The left-hand side yields 0, as is well known, using the
Regularity Conditions. Thus we get 0 = a(6)m(0) + b(6). m, as an integral of
a jointly measurable function, is certainly <&-measurable (even differentiable),
and it follows then that b is also <Z-measurable. Now define the set

(7) N = {(x, 6) € 27 x ©: Dlog p,(x) # a(8)(x) + b(6)}

then N e % x <% and N, is its O-section at 6 [4, Section 34]. Let N* be the 2~
section of Nat x. Since N, = 0 for every ¢, by a version of Fubini’s theorem
[4, Section 36, Theorem A] there exists K€ % with yK = 0 such that x¢ K
implies vN* = 0. In the remainder of the proof it will be assumed that x ¢ K.
Then (7) can be written in the form

(8) D log p,(x) = a(6)1(x) + b(0) , 0¢N-.

Let 6, € © be chosen arbitrarily and put p,(x) = k(x). Since © is an interval
we may write

) log py(x) = log h(x) + {4, D 10g py(x) &9 .
Replacing the integrand in (9) with the right-hand side of (8) we obtain
(10) log py(x) = log h(x) + §5, [a(9)1(x) + b(I)] 49 .

Thus, [a(0)#(x) + b(#)] is integrable over every finite interval (but we do not
know yet that @ and b separately have that property). Since ¢ is not constant
a.e. u, we can choose x,, x, such that #(x,) + #(x,). Evaluate (10) at x, and x,
and take the difference. Since the integral on the right hand side of (10) is finite
for both x; and x,, the difference of the integrals equals the integral of the dif-
ference of the integrands. We get

(11) log py(x1) — 10g py(x,) = log h(x,) — log k(x,)
+ [1(x) — 1(x,)] §5, a(9) d9 .
Since #(x;) — #(x;) # 0 it follows from (11) that {7 a(9)d9 is finite and the
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same is then true for §{§ b(9)d9, by (10). Put
(12) 9(0) = §4,a(9)d9,  loge() = §4 b(9)dI,

then (10) becomes (2) and the only thing left to prove is the assertion in the
conclusion of the theorem about the functions ¢ and c.

In (11) the left-hand side is a continuously differentiable function of # and
therefore so is the right-hand side. Since #(x,) — #(x,) # 0 and the integral on
the right-hand side of (11) is ¢(#), we conclude that g is continuously differ-
entiable. By (10) and (12) the same is then true for log ¢(6), so for ¢. Substitute
(2) into (5) and obtain

(13) 9(0, 8,) = Dq(0)m(6,) + D log c(9)

and it follows that g(., 6,) is continuous on ©. Then tonsulting (6) we see that
a(+) is continuous. Using the first of definitions (12) it follows then that a(§) =
Dq(0). Since the function a is continuous and never 0 we must have Dg(6) > 0
everywhere or < 0 everywhere. Therefore, g is strictly monotonic. This con-
cludes the proof.

In the course of the proof we have seen that a(9)m(0) -+ b(6) = 0. Since both
a and m are continuous (m is even differentiable by the Regularity Conditions),
it follows that b is continuous. Consequently, the right-hand side of (8) is con-
tinuous on O. Since this is also true for the left-hand side, the two sides must
be equal everywhere on ©, so that the v-null set N* is in fact empty.

Note that since g is strictly monotonic and continuously differentiable, it is a
one-one bicontinuously differentiable function of 4.

The following observation was made by the referee of this paper. Suppose
#(X) attains the Cramér-Rao lower bound as an unbiased estimator of m().
Then the only parametric functions whose unbiased estimator attains the Cramér—
Rao lower bound are of the form am(6) + 8. More precisely: suppose the non-
constant function m(#) has unbiased estimator 7(X) achieving equality in (1) at
some 6, € 0, and another function n(#) has unbiased estimator #(X) also achieving
equality in (1) at 6, (with r and m replaced by # and n). Suppose further that
Regularity Conditions (i)—(v) (the latter for both ¢ and ) are satisfied. Then

(14) u(x) = at(x) + 8 a.e. pu,

with some constants a, §; hence n(f) = am(9) + B. To see this, suppose first
n(f) = constant. Then by (1) for # and n, and evaluated at § = 6,, Var, u(X) =0
0 #(x) = const. a.e. # which is (14) with @ = 0. Next, suppose » is not constant,
then an equation analogous to (4) evaluated at 6, also holds for u. Equating
the right-hand sides of these equations and observing the sentence following (4)
yields (14).
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