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ASYMPTOTICALLY EFFICIENT STOCHASTIC
APPROXIMATION; THE RM CASE!

By VAcLAv FABIAN

Michigan State University

Anbar (1971) and, independently, Abdelhamid (1971) have shown that
if the density g of the errors of estimates of function values is known, a
transformation of observations leads to stochastic approximation methods
which under mild conditions produce asymptotically efficient estimators
(the first author considers the RM case, the second the RM and KW cases).
This paper treats the RM case and shows that the same asymptotic result
can be achieved without the knowledge of the density g.

1. Introduction. We shall be concerned with the so called Robbins-Monro
situation in stochastic approximation. In this situation the goal is to estimate a
number # by observing unbiased estimates of function values of a function f,
which is negative on (— oo, #) and positive on (8, 4 o0). The original RM pro-
cedure (Robbins and Monro (1951)) was of the form X,,, = X, — a,Y,, where
Y, have conditional, given X, X,, - - -, X, expectations f{X,)and bounded vari-
ances. Considerations of the speed showed that optimal constants a, are of the
form a, = an~* with a = (f’(#))~* and that the procedure can be modified in
such a way that, with f’(f) unknown, it has the same asymptotic properties as the
original procedure with the optimal constant @ = (f*(¢))~*. This result was ob-
tained by Venter (1967) and generalized by Fabian (1968). Under mild condi-
tions and if the conditional variance of Y,, given the past X, - - -, X,, converges
to ¢? if n —» co and X, — 6, the result is that X, — ¢ a.e. and n¥(X, — ) are
asymptotically normal (0, ¢*/(f’())?). The indicated variance is easily seen mini-
mal in the special case of f linear and Y, — f(X,) normally distributed.

It turns out, however, that the case of normally distributed deviations is the
most difficult one. Abdelhamid (1971) and Anbar (1971) studied the effect of
using X,,, = X, — an~'h(Y,) if Y, — f(X,) are distributed, conditionally given
past, according to a density g with 0 < I(9) = § (¢’/9)’9 < +oo. They found
that the optimal # is, under mild conditions, equal to —g’/g. The result is then
that n#(X, — ) is asymptotically normal (0, I-*(g)(f"(8))~?). The remarkable fact
is that, with # optimal, the variance of the asymptotic distribution of X, is not
only minimal within the class of stochastic approximation methods but is also
minimal within the class of all regular unbiased estimators of . The last is true
in the sense that the Cramér-Rao bound for the special case of f(x) = a(x — 0)
is equal to I-%(g)(f"(#))~2. The asymptotic efficiency obtains despite the very
simple recurrence relation generating the sequence {X,}.
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The purpose of this paper is to show that the above result can be obtained
without the knowledge of g.

The assumptions under which this result is obtained concern the function f
and the distributions of the estimates Y, of the function values. Concerning f
(cf. Assumption (2.1)) we assume less than in previous work (cf. e.g. Venter
(1967) and Fabian (1968)); see (5.1). Concerning Y, we assume, as Abdelhamid
(1971) and Anbar (1971) do, that conditional distributions of Y, — f(X,), given
the past, are determined by a symmetric density g. We also assume that g
is non-increasing on [0, +oc0), has a continuous derivative ¢’ and satisfies
1(9) < +oo.

As we mentioned above in a special case f(x) may be a(x — 6) with &« > 0,
and if « is known we may as well assume that « = 1. Then we may subtract
X, from the Y,’s and obtain observations of ¥V, — 8, V, — @, ... with V; inde-
pendent and distributed according to g. (Conversely we may construct Y, from
V; — 60.) Asymptotically efficient estimators of the location parameter 6, not
requiring the knowledge of g, were given by van Eeden (1970) and Weiss and
Wolfowitz (1970a) (the second paper treats also scale parameters; cf. also Weiss
and Wolfowitz (1970b)) and it is worthwhile to compare assumptions concerning
g. In the former paper, as compared to our assumptions, ¢’ is not assumed to
be continuous but —g’/g is assumed to be non-decreasing (this implies and is
much stronger than our requirement that g be non-increasing on [0, +c0)). The
latter paper assumes the existence and uniform continuity of ¢’ and boundedness
from below by a positive constant of g on an open interval /such that the measure
of the closure of I under ¢ is one; the results are formulated for the case where
this measure is at least 1 —  when “approximate” asymptotic efficiency is
obtained.

The organization of this paper is as follows: Section 2 lists some assumptions,
Section 3 contains a preliminary result, Section 4 the main theorem and Section §
contains remarks and comments.

The author was privileged to have stimulating and fruitful discussions and
correspondence with Professor Jack Wolfowitz about the problem at an early
stage of the work. The author also benefited from having had access to the
results of Anbar (1971) and Abdelhamid (1971) before they were generally
available.

2. Basic assumptions and notation. All random variables we shall talk about
are supposed to be defined on a probability space (Q, 5, P). Relations between
random variables, including convergence, are meant with probability one, unless
specified otherwise. The real line is denoted by R and <% denotes the class of
all Borel subsets of R.

We shall list some assumptions for later reference. Only Assumptions (2.1)
and (2.2) appear in the final result, Theorem 4.1. Assumptions (2.3), (2.4) and
(2.5) are auxiliary.



488 VACLAV FABIAN

(2.1) AssuMmpTION. fis a function defined on R, 6 € R, and for every ¢ > 0
() sup{f(x); —e'<x—0< —e} <0, inf{flx);e<x—0<e}>0,

[ is bounded on bounded intervals and has a derivative in a neighborhood of 6,
which is continuous at § and
) O =d>0.

(2.2) AssuMPTION. Assumption (2.1) holds and X, X;, ---, Y,, ¥,, - - - are
random variables, {.&,} a non-decreasing sequence of s-algebras, each containing
the g-algebra &#{X,, ---, X,, Y,, ---, Y,_,} generated by the indicated family
of random variables. We suppose that Y, — f(X,) is, conditionally given .&,
distributed according to a distribution function G which is symmetric, has zero
expectation, has a density g and a continuous derivate g’ of the density every-
where on R. The density is non-increasing on [0, +o0) and 0 < I(9) =
§(9'/9)'dG < +oo.

(2.3) AssumpPTION. Assumption (2.2) holds and 4, are measurable functions
on (Q X R, &, X <#) such that h,(w, +) are odd, nonnegative on [0, + oo) for
every w. Further D, are nonnegative .&  -measurable random variables and

<1) |h”((0, t), é HSIX(—n,'n)(t) ’ Dn g n

with a positive ¢, < §.
We shall write 4,(¢) for &,(., t) and 4,(Y,) for k,(+, Y,(+)).

The random variables X, X,, - - . satisfy
) X,41 = X, — n7'D,h,(Y,) — n}(log n)=+47,
where
) Py = (Ya V(=22 A g

with y, = n if G has a finite second moment, y, = (log n)'~*1 otherwise.

(2.4) AssuMPTION. Assumption (2.3) holds. For almost all w, 4, (o, ) —
—g'/g on the set {t; g() > 0} and D, — ({(g)d)™".

(2.5) AssuMPTION. Assumption (2.4) holds and
(1 § [Au(t + 2.(0) + g'[9] dG — 0
for any sequence {7,} of functions on Q x R such that, for almost all w, 4,(w, t 4
7.(®, 1)) are Borel measurable with respect to ¢ and |7,| < |f(X,)|-

3. Preliminary results on convergence of X,.

(3.1) THEOREM. If Assumption (2.3) holds then (log n)*(X, — 6) — O for every
B > 0. If Assumption (2.4) holds then nf(X,, — 0) — O forevery 0 < 8 < 4 — 2¢,.
If Assumption (2.5) holds then n¥(X, — 0) is asymptotically normal with zero mean
and variance d=*17'(g).

Proor. Without loss of generality we may assume that § = 0.
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(i) Suppose Assumption (2.3) holds. Notice that E_ k,(Y,) = ¥, (f(X,))
where
(1) T, (A) = § &,(t + D)g(?) dt = §3= h,()[9(t — D) — g(t + B)] dt

the last representation following from the fact that #, is odd and g symmetric.
Since g(t — A) — g(t + A) = g(A — 1) — g(A + ¢) and since g is non-increasing
on [0, + o0), 4, nonnegative, we conclude that the integrand in the second inte-
gral in (1) is nonnegative for A > 0. Since T is odd, we obtain, for all A,

(2) AV, (A)=0.

Next ¥, = g,(Y,) With 4,(y) = (y V (=y)) A ynand E ¥, = 0,(f(X,)), 0u(8) =
§ ¢.(t + A)g(r) dt. Differentiating,

3) 0a/(8) = §2 Ly g(r) dt .
Writing now (2.3.2) as X,,,, = X, — U, we obtain

(4) X,E, U, = n"Y(log n)™+1X,§,
with &, = E ¥, = f(X,)e./(A,), |8, = |f(X,)]. Also, easily,
(5) E, U} < Cn

with a constant C.
Set h(x) = {x*, N, = E__U,, B, = (X,&,)} (notice that X,§, = 0 according
to (2.1.1) and 3)), a, = n‘l(log n)~+1, Then (4) gives

(6) K(X)N, = a,B,} .

Setting B, = Cn~?**1, y, = ¢, = 0 we have } a, = +o0, 31 8, < +© and
an application of Lemma (3.3) in Fabian (1971) or Theorem 5.2 in Fabian (1960)
implies that {A(X,)} converges to a finite random variable and B, — 0 for a
subsequence {B, }. If @ is a point in Q at which the two properties hold then

A, (w)isa bounded sequence as f is bounded on bounded intervals, ¢,'(4,(®)) — 1,
and (2.1.1) implies X, () — 0. This in turn implies that the limit of A(X,(w)),
which exists, must be 0. Thus X, — 0.

By Assumption (2.1), f’(0) exists and thus

(M x,)=4d,X,, d,—d

where d, are & -measurable random variables. Then

®) N, =n"D,d,X,(d,X,)"V,(d,X,) + n~(log n) g/ (A,)d, X,

We have already established A—*¥,(A) = 0 for every A, and ¢,'(A,) — 1.
It is easy to verify

©) : A-,(8) < Cyna

for all A = 0 and a constant C, by differentiating ¥,(A) = § 4,()g(t — A) drand
using the fact that /(g) < + co implies the integrability of ¢, and (2.3.1). Thus,



490 VACLAV FABIAN

if 0 < o < €1
(10) N, = n7Y(log n)~t+y, X,

with y, — +oco0, 7, < Cyn*s and a constant C,. Eventually, depending on w,
0 <1 — n7Y(log n)~**«op,, (1 — n~*(log n)™*+4oy, ) < 1 — n~Y(log n)~"+% and

(11) X2 £ (1 — ni(log my ™)X, — 2V, + W,
with
(12) Vo= (X, — N)U, = N,), W,=(U,—N,.
Thus

Vi = (1 — n7'y,(log n)~*0) X, (U, —N,).

Next we want to show that if 3, are positive numbers, 8, < n* with0 < 8 <
% — 2¢, then
(13) Z:to=l ﬁn Wn < +°°’ Z::=1:B'n Vn < +OO

on the set {8,2n7%X,? — 0}.
The convergence of the first series follows from the fact that it has a finite ex-
pectation as
(14) E, W, < Cnita
with a constant C;. Concerning the second series, with = 1 — 4¢, — 28,
Eyn ‘an V.2 < CB,2X, I+ < C, ‘Bnﬁn—2ﬁXn2n—l—7y

with the last term summable on the set indicated in (13). The convergence of
2. B, V, on this set then follows by the generalized Borel-Cantelli lemma (Lemma
10, Dubins and Freedman (1965)).

Now set 8, = (logn)* witha b > 0, a, = B,,,/B,, verify that

a, <14 b(nlogn)=
a,(l — nY(logn)=**0) < 1, eventually
and, from (11),
(15) ‘Bn+1X2+1 = ﬁn nz - 218n+1 Vn + AB'IL-I-I Wn .

By (13) (take any positive 8 < 4 — 2¢, to obtain f2,,n"%X,? < X,2 — 0) the terms
Bu+1Vas Bus W, have convergent sums and thus $, X,? is bounded. Since 6 > 0
was arbitrary the proof of the first part of the theorem is completed.

(ii) Suppose Assumption (2.4) holds. Express the nonnegative (for ¢ > 0)
difference g(t — A) — g(t 4 A) in (1) as 2A(—g'(y,)) with |p, — | < A. If we
let A =d, X, , depends on w and ¢ and

w‘n(ann) = 2ann S;o hn(t)(—g'<77n)) dt.

As we noticed the integrands are nonnegative, converge (for almost all ) point-
wise on {£; g(f) > 0} to (—¢’/g)(—g¢’) by Assumption (2.4) and since ¢’ is con-



EFFICIENT STOCHASTIC APPROXIMATION 491
tinuous. Using the Fatou lemma gives
’\ 2
tim inf §5 A, ()(—0'(7.)) 4 2 Susezoqoom (2) 46 = $1(9)

and thus, if we interpret A—*¥,(A) = I(g) for A = 0,
(16) lim inf (4, X,)"'¥,(d,X,) = 1(9) .

Thus from (8) we obtain a strengthening of (10), namely

(17) N, =n%,X,
with
(18) liminfe, =1, ¥, < C,n*

with a constant C,. From here (11) can be strengthened to

(19) X2 < (1= 2n%)X,} — 2V, + W,

where «,” — £, — 0.
Suppose n*X,*— 0 fora 0 < B, < 4 — 2¢,, which we know is true at least if

By=0. Take a B < 1 — 2¢, B> B, and write B,'n"%X,? as B,2n~2P+fophoX >
to see that this sequence converges to zero if g, = n#+%’. Then, by (13),

Ye B W, < +coand Y B, V, < +oo. Repeating an argument from part (i),
or directly using Lemma 4.3 in Fabian (1967) yields the boundedness of nf+f.X, 2.

By induction, n*X,* — 0 for every g < } — 2¢,.
(iii) Suppose Assumption (2.5) holds. As in (ii),

(A X, W,(d,X,) = —§22 h(09'(r — 0,)dt = —§*2 hy(t + 0,) L (1) dG(1)
9
with |0,| < |d, X,|. Using the Schwarz inequality and (2.5.1) we obtain
[(@, X)W, X0 < § 22+ 0,)d6) § (L) d6 - I(g)
9

this with (16) gives

(20) (4, X,)"¥,(d, X,) — I(9)
and from (8)
21) N,=n'%.X,, 1.—1.

Next, denoting the conditional variance, given .5, by Var -,
Var, h(Y,) = § )t + d,X,) dG(1) — ¥, Xd, X,) — Kg)
since h,(t + d, X,) converge to —¢’/g in L(g) and ¥ (d,X,) — 0. Then
(22) D,}Var, h,(Y,)—d*lg)™".

Consider now (log n)~**4¥, and its conditional, given &, variance. If y, in
(2.3.3) are (log n)'~*1, this conditional variance is bounded by (logn)~*1. If
Y. = n1 then G has a finite variance, say ¢?, and the conditional variance of ¥,
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will be less or equal to ¢* on the set where |E . Y,| = |d,X,¢,/(A,)] < n where
¢.'(A,) — 1. Since this will eventually happen, we obtain, under both choices
of the y,’s that

(23) Var_ (logn)+a¥, - 0.

The two random variables, #,(Y,) and (log n)~*1¥, are not independent, but by
Minkowski inequality it follows from (22) and (23) that

(24) n’E_. (U, — N, — d—*I(g)*.

Suppose now r > 0, forget the old imeaning of ¥, and set ¥, = n(U, — N,).
Notice that |V,| < n*1C;, with a constant C;, so that {¥,? = rn} is eventually an
empty set and

(25) EV. v 220w — 0 -
Summarizing, we have
Xopn =1 —n'r )X, — n7'V,;

the measurability properties of y,, (21), (24) and (25) imply, by Theorem 2.2 in
Fabian (1968), the last part of our theorem.

4. The main result.

(4.1) THEOREM. Suppose Assumptions (2.1) and (2.2) hold with %, as defined
below. (The requirement in Assumption (2.2), that &, D F {X;, Xgy +++, Yy, =+ -,
Y, .}, will be automatically satisfied.) Suppose {m,} is an increasing sequence of
positive integers such that Ijm, — 0 and {U,} is a sequence of random variables such
that, with

Fa=F (X, Yy, o, Y, U{U;m < 1)),
(1) E,, U= Q) [(Xn, + ) — f(Xn, — )],
2) Efm(U, — Ej,ml Uy <cC
with a constant C and ¢, of the form
3) ¢ =cT, c>0, 0<yr<i.
Then the sequence X,,, as defined by the procedure described below, converges to

6 and t,}(X, — 6) is asymptotically normal (0, d=*I7(g)), where t, = n 4 2 card {I;
m, < n} is the number of observations used to construct X,.

(4.2) THE PROCEDURE.

(a) Estimation of d. Set U, equal to the arithmetic mean of all U, with m, < n
and set
(1) u, =0V UT,).

(b) The sequence {D,}. Denote by G, the empirical distribution function of
Y, Y, oo, Y, sete, = (logn)~% fora g, > 0, ¢, — 0, and select positive A, J,
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such that
(2) A, -0, e, A, 1 —0, 0,6, 1 —0, n="0,7 %, t—0

n

foran r< i.

Use the symbol ¢°(x) for g(x + ¢) — g(x — ¢) and set

— _(Gn) (1)
(3) B (1) = —m X(en,+w>(GnA”(t))
foralltin T, = {(2f — 1)A,;j = 0,1, —1, ...} and let A3, be constant on the
intervals ((2j — 2)A,, 2jA,]. Set

*) D, = [u,§ (h,)dG,,]* A ni1.

(c) Choice of functions h,. Choose k,"to satisfy conditions (b) but withe, > n~#
witha 0 < 8, < 4 — 2¢ (it may be the same, or different, choice of #,° than in
(b)). Set

k(1) = (3(h,'(1) — B (—=1)) V 0) A (117 ,n(7)) for 120
= —h,(—1) for t <O0.

(d) The recurrence relation for X, is (2.3.2).

(4.3) Proor oF THEOREM (4.1). We shall prove the theorem by verifying
Assumptions (2.1) to (2.5).

(i) Assumptions (2.1), (2.2) are required in our theorem. The measurability
conditions on D, and %, as well as (2.3.1) are obvious from the definitions of
D,, h, and (2.3.2) holds by assumption. Thus Assumption (2.3) holds. Theorem
(3.1) implies (log n)*(X, — 6) — 0 for every 8 > 0.

(ii) Refer by I to Fabian (1973). We shall use Theorem (I1.2.2). Conditions
imposed there and in Extension (1.2.4) on G are repeated in Assumption (2.2).
If we put Z;, = f(X,), V; = Y, — Z, then V, is distributed, conditionally given
Zy, -, Z,, Vy, -+, V,_,, according to G. Condition (I.2.2.1) is repeated in
(4.2.2). We then obtain from Extension (I1.2.4) that ,(w, «) — ¢’/g for almost
all o on {1 g(f) > 0}; the truncation of our 4, by n41y_, ., obviously does
not affect this property. For 4, as defined in (4.2.b) we have ¢,n1 4o,
ryne,Z,| < +oo as (logn)h+|Z,| — 0 and the Kronecker lemma implies
(1.2.2.4). 1t follows then by Theorem (1.2.2) that § (k) dG,_, — I(9).

To show that Assumption (2.4) holds it remains only to prove that u,, or for
that matter, U,, convergetod. Set W, = U, — E " my U,. Then W, is an orthogo-
nal sequence,

i (log PIPPEW? < e 3, (log I+ < 400

and Theorem 4.5.2 in Doob (1953) implies that /= 3}%_, W;— 0. Since Eym U =
f'(Xm, + m) (With », — 0), eventually, depending on », we obtain, using As-
sumption (2.1), E =y U,— f"(9) and U, — d. This means that Assumption (2.4)
holds and Theorem (3.1) implies n#(X, — 6) — 0 for every 8 < ni=*1,

(iii) Thee,’s from (4.2.c)again satisfy all the requirements of Theorem (I.2.2).
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Condition (I1.2.2.4) holds since n#|Z,| — 0 with a 8 > B, and (ne,)™* 312, |Z,| <
n~e 3 n~fnf|Z| = (nfi—F). Also (I1.2.3.1) is satisfied as 7, < |Z,| in As-
sumption 2.5 and ¢,7%), — 0. By Extension (I.2.4) the assertion in Extension
(1.2.3) then implies (2.5.1). This means that Assumption (2.5) holds and by
Theorem (3.1) X, has properties claimed in our theorem since #,/n — 1 because
lim, — 0.

5. Remarks and comments.

(5.1) On AssumpTiON (2.1). In all previous work f is assumed to satisfy
|f(x)] £ 4 + B|x| for some constants 4, B. Here the truncation of the Y,’s
makes this condition unnecessary. The main reason to use truncation was,
however, to avoid a similar requirement for the conditional expectation of
—(9'/9)(Y,). If f satisfies the above condition and G has a finite second moment,
Y, can be used in (2.3.2) instead of Y,; the required modification of proofs is
slight.

Conditions under which the optimum constant a = d~* for the coefficients an™*
was previously estimated, included the requirement of a bounded second deriva-
tive in a neighborhood of ¢ (Fabian (1968); more stringent conditions in Venter
(1967)). The weakening of this condition here was made possible by another,
simpler, method of estimation of d. Actually the condition on f’ can be reduced
still further to the only requirement of f’ existing at §. Indeed this is enough
for (3.1.7) which is the first instant of the use of f’. The second time the proper-
ties of f” are used is in (4.3.ii) to prove that Efml( U) = Q) [f(Xn, + @) —
f(X,, — &)] — d. This could be still obtained under the mere assumption of the
existence of f” at ¢ if the ¢, are chosen to be converging to 0 but ¢, > (log m,)~* for
some 8 > 0. In this case f(#) = dh + o(h), thus Eﬁ,ml( U) = (26) (Xp, +c)d +
(¢, (| Xy, + ) = d + o(1).

(5-2) ON AssuMPTION (2.2). The usual assumption was that E_ Y, < ¢’ at
least for X, near to #. The truncation makes it possible to dispose of this as-
sumption, but then the truncation of the Y,’s in (2.3.2) has to be more severe.
However the main components 4,(Y,) in the right-hand side of (2.3.2) have
bounded variances, at least when X, is near to 6 (cf. (3.1.22)).

(5.3) ON ESTIMATION OF —¢’/g AND I(g). Of course if we could we would
use the formula

1 '
Xpy1 = X, + m‘g—) 9'/9(Y,) -

Estimation of d is easy. To establish a convergence of type nf(X, — ¢) we may
overestimate — ¢'/g in the sense of (3.1.16) but we must not underestimate /7%(g).
That explains why there is a wider choice of constants in estimating —g'/g than
in estimating /(g) as given by the condition ¢, > (log n)=*0 in (4.2.b) and con-
dition ¢, = nf1 with B, < 1 — 2¢, in (4.2.c). The proof could be somewhat
simplified if we did not want to show the possibility of this wider choice of e,

for estimating —g'/g.
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(5.4) ON THE CHOICE OF TRUNCATION. Obviously truncation at n‘1, at various
places, or by x,_,,, as in (2.3.1) was chosen quite arbitrarily and the function
na can be replaced by any other function which increases sufficiently slowly.
The function y_, ,, can be replaced by x_,() ,) With any v(n) - 4-co.

(5.5) CoMPUTATIONAL ASPECTs. Introducing the £, into the recurrence formu-
la for X, destroys the extreme simplicity of the original stochastic approximation
procedure. However, it is obvious that all the convergence properties of #, are
shared by any subsequence %, and then by the sequence h, = h, for n; < n <
n;,;. This makes it possible to compute a new estimate of —g’/g only once in
a while.
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