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INADMISSIBILITY OF MAXIMUM LIKELIHOOD ESTMATORS
IN SOME MULTIPLE REGRESSION PROBLEMS WITH
THREE OR MORE INDEPENDENT VARIABLES!

By A. J. BARANCHIK
Columbia University

1. Introduction and summary. Consider a multiple regression problem in which
the dependent variable and (3 or more) independent variables have a joint normal
distribution. This problem was investigated some time ago by Charles Stein, who
proposed reasonable loss functions for various problems involving estimation of
the regression coefficients and who obtained various minimax and admissibility
results. In this paper we continue this investigation and establish the inadmissi-
bility of the traditional maximum likelihood estimators. Inadmissibility is proved
by exhibiting explicit procedures having lower risk than the corresponding maxi-
mum likelihood procedure. These results are given in Theorems 1 and 2 of
Section 3.

2. Statement of the problem, invariance and a computational lemma. We begin
this section by stating two estimation problems in multiple regression and by
showing how invariance under an appropriate group of transformations may be
used to simplify these problems. The section concludes with a computational
lemma which will be needed in Section 3. The notation we use is chosen to
coincide with that of Charles Stein [1].

Suppose X, X,, - - -, X, are independent (p + 1)-dimensional random vectors,
each distributed as a multivariate normal with mean ¢ and nonsingular covari-
ance matrix . We use the following partitions:

Xi:<Yi>7 6:<7}>’ i:172,""n7
Z; ¢
and
’
Z:(A B>’
B T
where
Y,,pand Aare 1 x 1, Z,Cand Bare p x 1.
Then '
EY;|Z)=a+ p'Z;,
where

ﬂ:F_lB and a:r;—‘B’C.
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In this notation Stein [1] showed that the following loss functions are meaningful
analogues of squared error loss:

2.1)  L((8: Z); (&, §))
={l(@—a) + (5= PP+ (= HT(B — H(4 — BTB)

and
(2.2) L((8, Z), B) = {(F — BYT(B — P}(A — BTB).

These loss functions define the problems of estimating («, 8) and j, respectively.
The maximum likelihood estimators, which are of constant risk relative to the
above loss functions are, respectively,

(2.3) &=Y—-p2, pB=vU
and
(2.4) fo= VU, where

U=>",ZY, —nZY and V=>*,2,Z' —nZZ'.

In [1] it was shown that, for these problems, the maximum likelihood estimators
are minimax. Moreover, it was shown that (2.3) is admissible for p = 1 and
n = 6, and that (2.4) is admissible both for p = 1, n = 4 and forp = 2, n = 6.
Moreover, [1] contains the result that (2.4) is inadmissible for p > 3, but does
not exhibit a specific estimator which dominates (2.4). The first theorem of
Section 3 finds such a dominating estimator, the second finds a procedure which
dominates (2.3) for p = 3, n = p + 2 (thus establishing the inadmissibility of
(2.3)).

The following transformations leave the problem of estimating 8 and (a, B)
invariant [1]:
<Yi> - (aYi + 0'Z;, + d> ’

Z, CZ; + e
<>7> - <av +0'C + d>
¢ Cl4e /°
<A B') . <a2A + 2ab'B + b'Th (aB’ + b'I‘)C')
B T C(T'b + Ba) cre ’

and

(2.5) <a> . (aa —aedC''f+d — b'c—1e>

3 aC'~'f + C'' ’

where a (#+ 0) and dare 1 x 1, b and e are p X 1 and C is a nonsingular p X p
matrix.

We shall restrict our attention to the subgroup with 4 = 0, the p x 1 vector
of p zeros. Under this group the estimators

(2.6) a=Y—-pz, B=fRYWU
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are equivariant (i.e., they satisfy (2.5)). Here f(R?) is any measurable function
of the sample multiple correlation coefficient

(2.7) R* =UV-UIT,
where

T = ;L:IY,;Z—”YH.

Every orbit of the subgroup (b = 0) passes through the parameter point (¢, Z)
for which

(2.8) (¢, T, 4 — BT-B) = (0,1, 1)

and, since any estimators of the form (2.6) are equivariant, we may compute
their risks assuming (2.8). Therefore, in the sequel, we shall assume (2.8).

We conclude with a computational lemma that we will need in Section 3 and
which may be of independent interest. Let X be a p X 1 random vector distri-
buted normally with mean ¢ and identity covariance matrix. For any p-vector
vweset [|v]* = 37 v;%, where v; is the ith component of v, e.g., for the remainder
of this section X, will denote the ith coordinate of X.

E(@Xiz) _ 032 E< 2K )
11X1] e \p—2+ 2K

where K has a Poisson distribution with parameter ||0||*/2.

LeEMMmA 1.

PRrooF.

0, X,
E(7i20) = 02E(||X||7?) + E(64X; — 6,)||X]|"?
(i) = 02E0XI17) + B = 00111

= 02E(p — 2 + 2K)™!
d
do,

= 02E(p — 2 — 2K)!

d Z5 IO K (p = 2+ 26)

= 0YE(p — 2 — 2K)™

+ 57 e AR — (1B K! (p — 2 + 26))
= 02 X35 e A (1P12)¢ — (16172 + k(IBIP2) 1k (p = 2+ 26))
= 02 57 e Rk(|) 120 (kL (p — 2 + 2K))

s T € RO (p = 2 4 20)

e E[ 2K ]
1ol Lp—2+ 2k

as was to be proved.

+ 0,

[2r)77§ - lIx]|7"exp[—Z(x; — 0,)°)/2 dx, - - - dx,]

+ 0,
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3. Inadmissibility results. We first state our main results in the form of two
theorems and then prove the second by showing how it follows from the first.
The section is concluded by the quite lengthy proof of the first theorem.

In the notation of Section 2 and assuming henceforth that p, the number of
“independent variables,” is at least 3 and that the sample size n = p + 2, we
will prove:

THEOREM 1. For the problem of estimating 8 with loss given by (2.2), the estimator
(3.1) B, = (1 —¢(1 — RYR VU,

dominates the maximum likelihood estimator B, = V~-'U, for any value of ce¢
0,2(p—2)(n—p+2)Y), withp=3andn= p + 2.

THEOREM 2. For the problem of estimating («, B) with loss given by (2.1), the
estimator

(3.2) (@, =Y — B'Z, B, =1 — ¢(1 — R)R*VU)

dominates the maximum likelihood estimator (&,, B,) for any value of c e (0, 2(p —
2)(n—p+ 2)Y), withp = 3andn = p + 2.

We remark that in [1] it was shown that, if the regression function is thought
of as a predictor, then the risk with respect to the loss function given by (2.1)
measures the mean-squared error incurred by using a regression function (formed
by estimated regression coefficients) to predict the value of an unobserved depend-
ent variable when the p independent variables associated with that dependent
variable are observed. Thus, Theorem 2 implies that, in terms of this measure
of accuracy, a regression function formed by estimating its parameters by (3.2)
is a better predictor than one formed by estimating those parameters with their
maximum likelihood estimators.

We first show how Theorem 2 follows from Theorem 1.

ProoF oF THEOREM 2. For convenience, when no confusion will obtain,
we shall write the risk (excepted loss) R((f, 2); (&, f)) = p(&, f). Also, com-
paring (2.6) with (3.2), we get 1 — ¢(1 — R*)R~* = f(R’). Since, therefore, (3.2)
is equivariant relative to the subgroup given in Section 2, we may simplify the
loss function (2.1) to

3.3) (@, — a) + I8, — Bl
by taking{ =0, ' = 7and 4 — B'T"'B = 1 (see (2.8)). The following lemma,

combined with Theorem 1, will give us Theorem 2:

LEmMA 2. If an estimator of the form B = f(R®)V~'U dominates p, = VU
relative to the loss function (2.2), then the corresponding estimator given by (2.6)
dominates (&, ﬁo) relative to the loss function (2.1).

Proor oF LEMMA 2. (Note that, for this lemma, f is an arbitrary measur-
able function of the multiple regression coefficient R®.) Setting g(R*) = 1 — f(R?)
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our risk becomes
E{[Y — (RYU'V'Z — a] + || f(R)V U — B’}
= E[Y — UV'-Z — a] + E||V-U — g|
+ E[g(RYU'V'IZ] + Ellg(RY) VU]
+ 2E[g(RYU'V'IZ(Y — U'V'™'Z — a) + g(RYU' V'8 — V-1U)]
= 0(an fo) + E[@(R))U'V' (I 4 ZZ') VU]
+ 2E(E[g(RYU'V'-Y(B — VU + Z(Y — U'V'-Z — a))| Z]} .
Now the last term of this expression equals
2E[GRYU' V'S — VU + ZZ/(B — VIU)]
which, in turn, is equal to
2E[g(RYU'V'~Y(I 4+ ZZ') (B — V'U)].
Therefore,
(3.4)  p(&, B) = p(dy, fo) + E[g(RYUV'ZU(2B — (2 — g(R*)V'U)]
+ E[g(RYU'V'-ZZ'(28 — (2 — g(RY) VU] .
Combining the last two terms of this expression we have, since E(Z) = 0, the

covariance of Z is n='/, and Z is independent of U, V, and R, that their sum
equals

"L EgRY UV QB — 2 — g(R)VU))

_n j; LERg(RY UV (8 — V-1U) + ||g(RY) VU

="t L 2Eg(RYENB — B)] + Ello(R)B -

n

Now, upon adding and subtracting E||, — S| to the expression in curly brack-
ets, and recalling that f(R*) = 1 — g(R?), we have

n+ 1 3 3
L {BIARDS, — Bl — ElIS — A1)
which quantity is, by hypothesis, not positive and at some point is negative.
Therefore, by (3.4), p(&, ) < (&, f,) with strict inequality at some point. This
proves Lemma 2 and, a fortiori, Theorem 2.
We now deal with Theorem 1.

ProoF oF THEOREM 1. By equivariance f, (see (2.8)) we again may assume
that

(3.5) (¢ T, 4 —BT-B) = (0,1, 1).

Then the loss function given by (2.2) becomes || — f||*, and, when no confu-
sion will result, we shall denote the risk of an equivariant estimator 8 by ().
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Using (2.4) and (2.7) we may rewrite the estimator given in (3.1) as

(3.6) B = (1 — (T — B/ VBB VBB
where, on the parameter space defined by (3.5), T — f,/V, is independent of
B.VB, and of §,. Then the loss
; 3 T —B/VB 55 : (T — B/VB) 5.5
Hﬂc - 18”2 = ”180 - ‘BH2 - ZC’A—OA‘—‘ ‘Bo (160 - IB) + ¢ T A A ﬂo ﬂo .
B VB, (B VBo)
Since T — f,'Vp, is distributed as y2_,, the risk
(3.7) lo(léc) = E||Bo — BII* — 2¢(n — P)E[;éo,(;éo - AB)/(BO'VBO)]
+ ¢X(n — p)(n — p + 2)E[B)Bo/(By' V)] -
To prove the theorem we must show that o(3,) — E||f, — B||* < 0, with strict
inequality somewhere in the parameter space, for the specified values of c¢. The
following transformation will be of use:
(3.8) V = QDQ’,

where D is a diagonal matrix and Q is orthogonal. Noting that J" hasa Wishart
distribution W(p, n; ni)) and that §, given ¥ (denoted henceforth as f§,| V) is
normally distributed with mean §, and covariance matrix V' ~!, then defining

(3.9) Z = Q'Vif, = Q(QDIQ")f, = DIQ'f,,

Z |V has a normal distribution with mean D*Q’B and covariance matrix /,. The
diagonal elements of D will be denoted by d,, d,, - - -, d,.
This transformation enables us to rewrite some of the expressions appearing

in (3.7) as
(3.10) BBy =2'DZ and  B/VB,=Z'Z.

The relevant terms of the risk (3.7) are next evaluated in a sequence of compu-
tational lemmas.

LeMMA 3.

’

BB _ , D2+ k — 1)2k _,
B[ D% = mige ) ms SRS TR

where h(||Bl[% m) = T (n/2)(1 + B 7 = [IBIF/(1 + [|BI[), and T(+) is the

gamma function.

Proor ofF LEMMA 3. First we will compute the conditional expectation
(3.11) E{ﬁi V}.
PV B,

By virtue of (3.9)and (3.10) this becomes, denoting conditional expectation given
Q, D by E*,

E*{(Z'DQ'B|Z'Z)}
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which is equal to the sum of expectations
(3.12) EXZ ., (D7'Q'B),/Z'Z} i=1,2,.---,p,
where (v); of the vector v is its ith component.

Lemma 1 (Section 2) is now used to rewrite (3.12) as

P o e EX(Z) { 2K }
DQ'B), EX{Z,,|Z'Z} = (D-*Q'B), () E*
(DHQBENZ]22) = (DHQB) oy =) B = g
where K (given Q, D) is Poisson with parameter >;7_,[E(Z;))]*/2. Since E*(Z;)) =
(D*Q’'B);, (3.12) becomes, after some algebra, (Q'B)*(8'VB)'E*[2K(p — 2 +
2K)7']. Summing on i, we have that (3.11) equals

oK ’ i,
p—2+2K1 )
where K is Poisson with parameter 8'Vg/2 (= Y 7., (D!*Q’'B).’/[2).

Before concluding the proof of this lemma by averaging (3.13) with respect
to the distribution of ¥ we will make an orthogonal transformation, sending Z;,
(not to be confused with Z ;,, which is simply the ith component of the Z defined
in (3.9)) into Z;, 1,2, ---, p, in such a manner as to map 8 into a vector all
of whose components are zero save the first, 8,. This transformation maps 7 —
“n, B— B, ' - @T'c" and, therefore, 8 — 78, with analogous mappings
of Z,, U, V and ﬁo. Since the group of these transformations is a subgroup of
our original subgroup (b = 0) given in Section 2, an orthogonal transformation
does not alter the risk of an equivariant estimator. Moreover (3.5) remains
invariant. We therefore may assume, without loss of generality, that such an
orthogonal transformation has been made.

Denoting the first row, first column entry of ¥ by V,,, (3.13) equals (assuming
the above orthogonal transformation) V;'E{(2K/(p — 2 + 2K))|V}, where the
Poisson parameter may now be written as ||8|[*V;,/2. Therefore, the unconditional
expectation

(3.13) §B(8'VE)'E |

B[ PP ] = BVat S expl— 1181 Va2V K[D(p — 2 + 26)7]

By Vb
= Elexp[—[][*Vn/2] Zimo VAT (IBIP/2)(2K[KY)(p — 2 4 2k)7]
= L= 270 ()2 + k — D(|IAIF/2)*
X 2k[kL(1 + [|B[P)= 2D (n/2)(p — 2 + 2K)]
because
Elexp[—|lAI*Vu/21Vi] = 2T (n/2 + DIA + (I8P T (n/2)]" -
The lemma is therefore proved.

LeEMMA 4.

BBe T ptatn e Ll g ot
E[(BO,V‘QO)Z] KA m) S50 LALBIE 7 )
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where h and y are as in Lemma 3 and
F(nj2 + k —1)
k! (2k + p)2k + p — 2)
n—2 (n+2k—2)(p—1)1
X [——«w— + 2k +
n—p—1 I+ BI)n —p — 1)

ProoF oF LEMMA 4. Proceeding as in the proof of Lemma 3 the conditional

expectation given V is obtained, using the transformation (3.8) and the orthogonal

transformation given after (3.13). Defining E* as the conditional expectation
given D, Q, we obtain

BOIBO — * P 2
EL LR\ V = B [(X Z0,[d) (X1 23,
{(ﬁo’VﬂoY } o]

(3.14) - E*[ g’=1<

LAIBIP, s p) =

2K, +

) (212K 4+ )

X (Z322K, +p = 27|,

where K, | (D, Q) is Poisson with parameter d,(Q’g);*/2. Now this equals
) (2K, + 1)/d,
E {E [(ZZKi + P)Q2ZK, + p — 2) ‘ZK“ b Q]}
= E*{(22K, + p) 22K, + p — 2)!
X [Zd7 4 2(ZK)(21- (@A) (K51 d,(QF),") ]}
= E{(2K + p)'(2K + p — 2)7[trace V' 4 2K||B[(F' VA1 VY

where K is Poisson with parameter 'V3/2. Making the same orthogonal trans-
formation as before,

IBO ﬂo 1 _ 1 1
(3.15) E[(ﬂ )= E[(2K + p)'(K + p — 2)~Y(trace V- + 2KV;)],

where K is Poisson with parameter ||8||*},,/2. Using the fact that
Eftrace V' [Vt =(n —p — 1) }(Vyi(n —2) +p— 1),
we have (3.15) equal to
E[2K + p)'(2K + p — 2)7(E{trace V" |Vy,} + 2KV;)]

- E[(2K YK 4 p— 2 {<h—i;—i1 + 2K )
+ (=D —p—17}]
= E[ Vi'E{@K + p) @K +p — D) <T +2K) |7 }]

+(p— D(n—p—DTE[QCK + p)2K +p —2)]".

Evaluating the inner expectation, some arithmetic leads to the desired result.



320 A. J. BARANCHIK

A computation exactly paralleling that in the proof of Lemma 4 leads us to

LEMMA S.

5 [ffﬁ] = HIBIF, m) 57 2k + p — DB m P

where h and y are given in Lemma 3 and |, is given in Lemma 4.

Proor oF THEOREM 1. (3.7) leads one to conclude that 8, will have lower risk
than §, provided that

(3.16)  O<c<2n—p+ 2)—1E[ B (Bo — ) ]/E[ B0 B ]
Py Vb (B VEoy
for all possible parameter values satisfying Condition (2.8). It will now be shown

that ¢ = 2(p — 2)(n — p + 2)~* (and, hence, all positive c less than this) satisfies
(3.16). This is equivalent to establishing

(BA7) (p— 2ELB/ BB VB — ELB(Bo — BB VB < 0.

Using the results of Lemmas 3, 4 and 5 and dropping the positive common factor
h(||18)%, n), (3.17) will be satisfied if

(3.18) 2iatin—p—2—-—0—=p0n+2k-2)}<0,

where 1, = (p — DI(n/2 + k — 1)2ky*/(k! (p 4 2k)(p — 2 + 2k)(n — p — 1))
and we note that 1 — y = (1 + [|8]|*)~". Condition (3.18) becomes, upon col-
lecting terms,

i t(=2k —p) 4+ X5ot;y(n+ 2/ —2) <0
which becomes, upon setting j = k — 1 and noting that
lyr = Ztk(k — 1)([1 -+ 2k)(n + 2k — 4)_1(p + 2k — 4)—17,—1 ,
(3.19) Xt [(—2k —p) -+ (n 42k —4)

=D 420 T o
(n+ 2k — 4)(p + 2k — 4)

The left-hand side of (3.19) is

L tlp 4 20)[—1 4 2(k = 1)(p + 2k — 4)7]
= 2L t(p + 26)2 — p)(p + 2k — 4)7,
and, since p > 3,

each term in this sum is indeed negative and thus Condition (3.19) holds and the
theorem is proved.
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