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ON GENERAL RESAMPLING ALGORITHMS AND THEIR
PERFORMANCE IN DISTRIBUTION ESTIMATION

By PETER HALL AND ENNO MAMMEN
Australian National University

Recent work of several authors has focussed on first-order properties
(e.g., consistency) of general bootstrap algorithms, where the numbers of
times that data values are resampled form an exchangeable sequence. In
the present paper we develop second-order properties of such algorithms, in
a very general setting. Performance is discussed in the context of distribu-
tion estimation, and formulae for higher-order moments and cumulants are
developed. Arguing thus, necessary and sufficient conditions are given for
general resampling algorithms to correctly capture second-order properties.

1. Introduction. The classical bootstrap may be thought of as a rather
special device for constructing a new data sequence having the same size as
the original sample. All of the members of the new sequence are drawn from
the original sample, and are present in proportions which are determined by a
uniform multinomial distribution on the original sample values. Of course, the
latter distribution is a consequence of the “random sampling, with replacement”
concept that underlies the classical bootstrap algorithm. There are several al-
ternative versions of this scheme, some of which keep the “random sampling”
part of the algorithm but remove the requirement that the elements of the re-
sample be a subset of those in the original sample. The smoothed bootstrap is
an example; see Silverman and Young (1987) and Young (1988).

Another approach is to retain the requirement that the elements of the re-
sample be a subset of those of the original sample, but to relax the assumption
of random resampling. A very significant early move in this direction was made
by Rubin (1981), with his development of the Bayesian bootstrap. There, the
numbers of sample values in the resample were chosen according to a Dirichlet
distribution. Second-order properties of this prescription were studied by Weng
(1989), who showed that it is not as accurate as the percentile bootstrap when
employed to approximate the frequentist distribution of the sample mean, but
that it is more accurate when used to describe a prior distribution. See also Lo
(1987). Other developments in the same vein include the so-called wild boot-
strap, whose origins may be traced to variance estimation in heteroscedastic
regression [Wu (1986) and Beran (1986)] and which has been studied more
recently in the contexts of linear statistical inference [Liu (1988)] and nonpara-
metric curve estimation [Hirdle and Mammen (1990)]. The wild bootstrap is
usually explicitly designed so that it correctly reproduces second-order proper-
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ties of sampling distributions. Mason and Newton (1992) have discussed first-
order properties for general resampling schemes with exchangeable properties,
including the schemes based on Efron’s (1979) classical definition of the boot-
strap and also Rubin’s Bayesian-motivated scheme. Barbe and Bertrail (1993)
have also treated general forms of the weighted bootstrap.

Our aim in the present paper is to examine second-order properties of a
very large class of bootstrap alternates. These involve constructing a resample
whose values are selected from the sample according to very general sampling
schemes. The latter include both the Dirichlet scheme of the Bayesian bootstrap
and that of the wild bootstrap. In this sense our work might be seen as a gener-
alization of that of authors such as Weng (1989) and Mason and Newton (1992).
However, our outlook is not motivated specifically by Bayesian considerations,
and we analyse different approaches entirely from a frequentist viewpoint. We
study the case of estimating the distribution of the mean, and treat both per-
centile and percentile-¢ arguments. Other contexts, such as smooth functions
of multivariate means, could be treated similarly but with very much more
complex notation.

In detail, our model is as follows. Suppose we are given a random sample
X ={Xy,...,X,}, from which we draw a resample where the number of times
X; appears is given by the random variable N;. We assume that the N /’s are
exchangeable. Section 2 develops expansions for cumulants and distribution
functions under such very general schemes, in terms of moments of the N /’s.
By asking that

(1.1 iN;L =n,
i=1

we ensure that the resample is of the same size as the original sample. Of our
examples, only in one version of the wild bootstrap is this a restriction, and
there the N ’s are independent. We do treat that case. In all circumstances,
our expansions are compared directly to their counterparts where the N}’s
are independent and enjoy the same marginal distribution. Quite apart from
the fact that this approach enables us to include the exceptional version of the
wild bootstrap, it provides a particularly convenient and informative foil for
comparison in general. ,
Since we are restricting our attention to means then there is no real difficulty
in allowing N, to take noninteger, or even negative, values. We ask that in such
cases the mean and the mean of the squares of the resample values be defined by

n . . n
Xi=n"') NyX, and Xp=n"1) N;XZ
i=1 i=1
which avoids any ambiguity. Example 2 in Section 2 is of this form.
Our results immediately yield necessary and sufficient conditions for second-
order accuracy of various generalised bootstrap methods, based on both per-
centile and percentile-£ arguments. For example, the classical percentile and
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percentile-¢ bootstrap techniques are second-order accurate, in the sense of cor-
rectly capturing skewness-based departures from the sampling distribution of
the mean, if and only if

(1.2) E (N3 —1P%=1+0(n"%) and E'(N! -1P°=1+0(1)

as n increases. Here, E’ denotes expectation conditional on the data. [The per-
centile method may be used to obtain second-order accurate approximations if
the sampling variance is known, but when variance is unknown, percentile-¢ is
an appropriate choice. See Hall (1992), page 92ff. In later work we shall drop
both the ’ from E’, and the n and * from N}, so as to make our notation less
cumbersome.]

Of course, the exchangeability condition demands as well that

(1.3) E(N:)=1.

Thus, the very elementary conditions (1.2) and (1.3) are seen as being the main
requirements of bootstrap algorithms which successfully capture second-order
features of the target distribution. General bootstrap algorithms which satisfy
those assumptions, but are not necessarily restricted to the classical “sam-
pling with replacement” prescription, can be expected to produce distributional
approximations whose accuracy is as good as that associated with the latter
scheme. Such resampling plans are discussed by Haeusler, Mason and Newton
(1992) and Praestgaard and Wellner (1993). In Haeusler, Mason and Newton
(1992), higher-order properties of a modification of the wild bootstrap are stud-
ied. Praestgaard and Wellner (1993) give sufficient conditions for consistency
of resampling empirical processes. Huskova and Janssen (1993a, b) have de-
veloped generalized bootstrap methods for U-statistics.

2. Methods and theory.

2.1. Summary. Section 2 introduces a general approach to resampling
methods, develops a theory to describe its properties and draws conclusions
from that theory. The methodology is described in Section 2.2, where it is con-
sidered from the viewpoint of the generation of random measures. We show
that in most circumstances, our general methods may be treated as a straight-
forward resampling scheme, although there are some instances where that
is not appropriate. They involve applications of the wild bootstrap to nonlin-
ear statistics, and are discussed in Sections 2.5 and 2.6. Sections 2.3 to 2.6
treat the special case of the mean and the Studentized mean. Asymptotic
theory for other cases, such as smooth functions of means, is virtually iden-
tical.

Section 2.3 introduces notation in the case of the mean, and Section 2.4 states
theorems about moments and cumulants of means and exchangeable variables.
These formulae are required for analysing general resampling schemes, and are
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applied to that purpose in Sections 2.5 and 2.6. There we compare the asymp-
totic properties of different resampling methods for constructing distribution
estimators, and describe the coverage accuracies of confidence intervals derived
from those estimators.

In Section 2.4 we provide a simple, necessary and sufficient condition for
general bootstrap distribution estimators to be accurate up to and including
terms of order n~1/2. See condition (2.2). Sections 2.5 and 2.6 develop this line
of argument further, and show that under mild and simple conditions on the
form of the general bootstrap approximation, the latter differs from the true
distribution only in terms of size n . Furthermore, the difference may be writ-
ten as n~1y(x)p(x) + O(n—%/2), where 9 is an odd, third-degree polynomial and
¢ is the N(0, 1) density. Explicit formulae for v are developed for a variety of
different versions of the general bootstrap, and lead to important qualitative
conclusions about relative lengths and coverages of different intervals.

All the comparisons of distributions that we make are in terms of moments
or cumulants. This approach is standard in the literature—see, for example,
Chapters 3 and 6 of Kendall, Stuart and Ord (1987). In particular, it leads
directly to expansions of characteristic and moment generating functions, and
so to descriptions of the order of approximation in well-known limit theorems for
those quantities. It also leads to accounts of the order of approximation in many
other settings. Indeed, if Z, converges to Z in distribution as n — oo, then from
knowledge of the way in which moments of Z, compare with those of Z we may
deduce the order of approximation of E{f(Z,)} to E{f(Z)} for a wide variety
of smooth functions f. Should it be possible to rigorously verify the standard
formal inversions of expansions of characteristic functions, and thereby obtain
analogous expansions of distribution functions, then our results immediately
produce properties about the order of approximation in that setting. However,
direct comparison of distributions via cumulant expansions is very informative
and relevant even in the absence of expansions of the cumulative distribution
functions of those distributions.

2.2. A general resampling scheme. In this section we introduce a class of
resampling plans for (real-valued) statistical functionals 7. Consider first the
usual bootstrap procedure. For brevity let us discuss here first only the case of
non-Studentized statistics. Given an independent and identically distributed
(ii.d.) sample X = {Xj,...,X,} with gistribution P, the Pootstrap provides
an estimate for the distribution of T'(P,) — T(P), where P, is the empirical
distribution based on X. UsuAally the bootstrap estimate is introduced as the
conditional distribution of T(P;) — T(P,), where P} is the empirical distribution
of a sample drawn from P,,. ‘

There exists another interpretation of the bootstrap procedure which will
lead below naturally to a more general class of resampling plans. Given the
sample X, the measure P;, is a random distribution with weights at the points
Xi,...,X,. This viewpoint can also be used for the wild bootstrap, which has
hitherto been introduced for linear statistics 7. Let us briefly recall the defi-
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nition. Suppose for simplicity that T(P) = [xdP. Then the wild bootstrap pro-
ceeds as follows. First one generates n independent and identically distributed
random variables Ry,, ..., R}, with ER},, = 0 and E(R},))* = E(R},;)° = 1. Then
the dlstnbutlon of T(P, ) - T(P) is estlmated by the (conditional) distribution
of ¥_, R* (X; —X,), where X is the sample mean.

The Wlld bootstrap is also suited to the case of nonidentically distributed, but
independent, observations Xj, ..., X,. The idea behind this procedure is that
the conditional distribution of R* ,(X; — X1) may be interpreted as an estimate
of the distribution of X; — EX;. We shall use a similar idea. However, as indi-
cated above, we shall describe our resampling not as a drawing of independent
observations, but as the generation of random measures.

We use the following “wild” heuristics. We seek an estimate of the distribution
of the random measures Q; = 6x, — P, where 6, is the point mass in x. For the
dlstrlbutlon of Q, we propose as an estimate the conditional distribution of
Q, N .(6x, — P ), where N%,,..., N}, is a sequence of random variables.
 The resamplmg operation should reflect the stationarity and order-invar-
iance of X, in the sense that the variables N}, that is, the number of times
that X; appears in the resample, should form an exchangeable sequence. Nev-
ertheless, we do not require the full force of the exchangeability assumption,
but employ only moment versions of it; see conditions (B: m)—(D: m) in Section
2.4. The reader is referred to Taylor, Daffer and Patterson (1985) for a detailed
account of exchangeability.

In analogy to P =P+n~ 21<,<an, we define P* = P +n” 21<,<nQ,
This gives

~

n
*=p~1 Z (N:;+1—-n"N2)éx,

where N; = ¥%_; N} .. In particular, for the special case where N; = n, this
reduces to P* =n" 21<,<nN 6x,. In general, we need not assume that the
N ’s add up to n. Furthermore, P* need not be a positive measure. We ask only
that [ dP* =1.

As our estimate of the distribution of T'(P,) — T'(P) we propose the condi-
tlonal distribution of T(P*) - T(P ). Furthermore, the Studentized functional

1(P ) {T(P ) — T(P)} can be estimated by the conditional distribution of

I(P*){T(P* ) — T(P,)}. Here, S?(P) is a functional which approximates the
variance of T'(P,) — T(P) under P.

Let us now briefly mention special choices of the distribution of (N},,... ,N;,).

ExampPLE 1 (Bootstrap). Here, (N,,...,N;,) has a multinomial distribu-

tion with parameters (n=1,...,n"1;n)

"EXAMPLE 2 (Bootstrap, revised). As proposed for instance by Bickel and
Freedman (1981), let us consider the bootstrap with resample size M, different
from n. Suppose X; appears just M}; times in this resample. More explicitly,
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we might suppose that M} is a random variable and that given M} = m
the n-tuple (M},,...,M},) has a multinomial distribution with parameters
(n=1,...,n71;m). To recover condition (1.1) we might put N}, = M*,/M;. In
the case of resampling the mean, this procedure corresponds to using the con-
ditional distribution of

n
M) M X,
i=1
instead of

n
-1
n E M;.X;,
i=1

to approximate the distribution of the sample mean.

If the statistic T'(P,) is not a mean, then the approaches described in the
next two examples may only be treated strictly as resampling methods if ad-
ditional values are appended to the sample. In particular, when studying the
Studentized mean using the wild bootstrap, the mean of the squares (needed to
calculate the variance) is taken to be the mean of the values of (N, X;)? rather
than the mean of the values of N} X2.

ExampPLE 3 (Wild bootstrap). Define N;; = R, +1, where the R} ’s arei.i.d.
with E(R?,) = 0and E(R},)? = E(R},)? = 1. In the case of the mean, this amounts
to resampling in such a way that the numbers of appearances of sample values
are i.i.d., and the resample size is n + LR} ,. For more general statistics, the
random measure approach discussed above provides a way of defining the wild
bootstrap in contexts where it has not previously been considered.

ExaMPLE 4 (Wild bootstrap, revised). We propose the following modification
of the wild bootstrap. As before, define (R},,..., Ry,) tobeiid., but put N}, =
n(l+R},)/(n+R;), where R; = ¥;<; <, R},. For positive random variables R ,,
this resampling procedure ensures that P} is a proper probability measure.

ExAMPLE 5 (Generalized jackknife). A resampling plan which fits in our
framework and which uses a minimal “amount of randomness” can be described
as follows. Choose a (deterministic) vector p = (p(1),..., p(rn)) in R*. Then put
N, = p(II(Z)), where IT is a random permutation of (1,...,n).

2.3. Resampling linear statistics. 'To simplify matters in this section and in
the remainder of the paper, we consider only the mean T(P) = [ xdP. Asymp-
totic theory for other cases is virtually identical, in qualitative terms, and so
there is little point in complicating matters by treating the general case ex-
plicitly. The scale functional S is always chosen as the variance functional
S(P)? = [{x — T(P)}*dP.
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With X, = n‘IEISiSnXij andf}i =n"181<;<aN; X/, we have now

ni“i»

n
Ur = /xj(dlg; ~dP,)=n"! Z (Nai —n7 Ny X/
i=1

—IZ(N* _1) )

The sample and resample variance are given by

5% = S%P,) =X, - X,

5% = SHB =t Y (Mg + 1 -0 IV X, - Xy?

i=1
n 2
- {n“l 3 (Ng+1-n7IN)(X; —)_(1)}
i=1
=52+ U} - 2X,Us - U2,

respectively. Let y and 0% denote the population mean and variance. Then the
resample estimate of the distribution of U = X; — u is given by the conditional
distribution of U* = X I — X1, and the resample estimate of the distribution of
V =YX, — p) is given by the conditional distribution of V* = 5* ~1(X; —X).

2.4. Moments and cumulants of weighted sums of exchangeable variables.
Recall the definitions of U, V, U* and V* given in Section 2.3. The asymptotic
properties of the distributions of U and U*, and of V and V*, may be compared
in terms of their Edgeworth expansions, or, usually equivalently, via their cu-
mulant expansions. In this section we shall develop approximate formulae for
those quantities, and also for their counterparts where the analogues of the
N ’s are independent of one another but with the same marginal distribu-
tion as the exchangeable sequence {N;;}. It turns out to be convenient to de-
scribe formulae for cumulants by comparing the exchangeable and independent
cases. ,

In this analysis we are conditioning on the sequence {X;}, and so we regard
those variables as constants. They are no more than weights for the general
exchangeable sequence {N;;, 1 <i < n}, and indeed we may allow the weights
to form a triangular array, {v,;, 1 <i < n < oo}, rather than a linear array
{Xi, 1 £i < o}. (When returning to the special cases of U* and V* we take
v, = X;.) For convenience we drop the asterisk from N} ;. Recall that we assume
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E(N,;) = 1. We ask that for an integerm > 1,and n > r +j,

n
(A: m) supn~?! Z [vni™ < o0,
n>1 i=1
(B: m) sup E|N,u|™ < oo,
n>1

E{(Np1 — D+ (Np = D" (N p1 = 1)+ (N iy — D}

C:
(C:m) = O{n‘ll(j =1,2)+n"2I(j > 3)}

for allintegersr > 0,2 < s; < --- < s, andj > 1satisfying s1+- - -+s,+j = m, and

D:m)  E{(Na1— 1P (N — D"} = [[ BN < D = O(n™?)
i=1

for all integersr > 1 and 2 < s; < --- < s, satisfying s; + - - - + s, = m. In these
formulae, expectation is taken in the distribution of the N, ;’s, with the v,;’s
regarded as fixed. Translating to the bootstrap context, this is equivalent to
taking expectation conditional on the data X.

When v,,; = X;, condition (A: m) holds with probability 1 (in the distribution
of X3, X,,...) provided that E| X|™ < oo.

For the sake of simplicity, drop the subscript n from N,,; and v,;, and define
5, =n"1%0), w; =v; - 01, Wy =n"Sw, 2 =0, - 0%, 1 = E(N, - 1)/,

o1 = n[E{(Ny - 1P (N, - 1%} - 3]
0r_1,2 =nE{(Ny - 1?2 (N,_g - DA(N,_; - DN, - 1)},

S1=n"1Y (Ni—Dw;, Sp=n"') (Ni-D(}-7),
i=1

i=1
= t2+Sz — 2018, —S%,
T zt'r‘ISl,

T, = S]_{l - -21-t_2(32 — 20187 + %t‘2SZ{ + %t—4(S2 — 2-17131)2}.

In the event that N, = n we have an equivalent definition of 7:

n n 2
72=n‘IZNivi2 - n‘IZNivi .
i=1 i=1

Then S;, T represent Us,oV*, respectively. We shall develop formulae for mo-
ments and cumulants of n1/28; and n/2T up to terms of order n~3/2, and also
for the case where the N;’s are independent. To describe the latter context, let
Noi, ..., No, denote independent and identically distributed random variables
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with the distribution of N1, and put

Sor=n"1> (No;— Dw;,  Soz=n"1» (No; — D(v} - 0a),
i=1 i=1
To1 = So1{1 — 3t72%(Soz — 201S01) + 3¢7255, + 3t7*(Sez — 201501)?}.

Our main result follows. All proofs of theorems are deferred to Section 3.

THEOREM 2.1. Let k > 1 be an integer.
(i)(a) If conditions (A: k)~(D: k) hold, then

E{(nl/ZSl)k} —E'{ (n1/2501)k}
1 @D

) wZW(al,l —lay,2)+0(n™?), fork=2I,
O(n=3%/2), fork =20+ 1.
(b) If conditions (A: 3k)-(D: 3k) hold, then
(2.1 nl/2T = n1/27 1 O, (n—s/z)
and

E{ (nl/le)k} _ E{ (n1/2T01)k}
O(n72%), fork=2I,

= E{(nl/2S1)k} _ E{ (n1/2SO1)k} + {O(n_3/2)’ fork=20+1.

(i)  Let (C': m) denote the version of (C: m) in which the right-hand side is
replaced by o{n=1/21(j = 1,2)+n~3/21(j > 3)}, and (D’: m) the version of (D: m)
in which the right-hand side is replaced by o(n=/2).

(a) If (A: k), (B: k), (C': k) and (D': k) hold, then

E{(n/281)"} - B{ (n/2501)" } = 0(n"2).

(b) If (A: 3k), (B: 3k), (C': 3k) and (D': 3k) hold, then (2.1) is true, and

E{ (nl/ZTl)k} _E{(nl/2T01)k} =Ao(n—1/2)‘

The moments and cumulants of So; and T; are derivable by direct calcula-
tion, as we now outline. Let  j(Z) denote the jth cumulant of a random variable
Z. Since Sy; and T; may be represented as smooth functions of means of inde-
pendent sequences, then traditional arguments may be used to show that for
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Z= n1/2801 orZ= n1/2T01,

O(n~%/%), oddk > 5,
kp(Z) = s
O(n?%), evenk > 6.

See, for example, Hall (1992), Section 2.4, especially Theorem 2.1. Since we
are interested only in departures from normality up to and including terms of
order n~1, then it suffices to develop formulae for the cumulants of n'/2S; and
n/2Ty; up to that order. These formulae are given below.

THEOREM 2.2. Under condition (A: 4),

#1(n2Sp1) = 0, K2 (n/2,801) = vat?, r3(n*2S01) = n™Y2u31w3,
K4 (nl/zsm) = n‘l(u4 - 3V§)ﬁ4 + O(n'z).
Under condition (A: 12),
K1 (n1/2T01) = ——n_l/Z%uzt_zwg + O(n_3/2),
ra(n!/?To) = vat? + g (¢ — %m,) + 13 (2% + ¢~ + t%wy) |
+0(n2),
K3 (n1/2T01) =n~1/2 (vs — 31/%)@"3 + O(n_‘o’/z),
ke (n1/2Ty;) = n_l{ (va — BU3) Wy + 6rous3 (t* — ¢~ 2w3 — Wy)

+3v3 (3t + 6t ~2w3 + Wy) } +0(n™%).

Next we comment on the extent to which the cumulant expansions of n/2S, /¢
agree with those of n'/2U /o = n¥/2(X; — u)/o. By the first part of Theorem 2.2,

k1 (nl/zs()l/t) = 07 K2 (nl/2801/t) = Uy, K3 (nl/zs()l/t) = n_l/zyst_&‘u-js’

and by Theorem 2.1, these expansions agree with those of the cumulants of
n1/28; /t up to terms of smaller order than n~1/2. By direct calculation,

k1 (n'2U/s) = 0, ke (n'/2U /o) =1, k3 (nY2U /o) = n=1/2y,

where v = E(X — p)®. Comparing the last two lines of displayed formulae, and
noting that

=35 =531 Y (X, — X% =y +0(1),
i=1

we,see that the first three cumulants of n1/2U /o and n1/28, /¢ agree to o(n=1/2)
if and only if

2.2) ve=1+0(n""%),  w3=1+o(l).
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Since fourth- and higher-order cumulants of n/2U /o and n1/28; /¢ are of order
n~1, then (2.2) is necessary and sufficient for agreement of all cumulants to
o(n~1/2). The agreement cannot be to O(n~1), since (for example) the fact that
t=3w3 and v are a distance n~1/2 apart means that third cumulants cannot
agree to O(n~1).

Very similar comments apply to a comparison of the distributions of n/2T'/¢
and n'/2V = n'/2(X; — )/. The cumulants of the asymptotic distribution of
n/2T/t agree with those of n'/2T; /¢ up to terms of o(n~1/2), and by Theorem
2.2, the latter cumulants are given by

K:l(nl/zTo]./t) = _n—l/zél/zt—3w3 +O(n—1/2),
ke (nY2To1/t) = vy +0(n"2),

K3 (n1/2T01/t) =n"1/2 (1/3 - 3V22)t_3w?, + o(n_l/z);

and by direct calculation, the first three cumulants of the asymptotic distri-
bution of n!/2V are —n=1/21y + o(n=1/2), 1 + 0o(n=Y/2), —n=1/22y + o(n=1/2), re-
spectively. Therefore, (2.2) is again necessary and sufficient for agreement of
these cumulants to o(n~/2). And since fourth- and higher-order asymptotic
cumulants are of size o(n~1/2), this conclusion extends from agreement of the
first three cumulants to the agreement of cumulants of all orders. Once again,
agreement to O(n~1), rather than simply o(n~1/2), is not possible.

The argument above is quite general, in that it does not require any assump-
tions about the numerical values of the quantities o,; and a;9, introduced just
prior to Theorem 2.1. However, if we wish to examine terms of size n~! in cu-
mulant expansions, then the «’s play a crucial role. They will almost always
contribute terms of size n~! to the fourth cumulant, and will also, in many
instances, contribute terms of that size to sixth and higher even-indexed cu-
mulants. Cases where this does not happen include that where the N ’s are
independent (the so-called wild bootstrap; see Section 2.2), and that where the
N ’s have a distribution which, conditional on £N;, is a scale multiple of a
multinomial with each probability equal to n~1. (This produces the usual boot-
strap with general sample size; again, see Section 2.2.) In these instances it
may be shown [e.g., Hall (1992), Section 2.4, especially Theorem 2.1] that even
cumulants higher than the fourth are of order n—2.

2.5. Comparison of different resampling methods. To simplify our compar-
ison, let us assume that we are in a situation such as that described just above,
where the only terms of size n~! that enter into formulae for asymptotic cu-
mulants of n1/28; and n'/2T come from second and fourth cumulants. Thus, all
contributions to the distributions of n'/2S; and n'/2T, deriving from fifth and
higher cumulants, are of size o(n~1).

It is particularly convenient to consider all formulae relative to their coun-
terparts in the case of the common bootstrap with sample size n. There, (N},

.,Nx,) are multinomial with probabilities (n~1,...,n"1), and IN;, =n.In
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this case it may be shown that
vo=1-n"1, v3=1+0(n"1), vg=4+0(n71),
o = —-1+0(n71), ag1 =-1+0(n71), age=-1+0(n"1).
For more general bootstrap methods, such as those considered in the examples
of Section 2.2, formulae differ from those above only in terms of order n~1 in

the case of v;, and o(1) in the case of ¢; ;. Thus, the analogues of formulae in the
previous display are

ve=1+(B — n"t+o(n71),

(2.3) vg=1+o(n"1/%), vy = P +4+0(1),
an=0, ap=0-1, g1 = B4 — 1+0(1), ag =G5 — 1+0(1),
where the constants §;,..., 85 are all 0 in the case of the common bootstrap.

The identities (2.3) amount to definitions of 3i,...,3s. Note that ay; = 0 in
all circumstances, and that calculation of cumulant expansions to order n~!
requires vz only to order n~/2 and v, to order 1.

When discussing bootstrap methods using the results in Section 2.4, we
should, as noted earlier, take v; = X; and w; = X; — X;, and use expectations
conditional on the X;’s. That notation is employed below. Let EZ and njB de-
note expectation and jth cumulant, respectively, in the case of the common
bootstrap. Theorems 2.1 and 2.2, and the standard formulae for cumulants in
terms of moments, may be used to show that, with 52 = n~'S(X; — X;)? and
fig = n71R(X; — X1)4,

K1 (n1/281) - nf(nl/zsl) = E(nl/le) - EB(nl/zsl) =o(n7?),
Ko (n1/2sl) - nzB(nl/zsl) = E(nl/zsl)2 - (EnI/ZSI)2
~ B2 (25,)" - (BPn81)°)
=n"15%(By — Bs) +o(n7?),
ks (nV/28y) — kB (n'/28,) = E(n'/28,)° — 3E(n'/2S,) E(nY/28;)? + 2(En/28,)°
— {E (n/281)" - 8(EPn!/28,)E® (n/251)*
+2(EPn1/281)"}
=o(n7?),
ka(nY/281) — K8 (n1/281) = E(n'/281 — En'/281)* — 8{ s (n1/281) }2
- [Eﬂ(nl/zs1 — En/281)" - 8{f (n"/281) }2]

= n"HG43(8, — 265) — 546(61 — Ps) + iaB2 } + O (n™2)
= n_184{3(2ﬁ3 + 54 - 2,81 - 255) + 3_4ﬁ452}
+0(n™2).
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[The remainder terms here and below are of the stated orders uniformly in
samples for which (A: 4) holds for an arbitrary but fixed bound on the right-
hand side. As explained shortly after (A: 4), this is true “with probability 1, for
all sufficiently large n,” if an appropriate moment condition is valid.] Similarly,

k1(nY2T1) — k8 (nY2T1) = o(n7?),

k2 (nY/2Ty) — k2 (n'/2Ty) = n=16%(B; — Bs) +o(n 1),

k3 (nY/2Ty) — k2 (n'/?T1) = o(n7?),

ka(nY/2Ty) — k (n'/?T1) = n=25*{3(205 + Bs — 281 — 265)6 ~*fisfBa}

+0(n72).

Expanding the characteristic functions of n/2S;/ and n'/2T/G and suppos-
ing that those formulae may be inverted in the obvious manner to produce
expansions of distribution functions, we deduce that the difference between
the (conditional) distribution functions of n1/2S; /5 (or n'/2T/) under a regime
satisfying (2.3), and the common bootstrap, is given by ¢(x) [the N(0, 1) density]
multiplied by

—n Y [3(81 — o)+ g (+2 — 3){3(20s + By — 261 — 265) + T~ *Tuubr }
=n=32{6 404, + 1065 + 364 — 461 — 605

(2.4)
x2(261 — §5 b — 205 — s +265) }

= n~ (),
say. Note particularly that the quantities 52 and Ji4 appearing in the definition
of 1) depend on the observed data; they were defined earlier in this paragraph.
Furthermore, the #’s may depend on the data.

Perhaps the simplest form of the wild bootstrap is that where the N;’s are
independent with E(N;) = 1 and E(N; — 12 = E(N; — 1)% = 1. Here, (2.3) holds
with 81 = B3 = B4 = 85 = 1, and (B, is undetermined. The function ¢ now has
the form

(2.5) (%) = — 5 (x® - 3) (674 sBs — 3).

In particular, if g, < 334ZZ21, the wild bootstrap has lighter tails than the com-
mon bootstrap. Note that 8 = 0 if the fourth cumulant of N; equals unity.

We should remark that the version of the wild bootstrap considered here
differs slightly from that considered by Liu (1988) and Mammen (1992), in that
a different variance estimate is employed. Our estimate is given by

n
2= +n 1Y Ni(w? - £) - 82,
i=1
whereas that suggested by Liu and Mammen is

p=n"1d (N - DPw} - 8%

i=1
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The resulting Studentized statistic is R = #p~187, which is the analogue of T
Its Taylor approximant, the analogue of T}, is

Ry =81(1-3t728 + 47283 + 3t7S2) =R + 0, (n"2),

where Sz = n71%; < ; < o {(IN; — 1)? — 1}w?. The cumulants of R, may be derived
as were those of T';. In this way it may be shown that the first three cumulants
of n'/2R, are identical to their counterparts for T in the case of the common
bootstrap:

O(n=%2), forj=1,3,

ki (n'/? By) = wf (n'/2T1) = {o(n—z) for j=2

and, in addition,
ka(n*?Ry) — v (nY/?Ty) = —8n=1{@4(By + 2) + 262w} + 2} + O(n"2).

Thus, the distribution of R has skewness similar to that of 7' under the common
bootstrap, but lighter tails (for all choices of ). The tails of R are also lighter
than those of 7' under the wild bootstrap. This is to be expected, since the
definition of p? implies that it has heavier tails than 72, and it appears in the
denominator in the definition of R.

The “revised” form of the wild bootstrap, introduced in Example 3, may be
treated in like manner. For example, if the N;’s are independent with E(N;) = 1,
E(N; =12 =E(N; - 1)®* =1 and E(N! —1) = +4+0(1), then

() = — (2% — 3) (G *ieBz + 3);

compare (2.5). Since x? — 8 < 0 if x is an N(0, 1) quantile between the levels 5%
and 95%, then it follows that one-sided 95% and two-sided 90% “revised” wild
bootstrap confidence intervals tend to be shorter than their counterparts for
the ordinary wild bootstrap. However, since x2 — 3 > 0 for 2%% and 97%%, or
more extreme, N(0, 1) quantiles, then one-sided 99% and two-sided 95% revised
wild bootstrap intervals tend to be longer.

Finally, we consider the generalized jackknife, introduced in Example 4 of
Section 2.2. In the notation of that example, put 5 j = n~1%p(i)7 and M =
n=15{p@) — p;}/. Then E(N;) = By, vy = fy — P2 = T, Vs = Tig. Assume with-
out loss of generality that p(i) = p,(i) is chosen so that $p(i) = np, = n (e,
YN =n)and,asn — 00,5 = 1+(8; — Dn~l+o(n~1), vy = By +4+0(1), where ;
and [, are constants. Then, in the notation of (2.3), 83 = 85 = 0, 85 = —(3s + 2).
It follows that

V) = (= - 3) (26 + B + 2 - 5Pufi) - 361 ).

2.6. Effect on coverage accuracy. Let I; = (—oo, Al and I, = [A;, Ay] de-
note, respectively, one- and two-sided confidence intervals for the value of the
unknown population mean u. Suppose both intervals have nominal coverage
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probability o, and write p; for the true coverage of I; when a resampling scheme
satisfying (2.3) is used. Let p® denote the version of p; when the common boot-
strap is employed. Let 1 denote the version of v, defined at (2.5), when 5~4/i,
in the latter is replaced by (Var X)~2E(X — EX)*. Write z,, for the a-level crit-
ical point of the N(0, 1) distribution; that is, z, solves the equation ®(z,) = o,
where ® is the N(0, 1) distribution function. We claim that

(2.6) p1—pf = —n"oEa)d(za) + O(n=3/2),
2.7 P2 —p3 = 20" (2(a+ 1/2) (2@ 12) + O(n™2),

where ¢ = ®'. Thus, the difference in coverage error of both one- and two-sided
confidence intervals is of size n1.

To derive (2.6) and (2.7), let U, be the a-level quantile of the bootstrap dis-
tribution of T', and let 78 denote the version of v, for the common bootstrap.
Observe that, by Cornish-Fisher expansion, U — 08 = —n~14)(z4) + Op(n=%/2).
Results (2.6) and (2.7) follow from this result via the arguments of Hall (1992),
Section 3.5.

The conclusions drawn in Section 2.5 about the sign of ¢, and about the rela-
tive lengths of intervals, have obvious and immediate conclusions for coverage
accuracy. For example, if the common bootstrap is modified by changing resam-
ple size to n + [ where [ is fixed, then the coverage of two-sided 95% confidence
intervals tends to decrease if I < 0 but increase if [ > 0.

3. Proofs of Theorems 2.1 and 2.2.
Proor or THEOREM 2.1. We derive only the first part of the theorem, since

the second may be proved similarly. We begin by developing expansions of the
moments of n1/28;.

Observe that

E{(nl/2sl)k} =n'k/2Z"'Zwi1"'wikE{(Nil 1) (N, - 1)}

To appreciate the form of the £-fold series on the right-hand side, write ;, - - - i

to indicate summation over integers i, ...,i, suchthat 1 <i; <n,for1 < j <
n, and no two of iy,...,i, are equal. Given [ > 2r, define %, --- =¥ to mean
summation over integers r > 1 and s1,...,s, suchthat 2 < s; < --. < s, and

s1+---+s,=1. Put

!
c = 51 Srop. -
W(s1,...,sr0) = E E Wy WIW;, W
i

Lryj

wst, .o sr3) = B{NL = Do (Ny = D"(Npyy = - Ny — D}
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Let (x) denote the largest integer not exceeding x. In this notation,

k (k/2)

3.1) E{( H281) }-n"‘“ZZZ Z(k J)D(sl, oS3 )

Jj=0r=0 &
x W(sq,... ,s,,J)u(sl,...,sr,J),

where the quantities D(sy, . ..,s,; j) are combinatorial constants.
Since Tw; = 0 then for each 0 < j < k, W(sy,...,s55j) = O(n"+i—(2(+D)),
Therefore, if s; +--- +s, =k —j, and each s; > 2,

nHW sy, . 5r; ) = O(n=ter o+ /2= (4 1/2))
_J o), if j is even,
O(n~1/2), if jisodd.

By hypothesis, if s; +--- +s, = k — j, then for j > 1, u(sy,...,s,;7) = O{n~
(7 =1,2)+ On=HI(j > 3)}. Hence, for j = 1 orj > 8,n*2W(sy,...,s:;))
u(sy,...,s:55) = 0(m=3/2). If j = 2 and one or more of the s;’s exceeds 2, then

n~FEW(s1, .. s Duls, . 8r5 ) = O(n7 1t /2002 (/D) = 1)

= O(n_3/2).
Therefore, by (3.1),
(k/2) )
E{( 1/2g,) } = nk/2 Z Z Z D(sy,...,s;;0)W(sy,...,sr;0)
=0 s1
3.2) X u(sl, R 0)

+I(k even)n%/2D(2,...,2;2)W(2,...,2;2)
X u2,...,2;2)+o(n=3/2),

where r = £/2 — 1 in the terms with argument (2, .. .,2;2).

Ifone of the s,’s exceeds 2, then n=*/2W(s4, . . ., s,; 0) = O(n~1/2), Furthermore,
by hypothesis, u(si,...,sr;0) — II1<i < ¥, = O(n~1). It follows that if one of the
s;’s exceeds 2, then

r
nTH2W sy, . 55 00y, - o, 5150) — n 72 Wisy, ., 5500 [[ v, = O(n™%2).
i=1
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Hence, by (3.2),
E{(nl/zsl)k} —E{(nl/zsm)k}

= I(k even)n=*/2D (2,2, .. [3k times];O)W(Z, 2,...[3k times];O)

X {,u(2,2,... (3% times];O) - 1/’2"‘/2}
+D(2,2,... [3(k - 2) times];2) W(2,2,... [k - 2) times]; 2)
X u(2,2, 3 E-2) times];Z) +0(n=%/2).
Observe that for even &,
D(2,2,... [k times];0) =k! / {(3r)12+2],
D(2.2,...[}k-2) times]; 2) = klk / {(3r)12evr2},
nt2W (2,2, .. [§(k - ) times]; j) - (~17/*m;/* = O(n~")

forj = 0 and 2, and

,u(2, 2,...[3k times];O) =2 1n oy,

,u(2,2, o [AE-2) times];z) =n"lags .

Therefore,

E{ (nl/ZSl)k} _ E{ (nl/ZSol)k}

(8.3) !

—1:=k/2 -3/2)
(1/2k)\2%/2 '

= I(k even)n™'w, (arso,1 — skopse,2) +O(n

A slightly longer argument shows that when % is even, the remainder O(n~3/2)
may be replaced by O(n—2). This proves (i)(a).
Next we establish (i)(b). Observe that

-1/2
or l= {1 + 0'—2(32 — 20,87 — S%)} /
=1 1072(S; — 2018, — §2) + B0 4(S; — 231812 + Op(n™?),

whence T = o7718; = Ty + Op(n~%2). Under the stated conditions on the
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sequence {N;}, it may be proved that
E(Ty)
E[S4{1 - }ko~%S; — 20181} | + Op(n~1k+/2), if & is odd,
= { E[S4{1 - 1ko~%(S; — 20151) + $ho 25}
+ $h(k + 2)074(S; — 201812} | + Op(n~*+9/2), if k is even,

(3.4)

and that an identical formula holds if (S, Sy, 7T4) is replaced by (So,So1, T01)
throughout. Arguments similar to those leading to (3.3) show that

O(n-1), ifkis odd,

(k+1/2| BISk(S, — 25,81) Y —E{ Sk (Spy—20,8 =
n [ {S1(S3 — 2v181)} —E {S§;(S02—27; 01)}] {O(n‘3/2), if % is even,

and that with U = Sl or Sz - 25151 and Uo = S()l or Soz - 251501, respectively,

O(n71), ifkisodd
(k+2/2] p(SkU?) — E(SE U2\ = ’ ’
n { (81U7) (61 0)} {o(n—3/2), if k is even.

Result (i)(b) follows from these formulae and (i)(a). O

PROOF OF THEOREM 2.2. Observe that E(So;) = 0, E(S2,) = n~ 1,2, E(S3))
= n’2z/3w3,
E(S%) =n"2303t* +n73 (vy — 313)ws + O(n™*),
E(Sgl) = n_310V2U3l_U.2W3 + O(n“4),
E(S§)) =n~%1505w3 + O(n™4).
The cumulants of Sy; follow from these formulae.
Next, note that
E{S01(Soz — 201S01)} = n " vews + O(n™2),
E{S2,(Soz — 201S01)} = n2v3(ws — w3) +O(n %),
E{S3,(Soz — 201S01)} = n~28u¢w,ws3 + O(n %),
E{S§,(Soz — 201S01)} = n_31/2l/3{4w§ + 6w (Wy — w%)} +0(n™*),
E{S3,(Soz — 201S00)} = n =2 {wa(w4 - 5) + 23 } + O(n"?),

E{S},(Son — 201801} = =33 { 8} (w, — @) + 12,3 } + O (n~*).
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Therefore, by (3.4),
E(Ty) = —%n—lllzt—zwg + O(n'z),
E(T) =ntugt™2 +n=2{ gt~ (@ — ) + 313¢°

+ 2 (t7 2w, — 2 + 2t‘4w§)} +0(n7%),
E(T3,) = n~>(veis — 3373) +O(n "),
E(T4) =n~23v%t* +n° [(V4 — 313) W,

- 4u2u3t“2{2w§ +362 (W, — t4)} + 3003t

+ ot 2{ (@, - t*) + 4w§}] +0(n™).

The cumulants of T; follow from these formulae. O

Acknowledgments. We are grateful to three referees and the editors for
their constructive and detailed comments on an earlier version.

REFERENCES

BARBE, P. and BERTRAIL, P. (1993). The Weighted Bootstrap. Série Document de Travail:

Méthodologie Statistique. Institut National de la Recherche Agronomique Secteur des
\ Sciences Sociales, Ivry Sur Seine.

BERAN, R. (1986). Discussion of “Jackknife, bootstrap and other resampling methods in regression
analysis,” by C. F. J. Wu. Ann. Statist. 14 1295-1298.

BICKEL, P. J. and FREEDMAN, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist.
9 1196-1217.

EFRON, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7 1-26.

HAEUSLER, E., MAsoN, D. M. and NEWTON, M. A. (1992). Weighted bootstrapping of means. CWI
Quarterly 5 213-228.

HALL, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

HARDLE, W. and MAMMEN, E. (1990). Comparing nonparametric versus parametric regression
fits. Preprint. Sonderforschungsbereich 123, Univ. Heidelberg.

HuskovA, M. and JANSSEN, P. (1993a). Generalized bootstrap for studentized U-statistics: A rank
statistic approach. Statist. Probab. Lett. 16 225-233.

HugkovA, M. and JANsSEN, P. (1993b). Consistency of the generalized bootstrap for degenerate
U-statistics. Ann. Statist. 21 1811-1823.

KENDALL, M. G., STUART, A. and Orp, J. K. (1987). Kendall’s Advanced Theory of Statistics.
Distribution Theory 1. Oxford Univ. Press.

Liv, R. (1988). Bootstrap procedures under some non i.i.d. models. Ann. Statist. 16 1696-1708.

Lo, A. Y. (1987). A large sample study of the Bayesian bootstrap. Ann. Statist. 15 360-375.

MaMMEN, E. (1992). When Does Bootstrap Work: Asymptotic Results and Simulations. Lecture
Notes in Statist. 77. Springer, New York.

MasoN, D. M. and NEwTON, M. A. (1992). A rank statistics approach to the consistency of a
general bootstrap. Ann. Statist. 20 1611-1624.

PRAESTGAARD, J. and WELLNER, J. A. (1993). Exchangeably weighted bootstraps of the general
empirical process. Ann. Probab. 21 2053-2086.

RuBIN, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130-134.



2030 P. HALL AND E. MAMMEN

SILVERMAN, B. W. and YouNGg, G. A. (1987). The bootstrap: to smooth or not to smooth?
Biometrika 74 469-479.

TAYLOR, R. L., DAFFER, P. Z. and PATTERSON, R. F. (1985). Limit Theorems for Sums of Ex-
changeable Random Variables. Rowman and Allenheld, Totowa, NJ.

WENG, C.-S. (1989). On a second-order asymptotic property of the Bayesian bootstrap mean. Ann.
Statist. 17 705-710.

Wu, C. F. J. (1986). Jackknife, bootstrap, and other resampling methods in regression analysis
(with discussion). Ann. Statist. 14 1261-1295.

Young, G. A.(1988). A note on bootstrapping the correlation coefficient. Biometrika 75 370-373.

CENTRE FOR MATHEMATICS AND INSTITUT FUR ANGEWANDTE MATHEMATIK
ITS APPLICATIONS . UNIVERSITAT HEIDELBERG

AUSTRALIAN NATIONAL UNIVERSITY HEIDELBERG

CANBERRA ACT 0200 GERMANY

AUSTRALIA



