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ASYMPTOTIC PROPERTIES OF NONLINEAR LEAST SQUARES
ESTIMATES IN STOCHASTIC REGRESSION MODELS'

By TZE LEUNG LAI
Stanford University

Stochastic regression models of the form y; = f;(6) +¢;, where the random
disturbances ¢; form a martingale difference sequence with respect to an
increasing sequence of o-fields {G;} and f; is a random §; _ ;-measurable
function of an unknown parameter 6, cover a broad range of nonlinear
(and linear) time series and stochastic process models. Herein strong con-
sistency and asymptotic normality of the least squares estimate of ¢ in
these stochastic regression models are established. In the linear case £;(6)
= 9T4);, they reduce to known results on the linear least squares estimate
(E’llwiw?)‘lﬁ'l‘q/;i y; with stochastic G; _ ;-measurable regressors ;.

1. Introduction. Consider a general stochastic regression model of
the form

(1.1) Yn =fn(0)+€m

where {¢,} is a martingale difference sequence with respect to an increasing
sequence of o-fields G, such that

(1.2) supE(e2|G,-1) <oo as.,

and f,(6) is a G, _ ;-measurable random function of a parameter vector 6 = (61,
,0,)T. The y, typically represent the observed outputs of a stochastic system
while the ¢, represent unobservable random disturbances. The parameter 6 is
not assumed to be known and has to be estimated at stage n from the data
%;,¥i,i < n, where the x; represent covariates such that x; is §;-measurable, and
f. is a given function that may depend ony1, ...,¥n —1,%1,...,%, — 1. An example
is the NARX model (nonlinear autoregressive model with exogenous inputs)

(1.3) Yn =f(yn—l,"'7yn—p’xn—d’°"7xn—d—q;0)+€n7

in which d > 1 represents the delay and x; is the input at stage :.
When £,(9) = 716 is linear in 6 with G, _ ;-measurable coefficient vector »,
the least squares estimate 6, = (Z7v;9])~1£}¢;y; has been shown by Lai and
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Wei (1982) to be strongly consistent if

Amm(zn:d)id);’r) — oo and
1

n p n
{logAmax<Zwiw;-’>} / Amm(Zwiw,T ) -0 as.
1 1

for some p > 1 [or for p = 1 if it is also assumed that sup, E(|e,|" |G, —-1) < o0
a.s. for some r > 2], where Apax(A) and A pin(A) denote the maximum and
minimum eigenvalues of a symmetric matrix A. Moreover, under some addi-
tional assumptions, Lai and Wei (1982) also showed that (S7v;%7)/2(6, — 6)
has a limiting normal distribution. Earlier, assuming that )\min(Ei’z/)iqpiT ) — o0
a.s., Anderson and Taylor (1979) proved the strong consistency of 6, under the
condition Amax(E79i97) = OO\pin(E74497)) a.s., while Christopeit and Helmes
(1980) weakened this condition to

(1.5)  Amax (Z YT ) =0 (Agm<2¢i¢?>> for some 1 < p < 2.
1 1

As pointed out by Lai and Wei (1982, 1987), condition (1.4) with p = 1 is in
some sense weakest possible and plays an important role in the asymptotic
solution of the adaptive control problem of choosing the inputs x; sequentially
so that the outputs y; are as close as possible to some target value y* in the
linear ARX model (1.3) in which f is linear in 6 = (a1, ..., 0, Bo,- - -, ﬂq)T and
Vo= (Yn_1r-sYn-ps Xn—dy---1%n—d—gq)  , Without assuming prior knowledge
of the parameter vector 6. N
When f,, is nonlinear in 6, the least squares estimate 6, that minimizes

(1.4)

n

(1.6) S.© =3 (3 —£©)”

i=1

does not have a simple closed form and is typically computed by iterative solu-
tion of the estimating equation

1.7) VS, = -2 (3 - £©O) Vi) =0,

i=1

assuming the f; to be differentiable. Here and in the sequel we use Vg = (0g/0¢:,
...,0g/8¢,)T to denote the gradient vector and V2g = (8%g/9¢;0¢)1<i, j<k to
denote the Hessian matrix of a smooth function g: R* — R. We shall also let
1€]12 = €7¢ for ¢ € R* and let ||A|| = supy, .1 |Ax| for & x k matrices A. Note
that maxi,j|aij| < ||A|| < k max,-,j|aij| for a matrix A = (a,-j)lsi,jgk. Klimko
and Nelson (1978) studied the consistency properties of solutions of (1.7) via a
quadratic approximation to (1.6) in a small neighborhood of 6. Specifically, they
showed that with probability 1, there exists for sufficiently large n a solution
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& =6, of (1.7) such that 6, — 6, under the assumptions that the functions f; are
twice continuously differentiable in some neighborhood of  and that

(1.8a)  limsup (n6)™! sup [V2S.(&) — V25.(0)|| <o as.,
n—oo, §-0 [lE-06)1<8

(1.8b) (2n)"1V2S,(60) -V (positive definite and nonrandom) a.s.,

(1.8¢) n7lVS,(0) -0 as.;

cf. Theorem 2.1 of Klimko and Nelson (1978). Since

V2S,(0)/2 = - S eVP0) + 3 (VAO) (VAO),

i=1 i=1

and since

> &V =o ( > ||v2ﬁ(o)||2) +0(1) as.
i=1 i=1
by the martingale strong law [cf. Lemma 2(iii) of Lai and Wei (1982)], it follows
that (1.8b) can be replaced by the simpler assumption

n
n-! Z (VE®) (Vﬁ(e))T — V  (positive definite and nonrandom),
(1.9) i=1 n
2 2
SV = 0() as.,
i=1
as has been noted by Klimko and Nelson (1978) in their remark following (2.2).
In the linear case f;(¢) = wiTg , condition (1.8c) reduces to the convergence of
n~ 1297 to a positive-definite matrix V, which is much stronger than (1.4)
or (1.5). Furthermore, the least squares estimate 5n that attains the global
minimum of S,(£) may be different from the 6, in the Klimko—Nelson theorem
which only relates to a local minimum of S, (¢) near 6.
Assuming 6 to be in some given compact subset © of R*, and assuming the
fi to be nonrandom continuous functions on © and the ¢; to be i.i.d., Wu (1981)
showed that the least squares estimate 6, is strongly consistent if for every
X # 6 there exists an open ball B()\) centered at A such that for some M > 0 and
l1<p<?2,

. u 2
(1.10a) eelrﬁfx); [£:©) = ()] — oo,

n n o« P
(1.10b) ) sup [f,-({)—fi(())]2=0<{ inf [f,»(&)—fi(e)]z} )

T16€BWY) EEB()\)i=1
sup &) = fiENN/11E =€l
£,€ €EBN),E# ¢

(1.10c¢) .
<M sup |f(&)—f8)| forall i.
EE€B(N)
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Under (1.10b), condition (1.10a) is satisfied if we simply assume that 2, [£i(¢)
—£:(0)1% — oo for all ¢ #6, as pointed out by Wu (1981). In view of (1.10c), the func-
tion ¢; defined on B(\) by ¢;(¢) = £;(¢) — f:(6) belongs to the Banach space of Lips-
chitz continuous functions on B(\) with the Lipschitz norm. This enables Wu to
apply strong laws and probability bounds for sums of independent random vari-
ables taking values in a type 2 Banach space to analyze sup; ¢ g(\)| %% 1 6i(Eeil,
since he assumes the f; (and therefore the ¢; also) to be nonrandom and the
¢; to be independent. The argument, however, cannot be extended to the more
general case where the ¢; form a martingale difference sequence and f; is G; _ 1-
measurable, as will be explained in Section 2.

Instead of embedding the £; in a Banach space of type 2, we shall work with
suitably chosen Hilbert spaces H so that H-valued martingale strong laws can
be applied to give an analog of Wu’s strong consistency theorem for nonlinear
least squares estimates in stochastic regression models. In addition, by making
use of martingale central limit theorems and probability bounds for H-valued
martingales, the asymptotic normality of 8, is established. These results, which
are stated in Section 2 and proved in Section 3, reduce to the consistency results
of Christopeit and Helmes (1980) and the asymptotic normality results of Lai
and Wei (1982) in the linear regression case f,,(6) = 16 with G, _ ;-measurable
regressors Yy,.

2. Main results and some applications. While Wu (1981) assumes the
f; to be nonrandom and Lipschitz continuous on © for his consistency result
mentioned above and further assumes f; to be twice continuously differentiable
in some neighborhood of 8 for his asymptotic normality theorem, we shall drop
the assumption that f; be nonrandom but require the existence and continuity
of the partial derivatives 8f;/0¢;, 8°f;/0¢;0¢n(j#h), ... ,0%;/0&1 -+ 8&, in ©.
For1<m <k, let

(2.1 J(m,k):{(jl,..‘,jm):jl<---<jm,j,~€{1,...,k}for1§i§m}.

For j = (j1,...,Jm) € J(m,k), the notation D;f = 0™f/0¢;, ---0¢j, will be
used in the sequel. Moreover, if B(\) = {£¢ € ©: ||¢ — A|| < r} is an open
ball in ©, we shall let B(); j) denote the m-dimensional sphere {({;,,...,&;,):
()‘la 11—1, fjl jl+1,-~-7>\j2—17€j27-'*’Ajm—lvéjma)‘jm+la"")‘k)GB(A)}- In
partlcular B(\;(1,...,k)=B().

THEOREM 1. Consider the stochastic regression model (1.1) in which the €,
form a martingale difference sequence with respect to an increasing sequence
of o-fields {G,} such that (1.2) holds, and f, is G, _ 1-measurable. Suppose that
8 belongs to a compact subset © of R* and that the f; have continuous partial
derivatives D;f; on ©, for every j € J(m,k) and m = 1,...,k, where J(m,k) is
defined in (2.1). Moreover, assume that for every A # 0 there exist 1 < py < 2
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and an open ball B()\) in © centered at \ such that

. u 2
(2.2) gé%f»;[ﬁ(g)_ﬁ(e)] — 00 as.,

n

- Ve ()]
23 ISmSI/?aj)éJ(m,k);v/B()\;j)(Djﬁ) Wit Z LA~ £:®)
2.3 = i=1

n Px
. 2
=0<{5€1%£‘)i=1 [£:(&) - £(0)] } > a.s.

Then the least squares estimate 67,“ defined as the minimizer of (1.6) in ©, con-
verges a.s. to 6.

THEOREM 2. With the same notation and assumptions as in Theorem 1,
suppose that 6 belongs to the interior of © and that there exist nonrandom,
symmetric, positive-definite matrices C, and an open ball B(6) centered at 6
such that

n 1/2
_ T
24)  Amin(Cp) B oo,  C; 1{ > (VF®) (VE®) } EI,

i=1
(2.5) lrg?écnnc;lv;ﬁ(e)nio, S va?ﬁ(f)n = 0,(N2,n(Cn)),

and for every m,a,b € {1,...,k} and j € J(m,k), the partial derivatives
Dj(82f,~ /0&, 0&p) are continuous on B(9) for all i and

2
(26) { Z /B( 61 azﬁ/aga a&b)] d€j1 o dgjm}/ mm(C ) _—) 0.

Suppose that E(2| G, _ 1) > o2 (nonrandom). Then (=7 (VFOXVFO))T}V2 (8,
— 0) converges in distribution as n — oo to a multivariate normal distribution
with mean 0 and covariance matrix 1.

In the linear case f,(¢) = %1€, Vf,(€) = ¢, and the higher-order partial
derivatives of f;, are 0. Therefore, while condition (2.2) of Theorem 1 reduces
t0 Amin (79 z/)iT ) — oo a.s., the other condition (2.3) reduces to the Christopeit—
Helmes condition (1.5). Conditions (2.4) and (2.5) of Theorem 2 reduce simply to

" /2
1 T P -1, || P
I o B

which has been assumed in Theorem 3 of Lai and Wei (1982) on asymptotlc
normality of 6, in the linear stochastic regression modely; = 1); Toye;,i=1,2,.
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Moreover, condition (2.6) clearly holds since V2f; = 0 for linear f;. Hence Theo-
rem 3 of Lai and Wei (1982) is a special case of Theorem 2.

Condition (2.3) is analogous to (1.10b) and (1.10c) assumed by Wu (1981).
Instead of the sup-norm and Lipschitz norm in (1.10b) and (1.10c), (2.3) uses
certain integral norms for sufficiently smooth functions. Likewise (2.6) is anal-
ogous to conditions (4.1) and (4.2) in Section 4 of Wu’s paper, but uses in-
tegral norms instead of the sup-norm and Lipschitz norm that appear in
Wu’s conditions.

Condition (2.4) is much weaker than (1.9) assumed by Klimko and Nelson
(1978). Wu (1981) requires C, in (2.4) and (2.5) to be of the form C, = 7, with
scalar 7, T oo, and his theory requires the f,, to be nonrandom and the ¢, to be
independent since it is based on certain strong laws and probability bounds for
sums of independent random variables taking values in a separable Banach
space of type 2. The strong laws and probability bounds he used cannot be
generalized to martingales unless the Banach space has a much smoother norm
than that of a type 2 space. As pointed out by Hoffmann-Jgrgensen and Pisier
(1976), the Banach space has to be isomorphic to a uniformly 2-smooth space
(an example of which is a Hillbert space) for such strong laws and probability
bounds to hold for general martingales. This excludes the space of Lipschitz
continuous functions considered by Wu.

By assuming the f; to be sufficiently smooth as in Theorems 1 and 2, we shall
represent f; in Section 3 as a sum of several components that are elements
of different Hilbert spaces. This is the basic idea behind conditions (2.3) and
(2.6), which are more demanding on the smoothness of the functions f; than
Wu’s conditions and which exploit such smoothness to study the asymptotic
properties of least squares estimates via Hilbert space-valued martingales.

The conditions of Theorems 1 and 2 are satisfied by many NARX systems for
which the function f in (1.3) is sufficiently smooth in 4. In particular, applica-
tions of Theorem 1 to consistent parameter estimation and to adaptive A-step-
ahead prediction of the outputs y, ., are discussed by Lai and Zhu (1991) for
NARX systems and by Zhu (1992) for other nonlinear time series models. In the
remainder of this section we consider some applications of Theorems 1 and 2
to the construction of asymptotically optimal adaptive designs and to inference
from sequential designs in nonlinear regression models.

Although the theory of optimal experimental design for least squares esti-
mation in linear regression models can in principle be extended to nonlinear
models of the form

(2.8) ' Yn =f(xna9)+5na

withii.d. e, such that Ec, = 0 and Ec2 = 02, the extension has serious practical
difficulties since typically an optimal design measure involves the unknown
vector 6. To circumvent these difficulties, it has been proposed that designs
be ¢onstructed sequentially, using observations made to date to estimate 8 and
choosing the next design point by replacing the unknown 6 in the optimal design
with the estimate; cf. Fedorov (1972), page 188. Since the classical asymptotic
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theory of least squares estimates assumes the x, to be nonrandom, it cannot
be applied to the present setting in which the x, are sequentially determined
random vectors. Ford and Silvey (1980) pointed out these difficulties in asymp-
totic inference from such adaptive designs, and asked whether these designs
would indeed be asymptotically equivalent in some sense to the optimal de-
sign that assumes 6 to be known. They studied this problem in the particular
linear regression model with f(x,,6) = (6;,62)x, and x, = (u,,u2)”, where the
design levels u, are chosen adaptively from the interval [-1, 1] by replacing
the unknown 6 in the optimal design with the least squares estimate based on
all available data at every stage. They showed that the least squares estimates
are indeed strongly consistent in this example.

Subsequently, Ford, Titterington and Wu (1985) and Wu (1985) considered
more general linear regression models, and made use of the results in Lai and
Wei (1982) on linear stochastic regression models to show that the usual asymp-
totic inference based on least squares estimates is still valid for certain sequen-
tial designs in these linear models. Clearly Theorems 1 and 2, which are ex-
tensions of the consistency and asymptotic normality results in Lai and Wei
(1982) to the general stochastic regression model (1.1), can be used to address
the questions raised by Ford and Silvey (1980) concerning (i) the behavior of
adaptive designs that substitute the unknown 6 in an optimal design by the
least squares estimate based on all available data at every stage, and (ii) the
behavior of the least squares estimates from sequential designs in nonlinear
regression models.

To illustrate the usefulness of Theorems 1 and 2 in addressing these issues,
we consider the problem of sequential design and estimation in the Michaelis—
Menton model

(2.9) Yn = 012, /(03 + ) + €5,

in which the parameters 64,6, and the design levels x; are all positive. Let
6 = (61, 02)T. In practice one usually has prior knowledge of positive lower and
upper bounds for #; and 6, say (0<)a; < 6; < A;, j = 1,2, giving a compact
parameter space © = [a;, A;] X [as, As]l. The random errors ¢, in (2.9) are as-
sumed to form a martingale difference sequence satisfying (1.2) and such that

E(2|S,_1) > o2 Suppose that the design levels are to be chosen from the
interval (0,x*]. If # were known, then the design

x*, if n is odd,
(2.10) Xp = {

Oox* /(265 + x*), ifn is even,

would be D-optimal in the sense of minimizing the determinant of the asymp-
totic covariance matrix of the least squares estimate [cf. Bates and Watts (1988),
pages 125 and 126].

© Let 4, = (6,1, Ot,z)T be the least squares estimate based on x1,y1,...,%:, ¥z.
Instead of simply substituting in (2.10) the unknown 6, by §n _1,2, we make a
slight modification to ensure strong consistency of 8, via Theorem 1 by redefin-
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ing x, at stages n € {ny,ng,...} so that
(2.11) x,, ~c/logn; and n; ~i® asi— oo,

for somec > 0and 1 < a < 2. Specifically, we shall consider the adaptive design
defined by

x*, ifn is odd and n ¢ {ny,n,, ...},
(2.12) x, =< 6, _ 1, 2x*/(2§n_ 1,2+x*), ifnisevenandn¢{ny,ny,...},
¢/(1+logn), ifn € {n,nq,...}.

Thus, the x,, are sequentially determined random variables such thatx, is G, _ ;-
measurable. Let f,(0) = 61x,/(0s + x,) and note that £, has continuous partial
derivatives of all orders on ©.

To show that the assumptions of Theorem 1 are satisfied by the £, thus
defined, take any A = (A1, \2)T € © such that A # 6. Since £;(8) = 61x;/(6; + x;),
it follows that

2

xi
(A +2;)(02 +x;)
Since A#0, either (i) A10; — A20; #0 or (ii) A\102 = X360y and A #6;. Let N, =

{ns:n; < n}. For case (i), it follows from (2.13) and (2.11) that for some § > 0
and for a sufficiently small open ball B(\) in ©,

. . £ 2 ~ i _ 9 ) 2
1n e 2 HOFOP ~ it (60— 60 3 (/e
> 6n'/*/(logn)?.

For case (ii), it follows from (2.13) and (2.12) that
inf <€) — £(0 2
T 0-fo)

i €Ny,i<nandiodd

Xi

+ (A0 — Xo01) ——————.
(Kafz = A2 1)()\2 +2;)(02 +x;)

(2.13) (V) —£0) =1 —61)

(2.15)
> (n/4) inf [ - 00% /{(a+ 270 +27)}’]

for all large n, by choosing B()\) sufficiently small. Since the left-hand side of
condition (2.3) is O(n), it follows from (2.14) and (2.15) that (2.3) holds with
px = a/2 + 1. Noting that a < p) < 2, we can apply Theorem 1 to conclude that

6, — 0 a.s.
To show that the assumptions of Theorem 2 are satisfied, note that

(2'16) vfn(é) = (xn/(§2 +xn)7 _§1xn/(§2 +xn)2)T7 B g = (61: §2)T'

From (2.16) and (2.12), it follows that conditions (2.4) and (2.5) are satisfied
with C,, = (n¥)!/2, where

(2‘17) \B = (¢¢T + '{E/(ZT)/27 ¢ = (x*/(02 +x*)a _elx*/(GZ +x*)2)T7
P = (%02 +%), —0:1%/(0 +©)2)T With % = Opx* /(20 +x*).
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Note in this connection that det(¥) > 0 [cf. Bates and Watts (1988), pages 125
and 126]. Moreover, the numerator in (2.6) is O(n) while the denominator is
At (Cr) = n2)2, (), and therefore condition (2.6) is also satisfied. Hence we
can apply Theorem 2 to conclude that 8, is asymptotically normal with mean ¢
and covariance matrix (n¥)~!, which agrees with the asymptotic distribution
of the least squares estimate, constrained to lie inside a ball centered at 8 with

radius n~Y2logn, from the fixed design (2.10) that assumes knowledge of 4.

3. Martingales taking values in a Hilbert space and the proof of
Theorems 1 and 2. To prove Theorems 1 and 2, we make use of martingales
taking values in Hilbert spaces of the following type. Let B be a ball in R™ cen-
tered at (v4,...,7m)T. Let Lo(B) denote the Hilbert space of square integrable
real-valued functions on B. For g € Ly(B), define the function g: B — R by

3.1 §(x)=/ m/ glty,.. ., tn)dty - dty, (x1,...,%m) (=x) € B.
Ym 7
Consider the Hilbert space H = {g: g € Ly(B)} withnorm |||z and inner product
(3.2) (?,§>H=/---/f(tl,...,tm)g(tl,...,tm)dtl...dt,,,, f. g€ LyB).
B

Let X, be H-valued random variables such that E|X,||% < oo for every n
and {X,} is a martingale difference sequence with respect to an increasing
sequence of o-fields {G,}. Then it is well known that E|=2X; ||} = S1E||X;||% =
E{S1E(|X;]|% 1S: - 1)} and

n
>,
i=1

moreover, for every § > 0,

n n (1+6)/2
ZX,. =o({ ZE(||X,~||§,|9,-_1)} ) a.s.;
i=1 H

i=1
cf. Lemma 3.1 of Morrow and Philipp (1982) and Lemma 2(iii) of Lai and
Wei (1982).

Let {e,, Gn, n > 1} be areal-valued martingale difference sequence satisfying
(1.2), as assumed in Theorems 1 and 2, and let g, be G,, _ ;-measurable H-valued
random variables. Choose nonrandom constants a, sufficiently large so that
P{||gx|l% + E(e2 | G — 1) > an} < n~2. By the Borel-Cantelli lemma,

(3.3)

2 n
-o,(Seiis- )
H

i=1

(3.4)

P{X, =cpgn foralllargen} =1
(3.5) ~
where X,, = £,8nl{) 2,12 <, andE(c2(9, - <an}:
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Note that {X,, 3., n > 1} is a martingale difference sequence taking values in
H with E|X,||4 < oo for all n. Hence by (3.3)—(3.5),

n 2 n
(3.6) T =0,,(Z/.--/g?(tl,...,tm)dtl...dtm>,
i=1 H i=1 B
n 2 n r 1+6
Zsigi =0 {Z// giz(tl,...,tm)dtl...dtm}
(3.7 i=1 H i=1 B

a.s. for every § > 0,

where g; is defined from g; via (3.1). Moreover, by the Schwarz inequality,

Z €:8;(x)

i=1

2

sup
x€B

= sup

L xy N 2
/ o [ st tm)dty . dtm
xEB | Jyp

" =1

< {/---/Bdtl...dtm}

n 2
Z€i§i

i=1

(3.8)

= vol(B)

)

H

which bounds the sup-norm of £%¢; g; by its H-norm.

The key idea in the proof of Theorem 1 is to apply (3.7) and (3.8) to the
representation of f;(x) — f;(\) given in (3.10) below. This yields the asymptotic
bound (3.11) which is then combined with condition (2.3) to complete the proof.

For the case k = 1, iff; has continuous derivatives in an interval B()\) centered
at A, then fi(x) — f,(\) = [{(df;/d€)d¢ for all x € B(}), so (3.1) holds with g;(x)
= fi(x) — f;(A\) and g; = df;/dt. For the case k& = 2, if f; has continuous partial
derivatives 0%f/0¢; 8&,, Of /0¢, and 8f /9¢ 5 in a disk B()\) centered at ), then for
all x € B()),

W= [ " epded
fo = [ [ e e dnde
(3.9)

X2 3){; xléé
A CRSLORY e CORBLCE

Letting g; = 8%f;/0¢1 03, hi1(&2) = (8/0&)fi(A1, &), Ry, 2(&1) = (0/0€1)fi(€1, Ao, it
follows from (3.1) that we can rewrite (3.9) as

(3.9") i) — (V) = Bilxy, 29) + Ry, 1(x3) + By, 5(x1).
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Note that g;, &;, 1, h; 2 belong to different Hilbert spaces Hy, Hy, H of functions
of the type (3.1) defined on {(x1, x3): (x1 — A1)? + (xg — A2)? < 72}, {t: |t — Ay
< r}and {£ [t — A\| <}, respectively, and therefore we can apply (3.6)—(3.8)
separately to Xi¢;g;, £%¢; h; 1 and Yle;h; 2. An induction argument shows
that for general £ > 1, if f; has continuous partial derivatives D; f; in a ball B()\)
centered at ) for every j € J(m, k) and every m < k, then for all x € B()\),

filx) — f;(N)

(3.10) =Z": 5 /

% jm
m=1jedm,k) N

le
/A Difile;=x; v, & (ryorim} iy - - - AEjis
J1

Jm

where J(m, k) is defined in (2.1). Applying (3.8) and (3.7) to (3.10) then shows
that for every 6 > 0,

n

D e fi) - fV)

i=1

k n 1+8)/2
5 Eo (B L o))

m=1j€dJ (m,k)

sup
xE€B(N)

(3.11)

To prove Theorem 2, we shall replace f; in (3.10) by 6%f,/0¢, 8¢, for every
fixed a,b € {1,...,k}. Moreover, we shall use (3.6) instead of (3.7) and consider
the case X\ = 0. Therefore, analogous to (3.11), we have

(%) B%0)
Zai{a@asb - agaafb}

2

sup
xEB(B) i=1
(8.12) R .
2
<M > O,,(Z/ . [Dj(32ﬁ/8§a8§b)} dijl'“dﬁjm)
m=1jed (m,k) i=1YB6: D)

Proor oF THEOREM 1. Take any 6 > 0. Since © is compact, ©; := {\ € ©:
|A—6|| > 6} is also compact and is therefore covered by a finite number of open
balls B()\) in ©, centered at ) #0, that satisfy (2.2) and (2.3) for some 1 < p) < 2.
It therefore suffices to show that for each of these (finitely many) balls,

(3.13) nlimméeiréfA) (Sn(§) = Sp() =00 a.s.

Since Sp(€) — S (0) = 7, [£i(€) — £(0))% — 287_1&,(f£;(6) — £i(N) — 227 1&i(fi(N)
— £i(6)) and since T7_,&;(fi(N) — £(8)) = o({Z2_, [N — £i(0)]2}1+9/2) ass. for
every 6 > 0, we need only show, in view of (2.2) and (2.3), that

n

> ei(£© - W)

i=1

(3.14) sup
EEB)

. - 2
_o(gel%{\)iﬂ [£:(&) - £:0)] ) a.s.
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From (3.11) and (2.3), the desired conclusion (3.14) follows. O

PROOF OF THEOREM 2. By Theorem 1, with probability 1, 8, — 6 and there-
fore 6, € B(6) for all large n. By (1.7),

0= -VS,@,)/2 = Zeiwi(@n) + VR (£6) - £B)
i=1 i=1
(3.15) n {

—Zeszl(en D & VRfi) - Zv;e(e) (VF®)" +R }( 9),

i=1

where, by the mean value theorem,
f;(6n,a) 62}‘}(0))
R, _
Z ( 0&q 0y 0&, 0&, 1<a,b<k
%6 o) = T
- 6, — 0)(VF.(6
Z( 06,08 >1$a,b$k( (VE®)

n 32]0,(9** ) T
_ V6 gn_gT(#“_)
; AOX ) 0808 )1<ap<h

(3.16)

82,62 ) - 6 )\"
~ 1050 5 _¢ gn_gT(#’_> ,
Z( 0a 08y )15a,b5k( X ) 0€a O 1<a,b<k

with 6y, 0n,4,0; , and 6;*, lying between 6 and ,. From (3.15) it follows that

n

Zeiv;e<e>=cn{2( TIVE®) (CVE®)T
i=1

i=1
(3.17) n
-GN e VAOCT - C;anc;l}c,,((?n - 9).
i=1
By (3.12) and (2.6), with probability 1, for all large n,

ine (0%6n0)  B%(0) -
c;t i( 06, O ) a
n ;5 0806 0806 )1<qb<n

2
B ~ [ 9%ix)  8%(6)
<B[c*  sup D {agf azb 8553&,}

*€BO),1<a,b<k| TS

2

(3.18)

P
-0,

noting that [[C; || = Anax(C; 1) = 1/ Amin(C,,). Analogous to (3.3), we also have

n 2 n
c;l{ Zsivzﬁ(e)}c,:l < ||c;1||40,, (Z ||V2ﬁ~(9)||2> Po
i=1

i=1

(3.19)
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by (2.5). Noting that ||Z2_ ;%5712 < (S22 ]|2)(E72 [ly:[|®) by the Schwarz in-
equality for & x 1 vectors x; and y;, we obtaln that

*f,(65 ) R i
2 ( 080 9% >1< b<k(0n - 0(C lvﬁw))T
i=1
16 9||2}

n 32f(9* )
2 Zftm,ar
8 {%k 1<ab<k| €, 06

by (2.4) and (2.5), since ||C;||? = 1/A2, (Cy). Similarly it can be shown that

2

azf(e** ) r P
3.21 -1V£i(9 (—’—"—"—) 6, —6)| C;'| =0,
( ) f( )[ 6&,351; 1Sa,bSk( )} i
0%£.(6x ) n
C__l ( i\Yn,a ) en — @
Z[ 08, 08 15a,bsk( )]
(3.22)

32ﬂ(0** ) T 2 P
— 6, —0)| C7t| =o.
* [( 98a 0 )1§a,b§k( )] "

Combining (3.17) with (3.16) and (3.18)—(3.22), we obtain that

n 1/2
{ 3 (VA©) (Vﬁ(e))T} @, — 0)

i=1

(3.23)

{ [Z (V£0)) (Vﬁ-(e))T] 1/20;1}{cn(§n ~0)}

i=1

= (1+0,(1)C;! Za,Vf,(G)

i=1

Since E(e2 |G, 1) 5 0 and since max; <, <, [[C; V(@) © 0 while C;1{?_,

(VEONVEONTICE B 1, C715_ 6, VFi(6) converges in distribution to N(0, 0%I)
by the martingale central limit theorem [cf. Hall and Heyde (1980), pages 58"
and 175], and therefore the desired conclusion follows from (3.23). O
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