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MULTIVARIATE LOCALLY WEIGHTED
LEAST SQUARES REGRESSION

By D. RupPPERT! AND M. P. WAND?

Cornell University and University of New South Wales

Nonparametric regression using locally weighted least squares was first
discussed by Stone and by Cleveland. Recently, it was shown by Fan and
by Fan and Gijbels that the local linear kernel-weighted least squares re-
gression estimator has asymptotic properties making it superior, in certain
senses, to the Nadaraya—Watson and Gasser-Miiller kernel estimators. In
this paper we extend their results on asymptotic bias and variance to the
case of multivariate predictor variables. We are able to derive the lead-
ing bias and variance terms for general multivariate kernel weights using
weighted least squares matrix theory. This approach is especially convenient
when analyzing the asymptotic conditional bias and variance of the estima-
tor at points near the boundary of the support of the predictors. We also in-
vestigate the asymptotic properties of the multivariate local quadratic least
squares regression estimator discussed by Cleveland and Devlin and, in the
univariate case, higher-order polynomial fits and derivative estimation.

1. Introduction. Nonparametric regression has become a rapidly devel-
oping field as researchers have realized that parametric regression is not suit-
able for adequately fitting curves to many data sets that arise in practice.
There have been several recent monographs on the topic [Eubank (1988), Miiller
(1988), Hardle (1990), Hastie and Tibshirani (1990) and Wahba (1990)], where it
is shown that nonparametric regression techniques have much to offer in appli-
cations. The multivariate case has proved to be very important in practice, and
there have been a number of proposed estimators for multivariate predictors, for
example, projection pursuit [Friedman and Stuetzle (1981)], ACE [Breiman and
Friedman (1985)], generalized additive models [Hastie and Tibshirani (1986)],
local regression [Cleveland and Devlin (1988)] and MARS [Friedman (1991)].
Current versions of the S-PLUS computing package include several of these.

In this paper we study the asymptotic bias and variance of multivariate
local regression estimators. These estimators are known to have optimal rates
of convergence [Stone (1980, 1982)] and have proved to be very useful in mod-
eling real data [Cleveland and Devlin (1988)]. However, it appears that their
asymptotic bias and variance have not been studied.

Let (X;,Y7),...,(X,,Y,) be a set of independent and identically distributed
Ré*1.valued random vectors, where the Y; are scalar response variables and
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the X; are R?-valued predictor variables having common density f having sup-
port supp(f) C R%. The multivariate nonparametric regression problem is that
of estimating

m(x)=E(Y |X =x)

at a vector x € supp(f) without the imposition of m belonging to a parametric
family of functions. We will assume the model

Y; = m(X;) + v/%(X))e;, i=1,....,n,

where v(x) = Var(Y | X = x) is finite and the ¢; are mutually independent and
identically distributed random variables with zero mean and unit variance and
are independent of the Xj’s.

Commonly used estimators for m(x) are multivariate versions of the
Nadaraya—Watson kernel estimator [Nadaraya (1964), Watson (1964)], the
Gasser—Miiller kernel estimator [Gasser and Miiller (1984)] and the smoothing
spline [Schoenberg (1964) and Wahba (1990)].

Kernel estimators have the advantage of being simple to understand intu-
itively, to analyze mathematically and to implement on a computer, and they are
consistent for any smooth m, provided the density f of the X;’s satisfies certain
assumptions. In contrast, ACE and generalized additive models are consistent
only for rather special m, and the consistency and other properties of projection
pursuit and MARS are difficult to assess. However, both the Nadaraya—Watson
and Gasser-Miiller estimators have certain disadvantages when the design is
random. This issue is discussed in depth by Chu and Marron (1991).

In this paper we will study a class of kernel-type nonparametric regression
estimators which are known to share the simplicity and consistency of the
aforementioned kernel estimators but overcome the main problems of those
estimators. The estimators we consider are based on local least squares fitting
using kernel weights. Much of our attention will be devoted to the local lin-
ear least squares kernel estimator of m which is &, the solution for o to the
following problem:

n
(1.1) Minimize Z {Yi-a- sT(X; — x)}2KH(Xi —x),
i=1
where H is a d x d symmetric positive definite matrix depending on n; K is a
d-variate kernel such that [K(u)du = 1; and Ky(u) = |H|"Y2K(H~'2u). We
will call H/2 the bandwidth matrix since it is the multivariate extension of the

usual bandwidth parameter. Problem (1.1) is a straightforward weighted least
squares problem, and, assuming that X7 W, X, is nonsingular, (1.1) has solution

1 (X -7

a
H = (XTW.X,)'XTW,Y whereX, = |: S
B 1 X, -x)T
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Y = [Yy,...,Y,]7 and W, = diag{Ky(X; — x),...,Kg(X, — x)}. The local least
squares estimator of m(x) is then

(1.2) Al H) = el (XITW, X,) ' XTW.Y,

where e; is the (d+1) x 1 vector having 1in the first entry and all other entries 0.
Estimator (1.2) has had long use in time series analysis and was introduced
as a regression estimator by Stone (1977), and it is a special case of the ro-
bust local regression estimators in Cleveland (1979). Stone (1980, 1982) uses
(1.2) and its generalization to higher-order polynomials to show the achievabil-
ity of his bounds on rates of convergence of estimators of m and its derivatives.
Cleveland and Devlin (1988) discuss practical implementation of (1.2) for multi-
variate regression. Cleveland and Devlin also present several interesting case
studies where local regression data analysis is considerably more insightful
than classical linear regression analysis. The asymptotic properties of the one-
dimensional case were studied by Miiller (1987) when the X; are nonrandom
and follow a “regular” grid design. Miiller shows that at interior points locally
weighted regression is asymptotically equivalent to a kernel estimator.

A major advantage of (1.2) is that it is very simple to visualize how the
estimator is using the data when estimating m at a point x. This is particularly
the case when K is a d-variate probability density function such as the N(0,1;)
density, possibly truncated for compact support. The estimate m(x; H) is found
by fitting a plane to the data using weighted least squares, and in the case of the
Gaussian kernel the weight given to a point X; is the value of the N(X; — x, H)
density which has ellipsoidal contours of the form (X; — x)TH-Y(X; — x) = ¢,
¢ > 0. Clearly, the farther X; is from x, the less weighting it will receive, but
this also depends quite heavily on the value of H, which controls both the size
and orientation of the ellipsoids at a given density level. Ellipsoidal contours
will occur for any other spherically symmetric kernel. If the true m has a high
amount of curvature near x, then it will be important to have more information
from nearby observations so one would want H to be chosen so that more weight
is given to these observations and reduce the bias of the estimator. However, if
m is closer to being linear at x, then variance considerations dictate that one
would want more data included in the fitting process and it would be better
to have larger ellipsoidal contours. One goal of this article is to show precisely
how the bias and variance of mi(x; H) depend upon H (see Theorem 2.1.)

Often H is taken to be of simpler form, such as H = diag(h?,...,h2). Having
a diagonal bandwidth matrix means that the ellipsoids have their axes in the
same direction as the coordinate axis, while for general H they will correspond
to the eigenvectors of H and, depending on the shape of m, there are situations
where having a full bandwidth matrix is advantageous. This issue is discussed
by Wand and Jones (1993) in the density estimation context.

There is another important advantage of local linear least squares kernel
estimators which has been demonstrated in the univariate case by Fan (1992,
1993). This is that the asymptotic bias and variance expressions are particu-
larly appealing and appear to be superior to those of the Nadaraya—Watson or
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Gasser—Miiller kernel estimators. In particular, Fan shows that the local linear
squares estimator has an important asymptotic minimax property. Moreover,
unlike the Nadaraya—Watson and Gasser—Miiller estimators, the bias and vari-
ance of (1.2) near the boundary of supp(f) are of the same order of magnitude
as in the interior [Fan and Gijbels (1992)]. This is a very appealing property
since, in applications, the boundary region can comprise a large proportion of
the data.

Estimator (1.2)is just one member of a hierarchical class oflocal least squares
kernel estimators since one may choose to fit locally polynomials of arbitrary
order. This class includes the Nadaraya—Watson kernel estimator which corre-
sponds to local constant fits. Cleveland and Devlin (1988) successfully used local
quadratic fits in several of their examples. Because of its importance we also
study the asymptotic properties of multivariate local quadratic least squares
kernel estimators. In the one-dimensional case we also investigate general poly-
nomial fits and derivative estimation.

Section 2 is devoted to the derivation of the conditional bias and variance of
(1.2) both when x is an interior point and when x is near the boundary of the sup-
port of . The same is done for the quadratic fits in Section 3. Section 4 contains
the one-dimensional extensions to higher-degree polynomials and derivatives.

The major finding—or one might say major theme—of this paper is this: by
analyzing local polynomial fitting directly as a weighted least squares estimator
rather than as an approximate kernel estimator, asymptotic behavior is easily
elucidated, even in complex settings such as multivariate x, higher polynomials
or derivative estimation.

2. Conditional mean squared error properties. In this section we in-
vestigate the asymptotic properties of the conditional bias and variance of
m(x; H).

We will need the following assumptions:

(A1) The kernel K is a compactly supported, bounded kernel such that
JuuTK (w)du = ua(K)I, where 115(K) #0 is scalar and I is the d x d identity ma-
trix. In addition, all odd-order moments of K vanish, that s, [ ull1 e uffK (u)du =
0 for all nonnegative integers /1, . . ., [y such that their sum is odd. (This last con-
dition is satisfied by spherically symmetric kernels and product kernels based
on symmetric univariate kernels.)

(A2) The point x is in supp(f). At x, v is continuous, f is continuously dif-
ferentiable and all second-order derivatives of m are continuous. Also, f(x) > 0
and v(x) > 0.

(A3) The sequence of bandwidth matrices H/2 is such that n~1|H| and each
entry of H tends to zero as n — oo with H remaining symmetric and positive
definite. Also, there is a fixed constant L such that the condition number of H
(i.e., the ratio of its largest to its smallest eigenvalue) is at most L for all n.

Because the X;’s are random, unless H depends on the X;’s there is a positive
probability that W, = 0 and then mi(x; H) is undefined. For this reason, the
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ordinary moments of m(x; H) are undefined if H is fixed. If H depends on the
X’s, as is likely in practice, then the moments may exist but could be difficult to
compute. Nonetheless, the conditional (given Xj, ..., X,,) moments of mi(x; H) are
defined with probability tending to 1. In this paper, we study the conditional bias
and variance of m(x; H). Working conditionally makes the calculations tractable
and has other advantages. Most of our proofs have the following form. First we
derive expressions for the exact conditional mean and variance matrix of m(x; H)
and then we find the limits of these expressions as n — oo. The expressions for
the exact conditional mean and variance will also hold if the X; are nonrandom
or if they are random but dependent and/or not identically distributed, and
their limits can be studied under other assumptions than that the X are i.i.d.
Another advantage of working conditionally is that, even if H depends upon
Xi,...,X,, H can still be treated as if fixed.

The asymptotic properties of m(x; H) are different for x lying in the interior
of supp(f) than for x lying near the boundary. To make this more precise, let
& u ={z: H"V/2(x — z) € supp(K)} be the support of Kz (x — -). We will call x an
interior point if £, g C supp(f). Otherwise, x will be called a boundary point.
If x is a fixed point in the interior of supp(f), then x is an interior point for all
large n. However, it is worthwhile to consider a sequence x = x, converging to
a point x5 on the boundary of supp(f) sufficiently rapidly that x is a boundary
point for all n, say, x = x5 + H/2¢, for fixed c in supp(K). To avoid degeneracies,
we assume the following.

(A4) Thereis a convex set € with nonnull interior and containing x5 such that
2.1 inf f(x) > 0.
x€C

Assumption (A4) is a weak assumption and will hold, for example, if the
boundary of supp(f) is smooth (has a tangent plane) at x5, f is continuous at
x5 and f(xs) > 0. However, (A4) will hold even without the assumption that the
boundary is smooth at x5. For example, ifd = 3 and supp(f) is a cube, then (A4)
will hold on the edges and vertices of the cube as well as at the faces, provided
that f is bounded above 0 on the cube. To get some insight into what (A4)
excludes, note that if d = 2 and supp(f) = {(x1,%2): 0 < x; < 1,0 < x5 < x%},
then there will be no € with the required properties if x5 = (0, 0).

Our first theorem concerns the conditional mean squared error properties of
m(x; H) when x is an interior point while the second theorem looks at bound-
ary. points. Their proofs rely on two facts. First, the local linear estimator is a
linear function of the Y;’s, so it can be analyzed separately at the linear Taylor
approximation to m at x and at the remainder of this approximation. Second,
the local linear estimator is exactly conditionally unbiased if applied to any
linear function, in particular to the linear Taylor approximation to m. After
observing these facts, the proof becomes quite simple and relies upon straight-
forward matrix algebra. Let K*(u;x) = eT(XTW,. X,)" 1 (u — x)T1TKgu(u — x).

e

\
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Then m(x; H) = 3, K*(X;; ©)Y;,

(2.2) Y K*X;x)=1 and Y K*(X;x)(X;—x)=0.

i=1 i=1

It is property (2.2) that makes m(x; H) exactly conditionally unbiased for linear
functions. A kernel with property (2.2) will be called a conditional second-order
kernel. A second-order kernel is one whose first moment is 0. Second-order ker-
nels are useful for equally spaced designs if x is an interior point, but otherwise
a conditional second-order kernel is much more desirable.

Let RIK) = f Kw)?du, let Dg(x) denote the d x 1 vector of first-order partial
derivatives and H,(x) denote the d x d Hessian matrix of a sufficiently smooth
d-variate function g at x. Also, let 1 denote a generic matrix having each entry
equal to 1, the dimensions of which will be clear from the context. Finally, if U,
is a random matrix then Op(U,,) and 0p(U,,) are to be taken componentwise. We
have the following theorem.

THEOREM 2.1. Let x be a fixed element in the interior of supp(f). Assume
that (A1)-(A3) hold. Then

E{m(x;H) - m(x)|Xy,...,Xn}

2.3
(2.3) = 2ue(Ktr{HH,(x)} + op{tr(H)}
and
(2.4) Var{m(x;H) | X, ... ,Xn}

= {n"YH|"V2REK)/f @) }v@){1 +0p(1)}.

REMARK 1. Theleading termsin (2.3) and (2.4) do not depend on X, ...,X,,
so they can be regarded as playing the role of unconditional bias and vari-
ance, respectively. In particular, under appropriate conditions, m(x; H) should
be asymptotically normal with asymptotic bias and variance given by these
expressions. However, the expected absolute values of the remainders are not
o(1), so as mentioned before the unconditional bias and variance do not exist.

REMARK 2. The leading conditional bias and variance terms have an intu-
itively simple interpretation. First of all, tr{H3{,,(x)} is simply the sum of the
elementwise products of H and J,,(x). Each entry of },,(x) is a measure of the
curvature of m at x in a particular direction and the corresponding entry of
H reflects the amount of smoothing being performed in that direction. Hence,
the intuitive idea of the bias being increased when there is more curvature
and more smoothing is very well described by this leading bias term. As shown
by Fan (1992, 1993) for the case d = 1, the leading term for the conditional
bias does not involve the derivative of f. Fan calls an estimator with this prop-
erty design-adaptive. If K is the density of the uniform distribution so that all
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nonzero weights are constant, then the first expression in curly brackets in (2.4)
is approximately the reciprocal of the sample size used in the local fit. Other-
wise, this expression can be thought of as the reciprocal of the “effective local
sample size.” Thus, (2.4) reflects the fact that the variance will be penalized by
larger conditional variance of Y given X = x and sparser data near x.

ProoF OF THEOREM 2.1. First note that
(2.5) E{m; )| X1,..., X, } =T (XTW, X)) ' XTW, M
where M = [m(X)),...,m(X,)]7. Let @y (x) be the d x 1 vector given by
(2.6) Qumx) = [(X1 —0)THu)Xy —%),..., (X, — ) TH, @)X, — x)) T
Then Taylor’s theorem implies that

m(x)

2.7 M=X, [Dm(x)

} +3Qn(x) + Rp(x),

where R, (x) is a vector of Taylor series remainder terms. When R,,(x) is pre-
multiplied by eT(XTW, X,)"1XTW,, the resulting scalar is of negligible order
compared to the term arising from @, (x), provided @,,(x) is nonzero, and in any
case this scalar is op{tr(H)}. Then, by (2.5) and (2.6),

E{mx; H) —mx) | Xy, ..., X, )}

2.8) o
= el (XTW. X.)  XIW.{Qu(x) + Rpn(x)}.

Notice that the D,,(x) expression in (2.7) vanishes in (2.8) since

T(vT 1y 7T mx)] _ p[me] _

(2.9) e; (X, W.X,) XWX, [Dm(x)] =e; [Dm(x) = m(x).
Now

n1XTW, X,
(2.10) nty Ku(X; —x) n7!Y KuXi - 0(X; — 0"

) = i=1 , i=1

n Y Kp(X - )X —x) 'Y Kp(X; - 0(X; —x)(X; - 07
i=1 i=1

and using standard results from density estimation,

n1Y " Kp(X; —x) = f(x) + 0p(1),

i=1

n™'Y Ku(X; — x(X; - x) = pp(K)HDy(x) + op(H1)

i=1
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and
n~! ZKH(Xi —x)(X; —x)(X; —x)T = po(K) f(x)H + op(H).

i=1
It follows from this that

(nXTW, X,) ™"
(2.11) Fx)~1+o0p(1) —D¢(x)Tf(x)~2 + 0p(1)

=D +0p1)  {puaB)F@H) " +op(HY) |
Also, it is straightforward to show that

n- lXxTWme (x)

nHY " Ka(X; - 2(Xi - 0 Hn @)X - )

i=1

n™1> {Ku(X; — 0)(X; — 0 THm@)(X; — %) }(X; —x)

i=1

(2.12)

and n
n-1 ZKH(Xi —0{(X; — ) THn )X — 2)}(X; — x)

i=1

(2.13) = /K(u){ (HY?u) T'Hm(x)(Hl/2u) } (HY2u)f (x + HY?u) du

+0p(H3/21)
= Op(H*?1).
It follows from (2.9) and (2.11) that
E{m;H)|Xy,...,Xn} — m(x)
= %f(x)“lE{ n1> " Ky(X; — 2)(X; — )T Hp ()X, — x)}

i=1
+op{tr(EH)}

@19 - %f(x)“l{ [ R E20) 36 E ) £+ E V) du}
+op{tr(ED}
= 1 tr{ HY29¢, )HY? | KwuuT du  + op{tr(H)
2

= 3 up(B)tr {HHp(x)} + op{tr(H)},
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as required. For the variance, let V = diag{v(X3), ...,v(X,,)}. Then
Var{m(x; H)|X;,...,X,}
= el (XTW, X,) "' XTW,V W, X, (XTW, X;) ey

The upper-left entry of n !XT W, VW, X, is

n 1Y Kp(X; - (X))
i=1

(2.15) = |H|"V2 /Kz(u)v(x + HY2u) f (x + H?u) du{1 + op(1)}
= |H|7Y2RE)v(x) f(x){1 + op(1)},
the upper-right block is

n~! ZKH(XL' - 02(X; — 20)Tv(X)

i=1

2.16) g1 / R2(wuTHY? (x + HY2u)f (x + HY?u) du{1+op(1)}

= Op(|H|'/?)

and the lower-right block is

Rty Ku(X; — 02X, — 2)(X; — 0)To(X;)
2.17) i=1
= |H|~/*HY 2{ / K2(wuu” du }H1/2v(x)f(x) +op(|H|"V?H),

0, using (2.11) again and (2.15)—(2.17), we arrive at

Val’{fﬁ(x,H) | Xy,... ,Xn}
(2.18) '
=n " H|"Y2{REw@)/f@)} {1 + op(1)}. D

Our next task is to treat boundary points. The key point is that (2.2) holds
for all x. Therefore, the analysis used to prove Theorem 2.1 extends nicely
to boundary points because (2.5)-(2.10), (2.16) and (2.17) hold for all x and
all n. However, (2.11), (2.13) and therefore (2.14) and (2.18) fail at boundary
points. We will now develop approximations to n =X W, X,, n~1XTW2X, and
n~1XTW,Q,(x) that are valid when x is a boundary point. Let Dym = {z:
+H2z) € supp(f)} N supp(K). Then D, g = supp(K) if and only if x is an
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interior point. Also let

Nx - rVx, 11 Vg, 12]
| Ux,21 Vg, 22

/ 1][1 w1 K(w)du,
DJcH

&

- . 1

Tx= Tx, 11 7,12] =/ [ ][1 u]Kz(u)du,
| Tx,21 Tx, 22 D,y LU
(1 0

A

The entries of N, and T, depend on both H and K although this dependence
will not be made explicit. It is easily shown that

nIXITW, X, = fx) AN, A +0p(A1A),
and

n~IXTW2X, = |H|"V%f(x) AT, A + op(A1 A).

Using (2.12) one can show that, at any x (either boundary or interior point),

n_IXxTWme(x)
Feotr {HY2H,, () HY 2v;, 90} + op{ tr(H)}
FeHY? / WK @) {uTHY 23 )HY 20} du + 0p {HY?1 tr(ED)} |

Dx, H

By (2.1), N, is nonsingular and therefore

1112
—1 v, v,
w- [ )
where I/x11 = (Vx, 11 — Uk, 121/;;21/,:’21)_1, V,}z = —(Vx’ 12/Vx, 11)1/32 and sz = (nyzz
— Vg, 21V, 12/ Va, 1)~ L By (2.9), (2.12) and approximations similar to (2.13) and
(2.14), the asymptotic conditional bias and variance of m(x; H) for any point
x € supp(f) is provided by the following theorem.

THEOREM 2.2. Suppose that x = x5 + H/%c, where c is a fixed element of
supp(K) and (2.1) holds. Then, under conditions (A2) and (A3) of Theorem 2.1,
E{m(;H) - mx) | X;,...,X,}
(2.19) TnN-1

=4 / [1] KwuTHY?3,,(x)H ?>u du + op{tr(H)}
2 D, n u

and
Var{mi(x; H) | Xy,...,X,}

(2.20)
= {n7H|"Y2e] N T, N e1 /f(x) }u(x){1 + 0p(1)}.
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REMARK 3. Theorem 2.2 shows that the conditional bias is Op{tr(H)} at the
boundary as well as in the interior. This result was proved by Fan and Gijbels
(1992) for d = 1. In fact, ford = 1 let h = HY/? and s, = f_lc u!K(u)du, and
assume that supp(K) = [-1, 1], supp(f) = [0, 1] and x = ch. Then D, g = [-¢, 1],
Vi 22 = 89,c, Vi = 82,¢/(52,680,c — 53 ) and 1% = 1/(s, ¢80, — sic). Therefore, the
right-hand side of (2.19) is

2
1 S3,c ~ S1,¢53,¢
2

}h2m//(x)’

2
52,¢50,c — 57,

which agrees with the conditional bias term in (3.1) of Fan and Gijbels (1992).
Also,

2 2
85 ¢Tx, 11 — 251,¢52,c7x, 12 + 87 (T, 22

Tar—1 -1, _
ey N, "T,N; "e; = oD
(82» csoyc - sl,c)

_ f_lc(sz,c — us1,2K%(w)du

(32, ¢S0,¢c — S%, c) 2

bl

which when substituted into (2.20) agrees with the variance term in (3.1) of
Fan and Gijbels (1992).

REMARK 4 (A word of caution). Fan and Gijbels (1992) note that the con-
ditional variance of m(x; k) near the boundary is considerably larger than in
the interior. This is illustrated quantitatively in their Figures 1b, 2b and 3b for
the normal, Epanechnikov and uniform kernels, respectively. They explain this
phenomenon by noting that near the boundary “less observations contribute in
computing the estimator.” This is only part of the problem. Near the boundary
the parameters o and 3 in (1.1) are no longer asymptotically orthogonal as in
the interior. To appreciate the seriousness of this nonorthogonality, consider the
Nadaraya—Watson estimator that eliminates the nonorthogonality problem [at
the expense of an O(b) bias] by fitting a constant, that is, minimizing (1.1) over
a with 87(X; — x) omitted. The variance of the Nadaraya—Watson estimator is
given by (2.20) with N, = v, 11 and Ty = 7, 11. To obtain simple expressions,
again let d = 1 and supp(f) = [0, 1] and consider the uniform [-1, 1] kernel for
which [, u!Kw)?du = 3s; .. If their bandwidths are equal, then the ratio of the
asymptotic variance of the locally weighted regression estimator to variance of
the Nadaraya—-Watson estimator is

2 2
(307032,0 - 31,c32,c)30,c _ 82,¢80,¢

2 2 — g2
(szycsoyc - sly C) 30, cs2,c sl’c

At the left boundary (c = 0), this ratio is 4. At interior points (¢ > 1),s;, =0
and the ratio is 1 as Fan (1992) has shown. Fan recommends that the locally
weighted linear fit become the benchmark for nonparametric regression. We
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certainly share Fan’s enthusiasm for locally weighted linear regression, and
we appreciate the importance of reducing boundary bias. Also, as a referee
has mentioned, variance is easier to model than bias. However, it should be
emphasized that, for finite samples, if f(0) is small relative to v(0), then for x
near the boundary the Nadaraya—Watson estimate could be considerably more
accurate than a locally weighted linear fit.

REMARK 5. Theorem 2.2 could be extended to include interior points where
f is discontinuous, but we will not pursue this here. At interior points where f
is continuous, vy 12 = 7y, 12 = 0, 1,11 = 1 and 7, 11 = [ K?(u) du so that Theorem
2.2 agrees with (2.3) and (2.4).

Results (2.3) and (2.4) can be combined to give the asymptotic conditional
mean squared error (MSE) for estimation at an interior point x:

MSE{#(x;H) | X1, ..., X}
= n"HH|"V2RE () /f(x) + juaK) tr® {HH ()}
+op{n M| H|™1/2 + tr*(H)}.

However, in practice one typically wants to estimate m over supp(f), in which
case an appropriate error criterion is conditional mean integrated squared error
(MISE) given by

MISE{#(;H) | X1, .., X, )}
-E / [{R6s D)~ m@)}? [ X, X wie) d,

where w(x) is a weight function chosen to ensure that the integral converges.
If F is a d x d symmetric matrix, let vech(F) be the %d(d + 1) column vector
created by stacking the columns of F, each below the previous, but with entries
above the main diagonal omitted, and let vech”(F) be the transpose of vech(F).
Also, let dg F' be the same as F but with all off-diagonal entries equal to zero.
Then it may be established [see Wand (1992)] that

MISE{#i(x; H) | X3,..., X, )}
@21)  =n"YH|"V2RE) / VOw),/f ) dx
+ 1 up(K)? (vechT H) U, (vech H) + op {n =} |H|~ V2 + tr*(H))
where

U, = / vech{2H,(x) — dg ﬂfm(x)}vechT{Z’Hm(x) — dg Hpm(x) }w(x) dx.

Details about the numerical minimization of the main terms of (2.21) are given
in Wand (1992). '
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Finally, we mention that Theorems 2.1 and 2.2 may be used to obtain asymp-
totic approximations for metrics other than those based on squared error loss.
In particular, the results of Wand (1990) for the mean absolute error of the
Gasser—Miiller kernel estimator can be readily adapted to mi(x; H).

3. Local quadratic regression. In several of the examples of Cleveland
and Devlin (1988), improved fits were obtained by local quadratic rather than
local linear least squares estimation. In this section we examine the conditional
bias and variance of multivariate local quadratic fits.

For local quadratic regression, 7i(x; H) is again defined by (1.2) but now with

1 (X -7 vech™{(X; —x)(X; -7}
1 (X, -7 vech”{(X, —x)(X, —2)T}
and with e; a {1+d + 1d(d + 1)} x 1 vector. If g is any real-valued function of

x with all kth-order partial derivatives existing, then its kth-order differential
at xg is the function of x defined by

k d*g(x)
Jk (x) = ( )xkl coixke T O

By the same reasoning leading to (2.9), we have
E{m(x;H) —mx) | X;,..., X}
=el(XTW. X,) ' XTW,
3.1) 1 (d3m) (X, — x) 1 (dam)(X; — x)
: + 5 : +R(x) ;,

3! : 4! :
(d2m)(X, — %) (dim)(X, — x)

where R(x) is a vector of Taylor series remainder terms. Now let

Vx, 11 Vx, 12 Vx, 13
Ny= |21 Vioe Vx 23
Vg,31 Vg, 32 Vg, 33
1
=/ u [1 u vech(uuT)]K(u)du.
Dut | yech (uuT)

As in Section 2, 7, ;; and T, are defined in the same way as v, ;; and N, but
with K replaced by K2. Let [v}! 112 v}3] be the first row of N 1.

THEOREM 3.1. Suppose that all fourth-order partial derivatives of m are
continuous in a neighborhood of x5 on the boundary of supp(f), x = x5 + H/%¢,
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where c is a fixed element of supp(K), that f is continuous at x and that (2.1)
holds. Also, suppose that H satisfies condition (A3) of Theorem 2.1. Then

E{f(x;H) - m@) | Xy, ..., X, )}

eTN-1 1
(3.2) - Az / v | K@)(d3m) (HY?u) du
" Dun | vech(uuT)
+op{tr(E)Y/2),
and
3.3) Var{m(x; H) | X,...,X,}

= {n_l|H|_1/2e1TN;lTxNx'lel/f(x)}v(x){1 +op(1)}.

REMARK 6. From (3.2) we see that the conditional bias of m(x; H) is Op{(tr
(H))*/?} rather than Op{tr(H)} as for local linear regression—see (2.3). By (3.6),
for local quadratic regression the bias is Op[{tr(H)}?] in the interior of supp(f).

ProoF oF THEOREM 3.1. Let C be the %d(d +1)x %d(d +1) matrix such that
vech(H2uuTH?) = Cvech(uuT),

for all d-vectors u. Each element of C is the product of two elements of H/2 or
twice such a product since

d d
(HY?uu TH1/2)ij = Z Z (Hl/z)ik (Hl/z)zj (uuT)kl'
We have

En~'Y " Ky(X; - x)vech” {(X; — x)(X; - )T}
i=1

- / \H|~Y2K{H~%(y - x)}vechT{(y — xX(y — 0T }f(y)dy
=/ K(u)vechT(Hl/zuuTHl/z)f(x+H1/2u) du

Dx,H
= vy, 13CTf(x) + 0p(1CT),

En~'Y Kp(X; — x)(X; — x)vech” [(X; — 2)(X; — )T
i=1

= HY2y, 53CTF(x) + 0, (HY?1CT),
and
En~? ZKH(Xi — x)vech{(X; — x)(X; — x)T}vechT{(Xi —x)X; — x)T}

i=1
= Cy, 33CTf(x) + 0p(C1CT),



1360 D. RUPPERT AND M. P. WAND

so, using the analog of (2.11) for quadratic regression, we have

n"IXIW. X, = {diag(1,HY/2,C) }N. {diag(1, H"?,C) }f@)

(3.4)
+ oP[{diag(1,Hl/2,c) }1{diag(1,H1/2,c) }] .

Next,

(dng) (Xl - x)

n~1XITw,
(d¥m) (X, — )
1

(3.5) - @) / Kw| B2 | (&m)(HYu)du

De Cvech(uuT)

1
+ op {tr(H)3/2 !le] } .
C1

By (3.1), (3.4) and (3.5), equation (3.2) holds. Note that in (3.1) the terms in-
volving the fourth-order differential are negligible relative to those involving
the third-order differential—this will not be true at interior points. O

In the interior, the right-hand side of (3.2) is 0. We now develop an expression
for the asymptotic bias of order Op{tr(H)?} that holds in the interior. In the
interior, vy 12, Uy, 21 and v, g are all 0, as are the corresponding 7’s. Therefore,
v}? = 0. Also, vy, 33 is diagonal with entries p4, followed by (d — 1) ug’s, followed
by u4 and (d — 2) po’s and so on.

THEOREM 3.2. Suppose that x is in the interior of supp(f), all fourth-order
derivatives of m are continuous derivatives at x,and f has one continuous deriva-
tive at x. Also, suppose that condition (A3) of Theorem 2.1 holds. Then

E{m(x;H) —mx) | X1,...,Xn}
= / {qu + v vech (uuT) }K(u)
(3.6) Dy(x)T (HV/2 d3m) (H/? 4 1/2
x{{ r@T (HY2u) H (dim) (HY?u)} (gtm) (B u)}du

3@ * 41

+0p{tr2(H)}
and

Var{m(x;H) | X, ...,X,}
3.7 = [n_1|H|_1/2{V;17'x) uvit+2ultn 1303 + 0B 33V31}/f(x)]

x v(x){1+o0p(1)}.
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PROOF OF THEOREM 3.2. Instead of using (8.5) as in the previous proof, we
need the following refinement:

(d3m)(X; — x)
n'lXxTWx :
(d3m) (X, —x)
0
= f(x) / K@) {Hl/zu] {(d2m) (H/%) } du
0

1
(3.8) +op {tr(H)3/2 [Hl/zl} }
0

1
. / K@) 0 {(@2m) (H'/*u) }{DF )HVu} du
Cvech(uuT)

1
+o0p tl'(H)2 0 .
C1

It is easy to see that

(dim)(X; — %)
n~IXITWw, :
(ditm) (X, —x)

1
(3.9) = f(x) / K@) 0 {(dgm) (HY?u) } du
Cvech(uuT)

o]

Also, at interior points some of the components of N, are 0, so we need to
investigate the next higher order term. Thus, instead of (3.4) we need to consider

n'lXxTWxXx
= {diag(1,H'/2,CT) {f@N, + Q.} {diag(1, H'/2,C) {1+ 0p(1)},

where
0 uT 0
Q= [Kw |u 0 uveeh” (uT) | {DFHY?u) du.
0 vech(uuT)uT 0
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Since Q, = O{tr(HY?)},

el (nXIW, X,)
(3.10) =f@)ef {N;! — fx)"'N;'Q. N, ' }diag(1,H /2,C" 1)
+Op{1 diag(1,HY2,C 1)}

We will now show that eTN;1Q, N ! = 0. First, since v}2 = 0, eI N1 is orthog-
onal to the first and the last %d(d + 1) columns of .. By the followmg lemma,
each of the other columns of @, (columns 2 through d+1) is a linear combination
of the last 1d(d + 1) columns of N, and therefore is also orthogonal to el N 1.

This completes the proof thateT N 1@, N1 = 0. Therefore, by (3.8)~(3.10), (3.6)
holds. The proof of (3.7) is stralghtforward and will be omitted. O

LEMMA 3.1. Assume that the conditions of Theorem 3.2 hold. Then each of
columns 2 through to d + 1 of Q. is a linear combination of the last %d(d +1)
columns of Ny.

PROOF The proof is simpler if we rearrange the components of vech(uu7T).
Let u? = (u%,...,u2) and let q(u) be the vector of all distinct pairs w;u;/, i#7'.
Replace vech(uuT) by [(1?)7T q(u)T]T. With this reordering, columns 2 to d + 1
of @, are

pa(B)1y . odiag {HY/2Ds(x)}
0d xd
[{1140K) = W3O + 131 x o] ding {HY/*Dyx)}
Q42

where 0, xs and 1, . are r X s matrices having each entry to 0 and 1, respec-
tively, I is the d x d identity matrix and @, 42 is a —d(d +1)xd matrix. The

last 1d(d + 1) columns of N, are

(3.11)

po(K)1y 5 g 01 x dd - 1)/2

(3.12) Od x a 0d x dd - 1)/2
{pa®) — poKP Mg+ pK21lixq O xdw@—12

O0dd-1/2xd 2By — 1)/2

and (3.11) is (3.12) times [diag{H"/2D(x)} u;2(K)QT 1,17, which completes
the proof. O

4. Further extensions.
4.1. Higher-degree polynomials. Generalization to higher-degree local poly-

nomial fits is straightforward, although careful notation is important in order
to keep expressions simple. The order of the bias is what would be expected.
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The general case, which includes the boundary and points where f is discon-
tinuous, is as follows: the conditional bias for pth-order polynomials will be
of order Op{(trH)?*+1/2}, The reason is that a local pth-degree polynomial fit
is exactly conditionally unbiased if m is a pth-degree polynomial. This also
implies that the local pth-degree polynomial fit is a kernel estimate with a con-
ditional (p + 1)th-order kernel, using the obvious generalization of conditional
second-order kernel given in Section 2; see Lejeune [(1985), Section 5] for the
univariate case with equally spaced X;’s. Moreover, if p is even, f has a contin-
uous derivative in a neighborhood of x and x is an interior point, then the bias
will be of order Op{(trH)'?/2+1}. However, the bias will depend on D¢(x) so will
not be design-adaptive in the sense of Fan (1992).
For local cubic regression under the conditions of Theorem 3.2,

E{(;H) - m@x) | Xy,...,Xn}
= 11—' / {yj}l + y;3 vech(uuT) } (dgm) (H1/2u) du + Op{tr(H)z},

where v} and v}® contain the nonzero entries in the first row of N 1. For
the cubic case N, = [¢(w)((w)TK(u)du and ((u) is the [1+d + {d + (‘21)} +{d +
2(‘;) + (‘; )}] x 1 vector containing 1,  and all distinct two-component and three-
component products of the entries of u. The conditional variance is the same as
(3.7), but with T, = [¢w)¢(w)TK?(u)du.

For the univariate case and general p, substantial simplification is possible,
especially at interior points. Let

1 Xj—-x - (X3—2x)P
(4.1 X=|: |,

1 X,—-x - (X,—x)?
H = h? and uj = [wWK(u)du, let N, be the (p + 1) x (p + 1) matrix having
(Z, )th entry equal to y;, j_ 2 and let M, (u) be the same as N, but with the first

column replaced by (1,u, . ..,u?)T. Then Lejeune and Sarda (1992) showed that
the kernel given by

K@) = {|Mp(w)|/|N,| } K(u)

is a kernel of order p + 1 if p is odd and of order p + 2 for even p. This higher-
order extension of K is particularly relevant to local polynomial fitting as the
following theorem reveals.

THEOREM 4.1. (d = 1). Suppose that x is an interior point of supp(f), that A1
and A2 hold, that m'P*? is continuous in a neighborhood of x and that h — 0,
nh — 0o as n — oo. Let mi(x; h) = eI (XTW, X,) ' XTW.Y, where X, is given by
(4.1). Then, for p odd,

E{m(x;h) —m@x) | Xy,..., X}

(42) (p+1)
= {/u‘”lK(p)(u)du}{%:—T(;—)}hp”+op(h"+1)
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and, for p even,

E{m(x;h) — m(x) | Xy,...,X,}

_ +2 m(p”)(x)f'(x) m®+2)(x) 2
4.3) = {/up K(p)(u)du}{ @ + D + P2 }hp

+0p(hp+2).
In either case
Var{m(x;h) | Xy,...,X,}

4.4)
= {/K(p)(u)zdu}{n'lh'lv(x)/f(x)}{1 +op(1)}.

Proor. First note that

E{f(x;h) — m®) | X1,..., X} = e (n"XTW, X,) (S, + Ry),

where
S, =n"XTW,
— 1 _ 2
m@+ D(x) (X —x)P* m®+ 2)(x) (Xl X
- : " :
(p+1! . (p+2) :
p (Xn—x)p+l p (X,,—x)P“z

and R, is a vector of Taylor series remainder terms. We carry two terms in the
definition of S, since the term involving m?*V(x) vanishes in the leading term
for the conditional bias when p is even. Let A = diag(1, A, ..., h?), and let @, be
the (p + 1) x (p + 1) matrix having (i, j))th entry equal to ;, ;1. Then

n IXIW. X, = A{ f@N, + hf'(x)Q, } A + 0p(R A1 A),
which leads to
el (nXTW, X,) !

(49 =f(x)"1{e1T p'l — hf'(x)f (x)"e¥ p‘lQ‘,,Np_l}A‘l + oP(hlA‘l).
For k£ =0,1,..., standard results from kernel density estimation lead to
(X, —x)*
A In"1XTw, :
(X, —x)*
Mk e +1
=dmrre [P emtripe | | 4 op(rte

HE +p MEk+p+1



LOCAL LEAST SQUARES REGRESSION 1365

Combining this result with (4.5), we obtain
E{m(x;h) —m(x) | Xy, ... X}

p+1 (p+1)
- -1 m () 1
= {J; (N, )ljup+j+1}mhp+
p+l (p+2)( )
— m X
+ [{ Z (N l)1j“p+j+2}m
(4.6) Jj=1
p+1
+ (Np_l)ljupﬁ*'? - elTN;lQpr_l(/"'p+la .. ~’/-¢2p+1)T}
Jj=1
y m(p+l)(x)f’(x) hP+2
fl)(p+ 1!
+ op(RP*2).

To simplify (4.6) for certain cases, note that (a) u j = 0 for j odd, (b) (N,);; =
N, 1);; = 0 for i +j odd and (c) (@p)ij = 0 for i +j even. First consider p even.
Combining (a) and (c), it is easily shown that the first term of (4.6) vanishes.
Also, the first p columns of @, are identical to the last p columns of N,. Com-
bining this with (b) and (c) leads to e N, 1@, = 0, so the last term in (4.6) is
also zero. Consequently, for p even,

E{mi(x;h) —m(x) | Xy,...,X,}

p+1 (p+l)( )F!(x) (p+2)( )
- m X X m X +
= { Z (Np 1)1pl‘p+j+2}{ F)p + 1] + D) }hp 2

j=1

+Op(hp+2).

When p is odd the first term in (4.6) does not vanish, so this is the leading
conditional bias term.

For the conditional variance we have n"!XTW2X, = h~1f(x) AT, A + op(h~!
AlA), where T}, is the (p + 1) x (p + 1) matrix having (i, j)th entry equal to
Ju'*7=2K(u)? du. Combining this with (2.16) and (4.5), we obtain

Var{i(x;h) | Xy, ..., X, )
= (elTNp'lTpr'lel) {n TR () /f)} {1 +0p(1)}.

It remains to show that the kernel dependent constants match those of (4.2),
(4.3) and (4.4). Let c;; denote the cofactor of (N,);;. Then from the symmetry of
Np and a standard result concerning cofactors we have

4.7 Ny Yy =e1j/IN,l,  j=1,...p+1.

Notice that [uP**K ,)(u)du = |Gp|/|N,|, where G, is the same as N, but with
the first column replaced by (Bp+krBpsbaty s ,u2p+k)T. Expanding |G| along
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its first column we obtain

p+1
/ uP K@) du = INp| 1D pprjeac,
i=1

which, in view of (4.7), gives the first required result. For the second, using (4.7)
again, we have

p+lp+1
/K(p)(u)2 du = |N,| ™2 Z Z ciic1j(Tp)ij
i=1j=1
=e{N,'T,N, e;. 0

REMARK 7. Expressions for the bias and variance for boundary points can
be easily obtained by reworking the arguments of the proof of Theorem 4.1 with
the moments of K replaced by appropriate truncated moments. For example, in
the case where supp(f) = [0, 1], supp(K) = [-1,1] and x = ch, 0 < ¢ < 1, define
sic = [, u!K(u)du, N,(c) to be the (p + 1) x (p + 1) matrix having (i, /)th entry
equal to s;,j_g . and Mp(u,c) be the same as N,(c), but with the first column
replaced by (1,u,...,u?)T. The “left-hand boundary” version of the pth-degree
Lejeune~Sarda kernel is

Kp(u,c) = {|Mp(u,c)|/INp(c)| } K ()

and has moment properties analogous to boundatry kernels of the type pro-
posed by Gasser, Miiller and Mammitzsch (1985). For odd p, precisely the same
arguments as those used in the proof of Theorem 4.1 lead to

E{m(x;h) — m(x) | Xy,...,X,}

1 . m(p+1)(x) . .
={/cu" lK(p)(u,c)du}{—m}hP 1+0P(hp 1)

Var{mi(x;h) | X3, ..., X, }

1
= { K, c)? du}{n-lh—lv(x)/f(x)}{l +op(1)},

for x = ch. (For p = 1 the results given in Remark 3 can be shown to agree with
those given here.) Roughly speaking, these results suggest that local polynomial
kernel estimators automatically induce a boundary kernel-type bias correction
when p is odd.

4.2. Estimating derivatives of m. The are many reasons why derivatives
of m are of interest. For example, in the study of human growth curves, the
first two derivatives of height as a function of age have important biological
interpretations [Miiller (1988)]. Also, the optimal bandwidth for estimating m
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depends upon higher derivatives of m which when estimated lead to “plug-in”
rules for bandwidth selection.
Consider the case d = 1. For r < p, the estimate of m”(x) will be

k) =rlel, | (XIW, X,) T XTW.,Y,

where e, is the (p + 1) x 1 vector with a 1 in its r + 1 coordinate and 0’s
elsewhere. Stone (1980, 1982) uses the same method of estimating derivatives,
considers the multivariate case and shows optimality in terms of rate of conver-
gence, but he does not study asymptotic bias and variance. Notice that m,(x; h)
is, in general, not equal to m™(x; k), the rth derivative of i (x; h)—in fact, 7i(x; k)
will not even be differentiable if, say, K is a uniform kernel. One criticism of the
Nadaraya—Watson estimator is that it is difficult to analyze the behavior of its
derivatives, which makes it somewhat unsuitable for estimating derivatives.
The same criticism could be made of local polynomial fitting if we attempted
to estimate m®(x) by m"(x; h). However, the behavior of 7, (x; k) is straightfor-
ward to analyze, as we shall now see.

Let N, be asin Section 4.1, let M, () be the same as N, but with the (r+1)th
column replaced by (1,u, ...,u?)T; and define the kernel

K(r,p)(u) = {r'lM,,p(u)|/[Np|}K(u)

It is easily established that K, ,) satisfies

Oa Ogjgs—l,j-',-"r,
/qu(,‘p)(u)du =<rl j=r,
IBr,pa j=37

where s = p+1 when p —ris odd and s = p + 2 when p — r is even and
Br,p is some non-zero constant. Therefore, (—1Y K, ,) is an order (r,s) kernel as
defined by Gasser, Miiller and Mammitzsch (1985). Such kernels are tailored for
estimating rth derivatives of functions such as regression and density functions.
For example, £,(x; h) = n~1h ="~ 1yr  Kq p {(X;—x)/h} is a consistent estimator
for f\”(x). The proof of Theorem 4.1 can be generalized to give the following
theorem.

THEOREM 4.2. (d = 1). Suppose that x is an interior point of supp(f), that
A1-A2 hold, that m'P*? is continuous in a neighborhood of x and that h — 0,
nh?+*1 — 0o as n — co. Let m,(x;h) = rlel, (XTW, X)) I XTW.Y, where X, is
given by (4.1). Then, for p —r odd,

E{m.(x;h) - mPx) | X1,..., X}

(p+1)
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and, for p —r even,

E{fi,(x;h) - mP@) | Xy, ..., X, )

+ (P+2)( )
= [{/up 2K(,,p)(u)du}{—nzp+2;; }

(4.8) + { /uP‘LZK(,,p)(u) du-—r / uP 1K, _ 1,p)(u)du}

mP D@ @)\ |, p_rez
g { Fe)p + }] r

+ op(h?~7+2),
In either case,
Var{m,(x;h) | X1, .., X}
= { / Ko py@)? du}{n‘lh‘zr‘ Lo()/f@) }{1 +0p(1)}.

PRroOF. Since the proof uses essentially the same ideas as those used in
the proof of Theorem 4.1 we will restrict attention to the main differences. The
extension of (4.5) to general r > 0 is

el 1 (XS W, X) -
(4.9) - h—rf(x)—leT Np—lA—l _ hl"f'(x)f(x)‘zeT Np_lQPNp_lA_l

r+1 r+1

+ op(h1~T1A"Y).

When r = 0, it was shown in the proof of Theorem 4.1 that the second term
vanishes when p is even. However, for r > 0 and p —r even,

T ar-1 -1_ ,Tpr-1
e, . 1N, @N, =e,N,".

This leads to the second kernel dependent term in the right-hand side of (4.8) by
applying the same arguments as those given in the proof of Theorem 4.1. When

p—risoddandr > 0,el, A/ lQpr‘ ! js also nonzero; however, the resulting

corresponding bias term is Op(h? ~7* 3).‘
The leading conditional variance term is easily shown to depend only on the
first term of (4.9). O

Note that the bias does not involve f/(x)/f(x) if one fits polynomials whose
degree p exceeds r by a positive, odd integer. It is also clear that, for such p,
m.(x; h) has a bias of order Op(h?*1) at the boundary as well as in the interior.
Thus, the nice boundary behavior of local polynomial fitting extends to the esti-
mation of derivatives. An ordinary kernel estimator with kernel K. ,) will not
behave properly at the boundaries or other locations where f is discontinuous.
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