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DISCRIMINATION DESIGNS FOR POLYNOMIAL REGRESSION
ON COMPACT INTERVALS

By HOLGER DETTE
Universitdt Gottingen

In the polynomial regression model of degree m € N we consider the
problem of determining a design for the identification of the correct degree
of the underlying regression. We propose a new optimality criterion which
minimizes a weighted p-mean of the variances of the least squares estima-
tors for the coefficients of x/ in the polynomial regression models of degree
1 =1,...,m. The theory of canonical moments is used to determine the op-
timal designs with respect to the proposed criterion. It is shown that the
canonical moments of the optimal measure satisfy a (nonlinear) equation
and that the support points are given by the zeros of an orthogonal polyno-
mial. An explicit solution is given for the discrimination problem between
polynomial regression models of degree m — 2, m — 1 and m and the results
are used to calculate the discrimination designs in the sense of Atkinson
and Cox for polynomial regression models of degree 1,...,m.

1. Introduction. Consider the polynomial regression situation on the in-
terval [a, b]. For each x € [a,b] an experiment can be performed whose outcome
is a random variable Y(x) with expectation

EYw) =) ax'
i=0

and variance ¢2 independent of x. A design ¢ is a probability measure on [a, b],
and the matrix

b
M, ) =/ A,x,... . (Lx,...£")dEk)

is the information matrix of £. If £ concentrates masses & at the points x;,
i=1,...,r, and N¢; = n; are integers, the experimenter takes N uncorrelated
observations, n; at each x;, i = 1,...,r, and the covariance matrix of the least
squares estimator for the parameters a; is proportional to the inverse of the
information matrix M,,(£).

An optimal design maximizes or minimizes some functional depending on the
information matrix or its inverse, and there are numerous criteria which can be
used for determining a “good” design ¢ [see, e.g., Kiefer (1974) or
Silvey (1980)]. Optimal designs in polynomial regression have been studied
in considerable detail [see, e.g., Hoel (1958), Guest (1958), Murty and Studden
(1972) and Studden (1980, 1982a, b, 1989)]. All these articles assume that the
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degree of the polynomial is known before the experiments are carried out. It
is the purpose of this paper to consider design problems when the degree of
the underlying polynomial regression cannot be fixed in advance and a design
has to be constructed for the discrimination between the rival models of de-
gree 1,...,m. Similar problems were extensively studied by Atkinson (1972),
Atkinson and Cox (1974) and Atkinson and Fedorov (1975a, b). In Section 2 a
new optimality criterion is introduced which can be used for determining dis-
crimination designs for the polynomial regression models of degreel =1,...,m.
An optimal design with respect to this criterion minimizes a weighted p-mean
of the variances of the least squares estimators for linear combinations of the
parameter vectors in different models. In Section 3 we will use the proposed
criterion for the calculation of optimal designs for model discrimination in the
polynomial regression model. We present a complete solution of the proposed
problem using the theory of canonical moments which was introduced (in the
context of optimal design theory) by Studden (1980, 1982a, b) [see also Lau
(1983, 1988)]. It is shown that the optimal designs for the discrimination be-
tween polynomials up to degree m is supported at the zeros of a certain set of
orthogonal polynomials, and we obtain explicit representations of the optimal
design for the discrimination between regression models of degree m —2,m — 1
and m. Finally, some examples are presented in Section 4, and we determine
the optimal discriminating designs in the sense of Atkinson and Cox (1974)
for polynomial regression models of degree [ = 1,...,m. It is also shown that
these designs converge weakly to the arcsine distribution when the degree of
the regression tends to infinity.

2. Generalized c-optimal designs. Let fi(x) = (1,%,...,%!) denote the
vector of monomials up to degree ! € N, and let a; = (ai, ...,an) € R!*1 denote
the vector of unknown parameters for the polynomial regression of degree [

g1(x) = afy(x), l=1,...,m.

The information matrix in the model g; is now given by M;(¢) = [ ab file)f] () d€(x)
and an efficient design for all models should maximize or minimize a function
depending on the information matrices M;(£),..., M, () or their inverses. Let
c; € R'*! be given vectors, and let §; be nonnegative numbers with sum 1,
Bm > 0, and p < 1. Then we say a design ¢ is ®;, ;-optimal with respect to the
prior 3 if and only if ¢ maximizes the weighted p-mean

1/p
(2.1) ﬂ(ﬁ) = [Zﬂz M (Oer) }
and allows the estimability of all linear combinations cja;, I = 1,...,m. The
prior 8 = (B1,...,Bn) reflects the experimenter’s belief about the adequacy

of the different models g1(x),...,gn(x). The optimality criterion (2.1) was in-
troduced by Dette (1993) in a more general context investigating geometric
characterizations of the optimal designs with respect to the criterion (2.1). To
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obtain an optimal design for model discrimination, we choose the special vectors
by =(0,...,0,1)Y e R*1(I = 1,...,m) as “the vectors for the highest coefficient”
in the model g;. Assume that the experimenter uses the following stepwise pro-
cedure for the selection of the variables in the model: starting with a linear
regression, the F-test for a quadratic trend Hy: agy = 0 is performed. If this
test rejects Hy, then the additional parameter ag, is included into the model,
and the hypothesis of a cubic trend Hy: as5 = 0 is tested. This procedure con-
tinues until the specified bound m for the maximum degree of the polynomial
regression is reached or terminates if one of the tests accepts its correspond-
ing hypothesis. Because an optimal design for b/a; = ay [i.e., the design that
minimizes b;M; (£)b;] also maximizes the power of the F-test for Hy: a; = 0, a
<I>p{’, g-optimal design with respect to the prior 3 will be useful for discriminating
between different degrees of the polynomial regression [note that the noncen-
trality parameter of the F-test for Hy: a;; = 0is proportional to a}(b,M; (€)b;)~1].
In the following we will call such a design ‘I)zl;, s-optimal discriminating design
with respect to the prior 3.

Note that in the situation considered here our approach generalizes a crite-
rion proposed by Atkinson and Cox (1974) [see also (Atkinson (1972)]. These
authors considered an “extended” model and constructed optimal designs for
detecting departures from the given models which have to be discriminated.
In the situation described so far, the extended model is given by g,,(x) while
the rival models are g;(x),...,g, — 1(x). Atkinson and Cox (1974) proposed to
maximize the weighted product

m—1 1/(m —1)
det M ()
22) 11 (—_det M) )

Observing that b;M; Ye)b, = det M; _ 1)/ det M;(¢) and that the case p = 0 in
(2.1) has to be understood as the limit p — 0, we obtain that a <I>8’ s-optimal
discriminating design maximizes

b T det M) )™
(23) <I>0’ﬂ(€) - }%‘DP:ﬁ(g) - l=III <m>

(note that a <I>’” s-optimal design always has a nonsingular information matrix).
Thus it is straightforward to verify that the optimal design with respect to the
criterion (2.2) proposed by Atkinson and Cox (1974) is the <I>’5’ p-optimal dis-
criminating design with respect to the prior 8 = (34, ..., ), where the weights
0, are proportional to E}": :n,l—l 11//,1=2,...,m and 8; = 0. Note that Atkinson
and Cox (1974) considered the problem of discriminating between arbitrary
(given) models and that it is straightforward to generalize the optimality crite-
rion on page 327 of their paper to a weighted p-mean in the sense of (2.1). For
further results concerning the determination of optimal designs for model dis-
crimination, we refer the reader to the paper of Box and Hill (1967), Atkinson
and Fedorov (19754, b) and Ponce De Leon and Atkinson (1991).
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The above definition gives the common c-optimality criterion (for polynomial
regression of degree m) setting 8, =--- = 3,,_1 = 0 and 3,, = 1 [see, e.g., Silvey
(1980) or Pukelsheim (1981)]. For the choice b,, = (0,...,0,1)Y € R™*! we thus
obtain the D;-optimality criterion considered by Kiefer and Wolfowitz (1959)
and Studden (1982b). The above criteria can easily be extended to arbitrary
regression functions defined on general design spaces and are extensively dis-
cussed in a paper of Dette (1993). In the following discussion we will need the
relation between <I>Ib, s-optimal designs with respect to different exponentsp < 1
in (2.1) [for a proof and more details see Dette (1993)].

THEOREM 2.1. Let p; € (—o00,1) and let ¢ denote a <I>b ., g-optimal discrim-
inating design with respect to the prior 3. Then, for every p2 € (—o00,1), fisa

<I>I”,2 g-optimal discriminating design with respect to the prior ﬁ = (ﬂl, .. ,ﬁm) if

and only if

(bel—l(ﬁ)bz)‘pz —Pp1
S B (B OB

B =06

3. Optimal discriminating designs. Throughout this paper we assume
that the vectors ¢; in the definition of @7 g-optimality are given by b; = (0, .
1) € R**1, and we will use the criterion (2.1) determining optimal des1gns for
model discnmlnatlon For this task a short description of the theory of canonical
moments will be needed and is given in the following. For details the reader
is referred to the work of Studden (1980, 1982a, b, 1989), Lau (1983, 1988)
and Lim and Studden (1988). Let ¢ denote a probability measure on [a, b] with
moments ¢; = [, b i d&(x). The canonical moments are defined as follows. For
a given set of moments cg,cy,...,c;_1, let ¢} denote the maximum of the i-th

moment | ab %' du(x) over the set of all probability measures 1 having the given
moments cg,cy,...,c; 1. Similarly let ¢, denote the corresponding minimum.
The canonical moments are defined by

ci—c;

— l y
pi=——-, t=1,2,....
¢ —c;

Note that 0 < p; < 1 and that the canonical moments are left undefined
whenever ¢} = c; . If i is the first index for which this equality holds, then
0<pr<l,k=1,...,i —2, p;_1 must have the value 0 or 1 and the design ¢
is supported at a finite number of points [see Skibinsky (1986), Section 1]. The
following result will be useful for calculating the support points and weights of
a design corresponding to a terminating sequence of canonical moments [see
Lau (1988)].

LEMMA 3.1. Let & denote a probability measure on [a,b] with the following
canonical moments: py; € (0,1),i <m —1; pg; _1 = %, i <m;and ps, = 1. Then
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§ is supported at m + 1 points x, .. ., x, which are the zeros of the polynomial
(x — b)(x — @)@, _ 1(x). The masses at the support points are given by
p m(x) .
£({x}) = J , Jj=0,...,m.
(@[ - ) ~ ) Q1)) /) e ws

Here the polynomials {Pix)}1 o and {@ )} '01 are defined recursively by
[P_1 @) =Q_1(x) = 0, Po(x) = Qo(x) = 1, g = 1 —pj,J>1]

b+a
2

2
Ppiq1lx) = (x - )Pk(x) - (22_a> QorP2k + 2P — 1(x), k<m-1,

2
Qri1(x) = (x - b;a) Qrlx) — (b ;a) P2rq2k + 2@k — 1(x), k<m-—2.

ExampLE3.2. Let[a,b] = [-1,1] and m = 3. Then we have Q,(x) = 2% — P2q4
and P3(x) = x3 — x(gop4 + q4pe), and it follows by straightforward algebra that
the design corresponding to the terminating sequence (1/2, pg, 1/2, p4, 1/2, 1)
puts masses pop,/(2(qs + papy)) at the points +1 and masses q2/(2(qs + pap4))

at the points +,/p3q5.

The following theorem characterizes the <I>g, s-optimal discriminating design
in terms of canonical moments.

THEOREM 3.3. The <I>g, g-optimal discriminating design ¢ is uniquely deter-

mined by its canonical moments p1,...,poy _ 1, Pam, Where
(31) p21_1=%, l=1,...,m,
Pam =1 and (ps, ..., pam_2) is the unique solution of

1+ b-a %
Bi+1(2par — D)py,'F, (T)

3.2) )
= B(1 — par)* ~P(2pg; .o — 1), I=1,....m-1.

PRrROOF. Because a <I>”’ p-optimal discriminating design guarantees the es-
timability of b/,a,, [i.e., bp,n € range(M,,(£))], the optimal design must have a
nonsingular information matrix M,,(¢). From the discussion at the end of Sec-
tion 2 we have b;M; L&), = det M; _ 1(€)/ det M;(¢), where the determinant of
the information matrix can be expressed in terms of canonical moments, that
is(go=1,¢;=1-p;;>1),

1
(3.3) det My() = b — af** P [(qoj— 2Pz - 195/ 195 1~/
Jj=1
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[see Lau and Studden (1985)]. Observing (3.3) we see that a design maximizing
(2.1) must have canonical moments of odd order py; . 1 = %, which corresponds
to the symmetry of the design about the point (a + b)/2 [see Lau (1983)]. Thus
we may restrict ourselves to symmetric designs about the point (a + b)/2 and
obtain from (3.3), for every symmetric design on [a, ],

. 9 \2[.! -1
(34) blMl l(f)bl = (5_—(1) (Hqu_2p2j> s [ = 1, P (N
Jj=1

In the case p = 0 the optimality criterion reduces to the weighted product in
(2.8), and it is straightforward to show that the &} s-optimal discriminating
design with respect to the prior § is unique and has canomcal moments of even
order satisfying (3.2) [note that the canonical moments of odd order satisfy
(3.1) because of the symmetry of the optimal design]. Conversely, it follows
by arguments similar to those glven in Dette (1991) that a given design with
canonical moments (2 , P2y 5 2, . 2, Pom—_2,3 2, 1)is <I> -optlmal with respect to
a prior 8* = (8,...,06y,) ifand only if

I-1
g = (1—ﬂ) 2 1=1,...,m.

b/ ;1P

[Note that this equation defines a one-to-one map from the set of symmetric
probability measures supported at a,b and m — 1 interior points in (a, b) onto
the set of all priors 4 such that there exists a ® ﬂ-optlmal discriminating design
with a nonsingular information matrix Mm(g) see Dette (1991).] By Theorem
2.1 [and (3.4)] we obtain that the given design ¢ is ® ﬂ-optlmal with respect to
the prior 8 = (61, . ., Bn) if and only if

(BiM; €)b)
RV 7RI
(2/(b6 - a)) 2lp( IT-19%-20%) " H,l;f (a2i/p2;) (1 — qa1/Pa1)
S (2/(6 - @) 2lp( Hj: (90— 2p2) " H; 21 (q2i/p) (1 — qai/p21) ,

I = 1,...,m. Solving these equations with respect to the canonical moments
we have

By = B

(b —a)z" Brs1 _ (qop2i+2) P (q2i/p2) (1 — qaiv2/Par+2)
2 B 1-qa/pa

q;,—p(2p21+2 -1
Py B@pa— 1)

I=1,...,m — 1, whenever 3, > 0 and py; = 3 1 if 8, = 0. Thus for a given prior
B = (ﬂl, .., Bm) the canonical moments of even order of the <I>” -optimal dis-
criminating design with respect to 4 have to satisfy the equatlons in (3.2), while
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the canonical moments of odd order are 5 L [i.e., (3.1)] (note that all considered
maps are one-to-one). The assertion of the theorem now follows, observing that
the equation a(2x — 1) = (1 — x)! ~? has a unique solution in the interval (0, 1)
whenever o > 0andp < 1. O

Theorem 3.3 gives a complete solution of the ®° _p-optimal discriminating
design problem characterizing the canonical moments of the optimal measure.
Note that for the prior 5 = (0,...,0,1) the <I>b _p-optimal discriminating design

has canonical moments all equal 1 except pan,, Whlch is 1. In general the support
points and the weights of the <I>b _p-optimal discriminating design have to be
calculated by Lemma 3.1. In most cases this has to be done numerically by
solving (3.2) recursively [note that py,, = 1 and that (8.2) is essentially an
equation for only one unknown].

In the following discussion we consider priors 3 = (3, ..., 3») such that the
ratios (;/0;+1 do not depend on m (e.g., a uniform prior). In this case we can
show that there exists a (probability) measure 7 on [a,b] such that for every
m € N the <I>b _p-optimal discriminating design (for polynomial regression up
to degree m) i 1s supported at a,b and at the zeros of the (m — 1)-th orthogonal
polynomial with respect to a measure dn(x) This can be seen as follows. By
Theorem 3.3 the canonical moments of the <I>p s-optimal discriminating design
&* with respect to the prior 8 are given by

1 1 1 1
(‘2‘7132;5;---7§;P2m—27§71),

where the canonical moments of even order ps; are determined by (3.2). Using
the theory of continued fractions, it can be shown that the design corresponding
to the “reversed” sequence

1 > 1 1 = 1 . 1 1 1 1
(§ap2a§7---7§;p2m—2;§al) = (Q;l_p2m—27§;"‘a§a1_p2afal)

has the same support points as ¢*[see, e.g., Studden (1982b), Theorem 2.2; or
Dette and Studden (1992), Lemma 2.1]. By Lemma 3.1 and Theorem 3.3 these
points are given by the zeros of the polynom1a1 (x — b)x — a)Qm _1(x), where
Qk(x) satisfies the recursive relation [@q(x) = 1, Q 1(x) = 0]

b+a

2
(85) Qpuia)= ( - —)Qk< ) (”%“) Bokdonsa@p 1), R<m-—2,

and the py; are defined by (p = 0)

b—a\¥ __ - 1 pro~
B a> (209 — (1 —pg; _2)**P = ﬂm_jp;j P(2pgi_ o — 1),

36)  Bu_ju1 (

whenever j > 1. Provided that the ratios 3;/5;,1 do not depend on m [as in the
case of the uniform prior g* = (1/m,...,1/m)], the coefficients in the recursion
(3.5) defined by (3.6) do not depend on the degree of the polynomial regression m.
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Therefore the polynomials {Q;(x)}{°, defined by (3.5) and (3.6) are orthogonal
with respect to a unique probability measure 7 on the interval [a, b] [see, e.g.,
Chihara (1978), page 22]. By the results of Studden (1982b) these polynomials
are orthogonal with respect to the measure (b — x)(x — a)dn(x), and we have
proved the following theorem, which generalizes Hoel’s (1958) famous result
for the support of the D-optimal design.

THEOREM 3.4. Let the ratios of the weights (3;/03;+1 be independent of m,
I =1,...,m — 1; let n be the unique measure corresponding to the sequence of
canonical moments defined by (3.6); and let @,(x) be the Ith orthogonal poly-
nomial with respect to the measure (b — x)(x — a)dn(x). The <I’b s-optimal dis-
criminating design with respect to the prior (3 is supported at the roots of the

polynomial (x — b)(x — a) Qm _1(x).

ExAMPLE 3.5. Let [a,b] = [-1,1], let 8* = (1/m,...,1/m) denote the uni-
form prior and let p = 0. Then the <I>g, g-optimality criterion (2.1) reduces to the
D-optimality criterion. From (3.6) we obtain py; =j/(2j+1),pgi —1 = %, whenever
Jj > 1 and 7 is the uniform distribution on the interval [-1, 1] [see Skibinsky
(1969), page 1759]. By Theorem 3.4 the <I>0 - -optimal dlscnmlnatlng (or D-
optlmal design) is supported at the zeros of the polynomial (1 — xz)Qm _1(x),
where Qm _ 1 is the (m — 1)th orthogonal polynomial with respect to the measure
(1 — x2)dx. Observing that @,, _ 1(x) must be proportional to the derivative of
the mth Legendre polynomial [see, e.g., Abramowitz and Stegun (1964), page
779], we obtain another proof that the D-optimal design is supported at -1 and
the m — 1 zeros of the derivative of the mth Legendre polynomial.

We will conclude this section with the following corollary, which considers
the important case of discriminating between polynomial regression models of
degree m — 2,m — 1 and m. In the following let T},(x) and Uy (x) denote the
mth Chebyshev polynomials of the first and second kind on the interval [-1, 1]
orthogonal with respect to the measures (1 — x2)"%/2dx and (1 — x?)!/ 2dx
respectively [see Chihara (1978), pages 1-5].

COROLLARY 3.6. Let fi, € (0,1)and f=(0,...,0,1—Bn, Bn). Then the &} ;-
optimal discriminating design is supported at the points y; = (b —a)x;+a+b)/2,

j=0,...,m, where xy, ... »%m are the zeros of the polynomial

(1= %) [Up - 1) + aUp, — 3(x))]

and 0 < a < 1 is the (unique) root of

i 1-a\'™? Bn (b-a\? _
3.7 ( 3 ) —l—ﬁm< 5 > a=0.
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The weights at the support points are given by (xg = —1, xp, = 1)

1-a?
E({y}) = (m-11-a?)+(1+a? —4aT% _,(x)

31 —0a?)
(@) = (0D = G —a v~

Jj=1....m—-1,

ProoF. From Theorem 3.3 we obtain the following for the canonical mo-
ments of the ®® ﬂ-optlmal discriminating design with respect to the prior ﬂ,
pj = 1/2, J < 2m 3, Pom—_2 =1 +a)/2 pom_1=1/2 and pg,, = 1, where o
is the unique solution of (3.7) in the interval [0, 1). Thus the assertion follows
directly from the results of Studden (1989) transformed to the interval [a,b]. O

REMARK 3.7. It is remarkable that for [a,b] = [-1,1] the &} ;-optimal dis-
criminating design of Corollary 3.6 coincides with the qu-optlmal design (with
respect to Kiefer’s ¢,-criterion) for the highest two coefficients which was de-
termined by Gaffke (1987) (using general results for admissible and invariant
designs) and by Studden (1989) (using canonical moments). Note that, contrary
to the statement of Corollary 3.6, the results of these authors cannot be trans-
ferred to nonsymmetric intervals because the symmetry of the design space
is an essential ingredient in their derivation of the ¢,-optimal design for the
highest two coefficients.

4. Examples and Atkinson and Cox designs. In this section we will
present some examples to illustrate the theory given in Section 3.

ExaMPLE 4.1 (<I>b -optimal discriminating designs for cubic regression on
the interval [—1, 1] with respect to the uniform prior). Let [a,b] = [-1,1] and
B* = (3,1, 1). We have calculated the <I>I’; g--optimal discriminating designs for
cubic regression with respect to the prior 3* by an application of Theorem 3.3
and Lemma 3.1. The results are illustrated in Figures 1 and 2, Whlch show the
two positive support points and the corresponding weights of the & p p+-optimal

discriminating design with respect to the prior g* for varying values of p.

In the interval (—15,—2.5) there are no remarkable differences between
the <I>"Z s-optimal dlscrlmmatmg designs with respect to different values of
p < —2.5. Note that we have, for the interval [-1, 1],

—1__det Mpn(®)

(4.1) hm <I> (&)= mln(szz l(f)bl) det M,, _1(9)

(independent of the prior 8), and thus the <I>b _p-optimal discriminating design
tends to the D;-optimal designs as p — —o0 [see Studden (1982b) for more de-
tails concerning the D;-optimal designs in polynomial regression]. For the cubic
regression model this design puts masses {, 1, 1 and  at the points —1,—0.5,0.5
and 1.
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1.0 ---="-""-~"--- - — - — e z3
0.8
0.6 1
0.44
1
0.2 .
0.0 4
- - R B
—-15 -11 -7 =3 1
[=)

Fi1G. 1. Positive support points xg and x3 of the @I’; b*-optimal discriminating design for p €
(-15,-1).

O O O O 0 o

Fi1G. 2. Weights pg and p3 corresponding to the positive support points xg and x3 of the <I>I’; o -optimal
discriminating design for p € (—15,-1).

In the remaining region [—2.5,1) there are more significant dependencies
of the <I>b _p=-optimal dlscrlmlnatlng designs from the parameter p. Note here
that the case p = 0 gives the D-optimal de51gn with equal masses at the points
-1, -1/+/5, 1/+/5 and 1. As p tends to 1 the <I> ,p~-optimal design converges to
the design concentrating equal masses at the pomts —1 and 1. This corresponds
to the fact that in the limiting casep=1a <I>}l§ s-optimal discriminating design
with respect to any prior 8 # (1,0,...,0) does not exist [for p = 1 the solution of
(8.2) yields pg = - - - = pg,, = 1]. Note that there are some similarities concerning
the dependency of the optimal designs from p with the results presented by
Preitschopf and Pukelsheim (1987), who determined the optimal design for
quadratic regression with respect to Kiefer’s ¢,-criteria.

It might also be of interest how well these discriminating designs do in terms
of estimating the parameters in the selected model. To this end we have calcu-
lated the D-efficiencies

det(e) 177
sup, det(M;(n)) ’ v

Effy(§) := [
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linear

\

]

1

\: quadratic
1

O O O O 0O »r

FiG. 3. D-efficiencies of the @2) p+-optimal discriminating design for estimating all parameters in
the linear, quadratic and cubic polynomial, p € (=5, 1).

for the <I>g’ s--optimal discrimination design for polynomial regression for cubic
regression where p varies in the interval (-5, 1). The results are illustrated in
Figure 3.

The D-efficiency of the CDZ s--optimal discriminating design in the linear
model varies between 0.707 (p = —oc) and 1 (p = 1), for the quadratic model
between 0.0 (p = 1) and 0.906 (p = 0.55) while for the cubic model we obtain
values between 0 (p = 1) and 1 (p = 0). From Figure 3 we see that the &5 .-
optimal discriminating design has good efficiencies for the estimation of the
parameters in the selected model if p € [-1,0.5]. For example, if p = 0.5, we ob-
tain for the D-efficiency in the linear, quadratic and cubic model 0.8414, 0.9049
and 0.9548, respectively. Of course, these results will vary with different priors
B and different regression intervals [a, b].

EXAMPLE 4.2 (Change of the prior 8 and the interval [a, b]). Obviously, dif-
ferent priors and different intervals [a,b] yield different canonical moments
of the <I>b s-optimal discriminating design (except in the case p = 0), but it is

remarkable that the behavior of the <I>b ﬁ-optlmal discriminating designs at the
limiting points p = —ccandp =1 descnbed in Example 4.1 depends essentially
on the prior 8 and on the interval [a, b]. To see this we consider at first the cubic
regression on the interval [-1, 1] and the prior v = 1—14(2, 4,8). Observing (3.2)

(for the case p = 1), it is straightforward to show that the <I>’{’ ,-optimal discrimi-

nating design with respect to the prior v has canonical moments ( -21 , i—g , % , % , % ,1).

From Example 3.2 we have that the optimal measure puts masses 3%, 1% 10

and 3% at the points —1, —,/13/72, 1/13/72 and 1 while, for the uniform prior
5%, a <I>’{ s--optimal discriminating design on the interval [-1,1] does not ex-
ist. More generally, it is easy to see that the <I>b -optimal discriminating de-
sign with respect to a prior 3 satisfying §; < ﬁl+1, l=1,...,m — 1, exists for
polynomial regression of arbitrary degree m on the interval [—1, 1] while the
<I>‘{ g--optimal discriminating design with respect to the uniform prior fails to
exist on this interval.
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TABLE 1
Support points and weights of the optimal discriminating designs of Atkinson and Cox for polyno-
mial regression models up to degree 8: Left column, maximum degree of the polynomials; first line,
support points; second line, weights

1 —1.0000 1.0000
0.5000 0.5000

2 —1.0000 0.0000 1.0000
0.2500 0.5000 0.2500

3 —1.0000 —0.4629 0.4629 1.0000
0.1818 0.3181 0.3181 0.1818

4 -1.0000 -0.6715 0.0000 0.6715  1.0000
0.1428 0.2376 0.2392 0.2376  0.1428

5 —1.0000 -0.7795 —0.2926 0.2926 0.7795 1.0000
0.1176 0.1908 0.1916 0.1916 0.1908 0.1176

6 —1.0000 -—0.8422 —0.4785 0.0000 0.4785 0.8422 1.0000
0.1000 0.1598 0.1601 0.1602 0.1598 0.1600 0.1000

7 —-1.0000 -—0.8815 —0.6016 —0.2133 0.2133 0.6016 0.8815 1.0000
0.0870 0.1376 0.1377 0.1377 0.1377 0.1377 0.1376 0.0870

8 —-1.0000 —0.9079 —0.6864 —0.3689 0.0000 0.3689 0.6864 0.9079 1.0000
0.0769 0.1209 0.1209 0.1209 0.1208 0.1209 0.1209 0.1209 0.0769

Similarly, the limiting behavior of the @2 g-optimal discriminating design
as p converges to —oo is changing with the underlying interval [a, 5] of the
polynomial regression. In this case the relation (4.1) is not necessarily true any
longer [this follows readily from (3.4)]. As an example we consider the <I>1’;’ 5"
optimal discriminating design with respect to the uniform prior for the cubic
regressmn on the interval [-5, 5]. By numerical computations we obtain that
the <I> _p~-optimal discriminating design converges to the design with masses
0. 4778 0.0222, 0.0222 and 0.4778 at the points —5, —0.9889,0.9889 and 5 as p
tends to —oo. This design is not the D;-optimal design for cubic regression on
the interval [—5, 5] which puts masses }5, ;, ; and 1 at the points —5,-2.5,2.5
and 5.

ExXAMPLE 4.3 (The discriminating designs of Atkinson and Cox). In this
example we will determine the optimal discriminating designs for polynomial
regression models of degreel = 1,...,m in the sense of Atkinson and Cox (1974).
By the discussion of Section 2 we have to find the <I> -opt1ma1 discriminating
de51g'ns Wlth respect to the prior fé = A(Bl,. . ,ﬂm) where ﬁl is proportional to
k[4]2 _l+ 1/, 1 =2,...,m and B, = 0. We have calculated the optimal
de31g'ns for m =2,...,8 on the interval [—1, 1] (note that in the case p = 0 the
@} _p-optimal de31gns on other intervals [a, b] can easily be obtained by a linear
transformatlon of the optimal design on [—1,1]). The results are given in Ta-
ble 1 and indicate that the optlmal design (i.e., the &} s-optimal discriminating
design with respect to the prior B) converges to a des1gn with equal masses at
the interior support points when the degree of the regression m tends to infinity.
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THEOREM 4.4. Let B = (0, Bz, el ﬁm), where ﬁl is proportional to
p Il 1 /), 1=2,...,m. Then the <I>g’ B-optimal discriminating design with

=m—-I+1
respect to the prior B on the interval [a, b] converges weakly to the arcsine mea-
sure with density proportional to (b — x)~Y%(x — a)~1/2 dx.

PrOOF. Applying Theorem 3.3 (for p = 0), it is straightforward to show that
the <I>g ﬁ-optimal discriminating design with respect to the prior 4 has canonical
moments pP2-1= '2]:7 l = 17 yM, Pom = 17 p2 = % and Pa = 0'1/(0'[ + Ul+l)7
l=2,...,m — 1, where the numbers o, are given by

1 1
Ul—(m—l+1){1+m_1+"‘+m}, l=2,...,m——1.
Thus we have lim,, _, o p; = %, and the assertion follows because the arcsine
distribution is the only distribution having p; = % for all [ € N [see Skibinsky
(1969)]. O

The proof of Theorem 4.4 shows that the canonical moments of the opti-
mal design converge to % when m — oo. Thus, for large m, the discriminating
design of Atkinson and Cox (1974) for polynomial regression models of degree
[ =1,...,mcanbe approximated by the design with masses 1/(2m) at the points
—1 and 1 and masses 1/m at the zeros of the polynomial U, _ 1((2x — a — b)/
(b — a)) which has the canonical moments p; = %, [ <2m — 1 and py,, =1 and
is in fact the D;-optimal design for polynomial regression of degree m [see, e.g.,
Studden (1982b)].
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