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ORDERED LINEAR SMOOTHERS!

By ALois KNEIP

Université de Louvain

This paper deals with the following approach for estimating the mean p
of an n-dimensional randon}\ vector Y: first, a family S of n x n matrices is
specified. Then, an element S ¢ Sis selected by Mallows Cz, and 1z = 5S.Y.
The case is considered that S is an “ordered linear smoother” according
to some easily interpretable, qualitative conditions. Examples include lin-
ear smoothing procedures in nonparametric regression (as, e.g., smoothing
splines, minimax spline smoothers and kernel estimators). Stochastic prob-
ability bounds are given for the difference (1/n)||n — S . Y||§ - A/n)|p -
/S\H - Y||2, where ./S'\,, denotes the minimizer of (1/n)||jp — S - Y|2 for S € S.
These probability bounds are generalized to the situation that S is the union
of a moderate number of ordered linear smoothers. The results complement
work by Li on the asymptotic optimality of Cz. Implications for nonpara-
metric regression are studied in detail. It is shown that there exists a direct
connection between James—Stein estimation and the use of smoothing pro-
cedures, leading to a decision-theoretic justification of the latter. Further
conclusions concern the choice of the order of a smoothing spline or a mini-
max spline smoother and the rates of convergence of smoothing parameters.

1. Introduction We shall consider methods to estimate the mean of a
multivariate distribution. It is assumed that there is a random vector ¥ =
(Yq,...,Y)T, n € N, satisfying the following model assumption:

(1.1) Y, =pu +e, i=1,...,n,

for some p = (u1,..., )T € R" and ii.d. random variables ¢y, ..., ¢, with a
common probability distribution W. It holds that E(e;) = 0, var(e;) = 02 < oo.
Throughout the major parts of this paper the variance o? is assumed to be
known. The problem is to estimate .
The most important special case of model (1.1) is nonparametric regression.
It is then assumed that u is generated by an underlying function f, that is, (1.1)
is complemented by the following assumption:

For some known “design points” x1,...,x, € J C R%,
(1.2) d € N, itholdsthat u; = f(x;), i = 1,...,n, where
f: J — R is an unknown function.

Usually no quantitative information about f is available, and it is only assumed
that f is “smooth.” Within theoretical considerations this is represented by
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836 A. KNEIP

requiring that f possess a number of continuous derivatives. In this context,
procedures for estimating  are usually called smoothing methods.

Most commonly used smoothing methods are linear smoothers. Examples
are smoothing splines, kernel estimators, polynomial regression and so on. Es-
timates are obtained by multiplying a matrix with Y. Definition of the smoother
matrices Sy, depends on the specifications of the particular method and on the
design points x1,...,x,. Typically these procedures involve a smoothing pa-
rameter h, and {S;, - Y}, cny £for some set H) defines a whole class of possible
estimators of 1. An element S = S; € S = {S,}; cy is then selected by a data-

adaptive method, and i = S Y is used as final estimator of 1. The literature on
smoothing methods is very large. The interested reader may consult the books
of Eubank (1988) or Hardle (1990). A discussion of smoothing procedures and
the smoother matrices associated with them can be found in Buja, Hastie and
Tibshirani (1989).

Following Li (1985, 1986, 1987) we will consider the following general ap-
proach of constructing an estimate i of u:

1. Afamily S of real n x n matrices is specified.
2. A matrix S € S satisfying

~ 2 —~ 2
13)  1[Y -8 Y2+ 2" txS) = min (1||Y _S.Y|E+ 2 tr(S))
n n Ses \n n

is determined, and i = S .Y isused as estimator of p.

The above procedure for selecting S is well known an Mallows’ C;, [Mallows
(1973)]. In nonparametric regression most of the popular methods for choosing
the smoother matrix (or smoothing parameter) can essentially be considered as
versions of (1.3) which replace the true variance by an estimated one. In partic-
ular, this holds for generalized cross-validation [Craven and Wahba (1979)] and
related procedures [cf, e.g., Rice (1984) and Hérdle, Hall and Marron (1988)].
Li (1985) establishes a still closer relation between C;, and generalized cross-
validation. The use of Mallows’ C;, can be motivated as follows:

For fixed S € S the average squared error (1/n)||p — S - Y||2 quantifies
quadratic loss (normalized by 1/n), and

1 2 1
MASE,(S):= =l =S - il + "; tr(S7S) = B~ |lu - S - ¥}

yields the corresponding risk (“E” denotes expectation). It is now easily seen
that for any S € S we have

1 2 20'2 1 9 2 _
B(21Y -5 713+ 2 ) - Lju-s ¥1) ot <0
We can conclude that (1.3) relies on unbiased estimation of the true risk or

loss. The resulting matrices S allow two interpretations: they can either be
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considered as estimators of S, or of s u, Where S, and S  denote the minimizers
of MASE,,(S) and (1/n)||x — S - Y||2 with respect to S € S.

The main issue of this paper is to give some precise stochastic bounds for the
differences

1 Q 2 1 q 2 1 q 2 1 2
lp=8-YI5—~ln-8.-YI3,  Zlu-8-YI3-~llu-5. VI3

under certain assumptions on the class S of smoother matrices used. This then
leads to interesting conclusions.

Our approach is closely related to previous work by Li (1986, 1987). Li (1986)
deals with smoother matrices resulting from ridge regression, while in Li (1987)
arbitrary classes S containing a finite number of elements are considered. Un-
der some weak conditions Li then shows that asn — oo the resulting estimators

Sy satisfy

(1/n)lln =8 -3
(1/2) I = 8- Y3

provided that MASE,,(S,,) converges to zero not too fast.

The present paper deals with somewhat different families S defining an or-
dered linear smoother. A definition and several examples are given in Section 2.
Many of the basic smoothing methods like smoothing splines, minimax spline
smoothers, some versions of kernel estimators and so on lead to ordered lin-
ear smoothers.

Based on an additional assumption on ¢, an exponential probability inequal-
ity is derived is Section 3 which bounds the difference (1/n)|p — S - Y||2 -
Q/n)||p - §,L - Y||2 for alln, u € R" and each ordered linear smoother. Section
4 provides a generalization of the approach. The case is considered that, for
somem € N,S=8,U S, U ---U S, holds, where for eachi € {1,...,m}8S; is
an ordered linear smoother. A probability inequality similar to that of Section
3 is established, which, however, now additionally depends on log(m) + 1. The
inequalities allow one to infer that there exists a d < co such that

E1 §Y21/2 El 5 Y21/2
(1.5) ,?2.%(( =S¥ - (B =5, 1)

< dn=1/2(log(m) + 1)

(1.4) — 1 in probability,

holds for all n € N and all estimators constructed in the above way. For methods
like ridge regression and smoothing splines (m = 1) this complements Li’s re-
sults (1.4) by providing a quantitative bound which holds independently of the
particular value of E[(1/n)||p — S, - Y||2] < MASE,(S,). Relation (1.5) has sev-
eral interesting consequences when considering, for example, smoothing spline
or minimax spline smoothers. In particular, support is given to the idea of using
the data to decide about the order of a smoothing spline or a minimax spline
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smoother. This generalizes results by Hall and Marron (1988) on the choice of
kernel order in density estimation.

Section 5 provides some further conclusions from the results of Sections 2—
4. Section 5.1 contains a discussion of decision theoretic aspects. Estimating
1 means to estimate the mean of a multivariate distribution. Assuming (1.2)
for an arbitrarily smooth f does not imply any further restrictions. It is easily
seen that for all n,2 € N and any pu € R” there exists a k-times continuously
differentiable function f: J — R satisfying p = (f(x1),.. ., flx,)T, unless x; = x;
for some i #j. This raises the question whether from a decision-theoretic point
of view there is any justification for the use of methods which are based on such
vague “assumptions.” Li and Hwang (1984) and Li (1985, 1989) introduced a
way to overcome this problem. Instead of using smoothing procedures directly,
they consider the associated Stein estimates which possess bounded risk. It is
now shown that there exists a direct connection between the use of smoothing
methods and James—Stein estimation. In particular, any estimator S .Y ob-
tained from an ordered linear smoother can be considered as a straightforward
generalization of the James—Stein estimator [James and Stein (1961)]. Based
on (1.5) the decision-theoretic motivation of the latter carries over.

Section 5.2 deals with the situation that under (1.2) we let n — oo by sam-
pling more and more observations from a fixed function f. This corresponds to
the usual asymptotic theory for smoothing procedures. We are then interested
in the rate of convergence of

1 5 1 P~
~lu =8 Y3 - Sl =S, YIE,

where, for any n, S is obtained from an ordered linear smoother (m = 1). It
follows from the results of Section 3 that this rate depends on the asymptotic
behavior of a function R,, s, which quantifies the steepness of the minimum of
MASE,(:)atS,,. Relation (1.5) only provides an upper bound. In many situations
the function R, s will behave reasonably well, and we will obtain

1 ~ 1 ~
=S Y1 - Sl -8, YIE| = Op(1/n).

The special case of kernel estimation serves as illustration. For kernel estima-
tors S =S; and S, =S A hold for some appropriate smoothing parameters

(bagdwidths)ﬁ and Z(u). The results of Section 5.2 include rates of convergence
of (h — h(u))/h(u) under different conditions on the amount of smoothness of f.
This generalizes work by Rice (1984) and Hérdle, Hall and Marron (1988).

Finally, in Section 6 we analyze the case that o2 is unknown. It is then
assumed that in (1.3) o2 is replaced by a consistent estimator 52. It turns out
that the basic results of the previous sections carry over. However, some more
specific smoothness assumptions are required.

2. Ordered linear smoothers. We will consider families of smoother ma-
trices defining an ordered linear smoother according to the following definition.
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DEFINITION. A closed subspace 8 C M(n) is called an ordered linear smoo-
ther if the following conditions are satisfied:

@ o §~pT§p < pTp forallS € S, p € R
(i) 'S~S=S-SforaIIS,S € S;~ _
(iii) for all S,S € Seither S > SorS > S.

Hereby, M(n) denotes the space of all real symmetric n x n matrices endowed
with the metric d(A, B) := max; ; |a;; — b;|. Furthermore, for matrices A,B <
M(n) we write A > B if A — B is positive semidefinite.

The conditions introduced in (i)—(iii) can equivalently be described as follows:

There is an orthonormal basis u;,...,u, of R” such that,
2.1) forallS € 8,8 = £7_; \(S) - w;ul with 1 > A1(S) > Xo(S) >
~ 2> A(8) > 0.

(2.2) For all S,§ € S it either holds that \,(S) > Ai(g),
’ i=1,...,n,or that \;(S) > \(S), i=1,...,n.

In the following we will consider examples of ordered linear smoothers. Let
us start with the simplest case.

EXAMPLE 1 (James—Stein method). Let S := {(1 —h) I}, 1. For any A
the estimator Sy, - Y = (1 — k) - Y simply shrinks each element of Y by the fixed
amount 1 — A. Clearly, S is an ordered linear smoother.

The abgve example might be called the James—Stein method since, when
choosing S by (1.3), we obtain S =1 - no? JYTY) - I. For large n the result-
ing estimator i = (1 — no?/YTY) - Y almost coincides with the James—Stein
estimator i = (1 — (n — 2)02/Y7Y) - Y [James and Stein (1961)].

Straightforward generalizations of Example 1 are methods which shrink by
a different amount in different directions [directions are given by the eigen-
vectors; compare (2.1) and (2.12)]. The most important special cases are some
of the basic linear smoothing methods in nonparametric regression. The idea
of “smoothing” is to eliminate what are to be considered “wiggly” components
of the vector Y. Based on (1.2), smoother matrices S are constructed in such a
way that S -v =~ 0, if v € R” corresponds to the functional values of a “wiggly”
function, and S-v =~ v, ifv € R corresponds to the functional values of a smooth
function. This means that the matrices S have to shrink by a different amount
in different directions.

The above argument shows that (i) is a quite natural condition when dealing
with linear smoothers. The same holds for condition (iii) when considering ba-
sic smoothing procedures, such as, for example, smoothing splines. Such meth-
ods can be parametrized by a one-dimensional parameter which controls the
amount of smoothing (shrinking). There then usually exists a natural ordering
of these smoothing parameters in the sense that when choosing a large one the



840 A. KNEIP

method performs a “stronger smoothing” than when selecting a small param-
eter. When translating this in terms of the resulting smoother matrices, this
corresponds to (iii).

Nevertheless, it has to be emphasized that conditions (i)—(iii) provide a rather
narrow framework. In particular, the symmetry of S € S and condition (ii) im-
pose major restrictions. The latter, for example, excludes B-splines with knots at
the sample quantiles. Furthermore, the conditions exclude complex smoothers
which cannot be parameterized by a one-dimensional smoothing parameter
(note that, by (iii), S — (1/n)tr(S) is necessarily a bijective mapping from S
into [0, 1]).

The following examples refer to some smoothing procedures which lead to
ordered linear smoothers. We will assume that (1.1) and (1.2) hold.

ExaMPLE 2 (Least squares regression on nested subspaces). Consider a sys-
tem ¢1, ¢o, . . . of functions which provide a suitable functional basis for approx-
imating any smooth function (e.g., polynomials, harmonic polynomials, etc.).
For i € Nlet ¢; , := (¢i(x1),... ,$i(x,))T. Suppose that ®, is regular, where
®;, h=1,...,n,denote the n x h matrices (¢1,,,...,Pn,2)-

A straightforward idea of estimating pu = (f(x1),...,f(x,))T is to select an
appropriate 4 € {1,...,n} and to minimize ||Y — $*_, a; - ¢; »||Z with respect to
ai,...,a; € R. The resulting estimate /i, is given by

(2.3) fin = ®p(@F @) 10F .Y =2 S, - Y.

Evidently S := {Sh}rc(1,...,n} defines an ordered linear smoother. In practice
such procedures are quite frequently applied, using, for example Legendre poly-
nomials (if d = 1). For some theoretical properties of least squares regression
see Cox (1988).

ExaMPLE 3 (Ridge regression). Let ® be a given regular n x n design matrix.
The idea of ridge regression then consists in estimating p by

Op=®@T®+hD 10T .Y =: S, - Y,

for h € H :=R,. Clearly 8 := {Sy}s¢ (1,...,n} is an ordered linear smoother.

EXAMPLE 4 (Smoothing splines and other penalized least squares methods).
Let d = 1 and assume that / is a compact subinterval of R. Smoothing spline
estimators of order 2k are defined in the following way: for h € H := [0, 0],
determine the function f;;( 1 Minimizing

2.4) % Z (Y, — w(xi))z +h- / [w(k)(x)]2 dx
i=1 J
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with respect to the Soblev space

Fp(J) = {w: J — R | w has k — 1 absolutely continuous derivatives, and

/ [w(k)(x)] 2dx < oo}
J

(for h = 00, let & - 0 := 0). Then set fih) = (famy(*1), - - -, Famy@a )T

Let us assume that all design points are distinct. Then (2.4) is equivalent
to determining 7i(k) by minimizing ¥*_,(Y; — u;)? + h - [;[GP(x)]? dx with re-
specttou € R*, where G, denotes a spline interpolant of order 2k ofuy, ..., u, at
%1, .. .,%, [G, has knots at each x;; cf. Reinsch (1967)]. With A denoting the sym-
metric n x n matrix corresponding to the bilinear map p,qg — [ GP#)GP () dt
[see, e.g. Utreras (1983)], ii(h) minimizes

(2.5) S (Y —w)P +h-uTAu.
i=1

This yields
ah)y=T+h-A1.Y=8, Y,

and S = {Sy},cx defines an ordered linear smoother. More generally, most
penalized least squares approaches of the type (2.5) lead to ordered linear
smoothers. It is only required that A be symmetric and positive semidefinite.
In particular, this holds for multivariate generalizations of smoothing splines
[cf. Wahba and Wendelberger (1980)].

ExXAMPLE 5 (Minimax spline smoothing). Letd = 1,J = [0,1] and assume
that f € F,(J) for some k. Here, F5(J) is defined as in Example 4. Following
the construction of smoothing splines of order 2%, let u4,...,u, denote an or-
thonormal eigensystem of the resulting matrix A such that A = 37_ laiuiuiT with
a1 <ag <. <oy

Following Speckman (1985), for any h € H := [0, 00[ a smoother matrix S},
now might be defined by

n
Sh = Z (1 - \/h -ai)+~u,-uiT.
i=1
Here, the notation (£), = max{#,0} is used. This establishes minimax spline
smoothers of order 2k. It is immediately seen that S = {S,},cx is an ordered

linear smoother.
There exists an interesting minimax result characterizing this choice of S.

For v €]0, ool let

F(k,v,n) = {p eR*| p=(wxy),... ,w(x,,))T

for some w € F;,(J) with [, [w(k)(x)]zdx < fy}.
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Based on some weak additional assumptions on the design, Speckman (1985)
then shows that, for any fixed v > 0,

2.6) SUP, € 5, v,n) MASEL(S,) =infzc ¢, sup, ¢ 54, ,n) E”l‘ HY)II3

— O(n—2k/(2k +l)) )

where L, denotes the class of all possible linear estimators of .

Under some further assumptions on the design, an even stronger asymptotic
minimax result can be obtained from Nussbaum (1985). Nussbaum’s results
imply that for £ = 2 up to a term of order o(n~2*/2#+1)) (2.6) remains true if £,
isreplaced by the class of all estimators of y, that is, of all measurable mappings
from R” into R”.

ExAMPLE 6 (Kernel estimators). The basic idea of kernel estimation con-
sists in smoothing via local averaging. Assume that J = [0,1] and X; = (i —
1)/n,i = 1,...,n. Furthermore, suppose that we believe in f(0) = f(1) and
f'(0) = f'(1). Let K denote the Epanechnikov kernel. In this setup, a kernel
estimator with kernel function K and bandwidth A estimates p by

Y-1K (e, X))/h) - Y;
Z;: 1 K(q(){lv )(J)/h) ’

Here, q(X;, X)) = min{|X; — X}|,|1 + X; — X;|}. Smoother matrices S}, are given
by S;, = (K(q(XnX)/h)/ K(q(){uX)/h))w and S = {Si}reio,1/2 is an or-
dered linear smoother. ThlS generalizes to other kernels. However, for non-
equidistant, noncircular design the usual definitions of kernel estimators by
Nadaraya (1964), Watson (1964) or Gasser and Miiller (1984) lead to asymmet-
ric matrices which are not covered by the present approach. The same is true
for k-nearest-neighbor estimators.

2.7 uh); =

t=1,...,n.

3. Properties of estimators based on ordered linear smoothers.

Given an ordered linear smoother S, an element S ¢ Sis selected by (1.3)
and g = S.Y is used as an estimator of w. It is easily verified that the definition
of an ordered linear smoother ensures measurability of fi.

3.1. The function R, s. Formulation of our main theorem makes use of a
function R, s which depends on the behavior of MASE,(S), when moving away
from S,,. Thus, before stating the theorem, we will introduce this function and
discuss its main properties. N

Consider some ordered linear smoother S. For all S, S € S, set

|1 < o? PN
qu(S,S) = ENT(S ~SPu+ —tr((S - 8)°)

It is easy to check that ¢, defines a metric on S.
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For any n > 0, set

e > 9,(5,5,)”
= TMASE,(S) — MASE,(S,)

R, s(n) := inf{s >0

for allS € Swithgq,(S,S,) > n"l/ze}.

It is easy to see that, for fixed n > 0, R, (1) provides some measure of the
steepness of the minimum of MASE,, at S,,. For small values of 7, R, g(n) will
be small if MASE ,(S) is rapidly increasing when moving away from S,,. It will
tend to be large if this is not true. Recall that MASEu(S) = (1/n)uf(I — 8?u +
(02 /n)tr(S2?).

Let]I € S, and suppose that S contains more than one element. Large values
of R, s(n) also for small n arise if MASE,(S) = MASE,(S,) =% forall S € S
(i.e., S, may equal any element of S). This implies that (1/n)u?(S —S,)%u < o?
and (62 /n)tr((S — §,)?) < 0% for all S € S. By definition of R, s we thus obtain
R, s() = supg c gn1/2q,(S,8,) < (2na?)'/2 for any n > 0.

In contrast consider the situation that there is a constant v > 0 such that
MASE,(S) - MASE,(S,) > v-q,(S,S,)? for all S € S. Then R, s(n) = /7.

More generally, approximations for R, g(n) are given by the following propo-
sition.

PROPOSITION 1.

(i) For any ordered linear smoother S it holds that MASE,(S) —
MASE,(S,) > q,.(S,S,)?/3 forall S € S with q,,(S,S,)? > 3MASE,(S,,), and

Ry, s(n) < max{(3n MASE,(S,))""*, 3n}.

(i) If for some 0 < 6,v < oo it holdi that MASE,(S) — MASE,(S,) >
v-qu(S,Su)2forallS € Ss:={S € S| q,(S,S,) > 6}, then

R, s(n) < max {nl/zé, n/v}-

A proof is contained in the Appendix. Relation (i) reflects the fact that if
MASE,(S,) < 02, comparably small values MASE,,(S) can only be achieved by
a small number of elements S#S,,. For example, for all S close to the identity
matrix, MASE,(S) ~ ¢% > MASE,(S,,). For the special case of kernel estima-
tion, some more precise bounds for R, g are given in Section 5.

3.2. Basic results. Consider the model and definitions given in the Intro-
duction, and recall that zi(Y) = S-Y constitutes our estimator of x. The following
theorem now establishes the basic result of this paper.

THEOREM 1. In addition to model (1.1), assume that [ exp(Bx*)W(dx) < oo
for some 3 > 0. Then there exist constants Cy, Cy, 0 < Cy < oo, Cy < o0,
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depending only on the distribution W, such that the following holds foralln € N
and u € R”, each ordered linear smoother S C M(n) and any n > 0:

(@) P((/n)lu=8-Y|3-(1/m)llu-S8,-¥ |3 > nn~IR,,s(m) < Cw-exp(—Cy-n)

(ii) Relation (i) remains true when replacing (1/n)|jp — S Y|2- (1/n)||p —
8, - Y2 by either |(1/n)|u — 8- ¥ |3~ (1/mllu - S, - Y18, /mllu - S, - Y13~
(1/n)lu— S, - Y||2, MASE,(S) — MASE,(S,) or MASE,(S,,) — MASE,(S,,).

The proof of the theorem is given in the Appendix. The key to gaining some
intuition into the result consists in noting that all classes S considered are
essentially “one-dimensional” in the sense that S — (1/n)tr(S) establishes a
homeomorphism from S into some subset of [0, 1]. This then gives rise to a
chaining argument which constitutes the major part of the proof. Other re-
quirements like the symmetry of S € S are technical conditions.

The proof is based on approximations which in principle allow a direct com-
putation of constants Cy and Cy for various error distributions W. However, as
far as constants are concerned, some of these approximations are very rough.
In order to obtain reasonable values for Cw and Cw, a much more detailed anal-
ysis will be necessary. The theorem states that stochastic bounds for (1/n)|ju —
S.Y|2-(1/n)||u—S, - Y|2 depend on the respective steepness of the minimum
of MASE, at S, to be quantified by R, s. This is certainly intuitively plausible.

We can infer from Theorem 1 and Proposition 1(i) that there exist constants
dj, ds < oo such that

1 B 1/2
| (B31n-5-YI3) - MASE,(5,

1 _ 1/2
X ( (E;Hp -S. Y||§> + MASEM(SM)1/2>

1 ~
= IEEIIM ~§.Y|% - MASE,(S,)

< din~Y2 (MASE,(S,)Y? + dan™1/2)

holds for all n, all u € R”, each ordered linear smoother and both S = S or
S=8 - Relation (1.5) with m = 1 is an immediate consequence.

This leads to an interesting result when considering Speckman’s minimax
spline smoothers of order 2k, as defined by Example 5 in Section 2. We can then
conclude from (2.6) and (1.5) that, as n — oo,

1 5 . 1 ~
(31  sup E-|u—S5-Y|E=inf sup SEu- VI (1+o(D)
p€Fk,v,n) N BELn e T, y,n) I

holds for any 0 < v < co. We see that asymptotically minimax risk is attained
even if v is unknown and selection of S relies solely on the data.
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4. A generalization. Results similar to those derived in Theorem 1 can
be established in a more general framework. This follows when combining the
present approach with some of the results of Li (1987). Li considers families
S of smoother matrices which contain a finite number of elements. A straight-
forward generalization of the concept of ordered linear smoothers consists in
considering classes S of smoother matrices which for somem € N satisfy the fol-
lowing:

1) S=8S;US;U---US,, where, foranyi € {1,...,m},S; is
) an ordered linear smoother.

The arguments given in the proof of Theorem 1 together with some of the basic

ideas of Li (1987) now lead to the following theorem.

THEOREM 2. In addition to model (1.1) assume that [ exp(Bx®)W(dx) < oo
for some 3 > 0. Then there exist constants Dy, Dw,0 < Dy < oo, Dy < oo,
depending only on the distribution W, such that the following holds foralln € N
and p € R*, each S C M(n) satisfying (4.1) for some m € N, and any n > 0:

P(%Mu -5-Y|2- -’1;||u —8,, - Y|2 > n?n~Y2MASE,,(8,,)"/2(log(m) + 1)?

) +n*n~"1(log(m) + 1)4)
< Dy - exp(~Dy - 7).

__ (i) Relation (i) remains true when replacing (1/n)||u — 5. Y|2- @/n)||u -
8. Y|2 by cither [(1/n)llu~8 - Y= A/ml - S, - YIE], /ml = S, - Y3
(1/n)||p — S, - Y||2, MASE,(S) — MASE(S,) or MASE,(S,,) — MASE(S,,).

A proof is given in the Appendix. It may be noted that the approximations
given in Theorem 2 are not as precise as those of Theorem 1.

By an argument similar to that used in Section 3 it can easily be derived from
Theorem 2 that (1.5) holds for all n and each S satisfying (4.1) for some m € N.
Theorem 2 has some important consequences, which are best illustrated by
some examples.

EXAMPLE 4 [Smoothing splines (continued)]. Assume the conditions of
Example 4 in Section 2. When estimating p = (f(x1),...,f (x,))T by smoothing
splines, a decision has to be made about the order 2% of the spline. The choice
of k£ will influence the quality of the resulting estimator. The above results
now indicate that one might use the data themselves to select k. One might
define S =S; USyU---US,, where, for k € {1,...,n}, S; denotes the ordered
linear smoother resulting from smoothing splines of order 2k. We can infer
that the resulting estimator S - Y will behave reasonably well. For large n,
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E[(1/n)||u — 8 - Y||2] will be close to

E-— = - .
k=8, Y|3=E, min  min - Ly s v|2

EXAMPLE 5 [Minimax spline smoothers (continued)]. Assume the condi-
tions of Example 5 in Section 2. As for ordinary smoothing splines, the order
of minimax spline smoothers might be determined from the data. Thus, let
S=8S;USU---US,, where, for k € {1,...,n}, S; denotes the ordered linear
smoother resulting from minimax spline smoothers of order 2k. Relations (2.6)
and (1.5) then imply that, as n — oo,

1
swp E-|u-5 Y[i= inf sup Bl iV (1+o(w)
4.2) u€ FHk,v,n) €Ln e Fk,y,n)

=0 (n—2k/(2k+l))
holds for any k € N and each v > 0.
5. Conclusions.

5.1. Decision theory. To simplify discussion, let us assume that the error
terms ¢; in model (1.1) are normally distributed. Then, estimating y means
nothing else but to estimate the mean of a multivariate normal distribution. As
outlined in Section 1, no further restrictions are imposed when assuming (1.2)
for an arbitrary smooth f. The maximum likelihood estimator of x is given by
i = Y. We obtain (1/n)E||u — Y||2 = o2 for any u. James and Stein (1961)
have shown that Y is inadmissible if n > 3. It is dominated by the estimator
i=101-0c%n- 2)/YTY] Y The James—Stein estimator is minimax, that is,
sup, ¢ e [1/nE||p — p,||2] = 02, and at the same time there exists u € R" with

(1/n)E |~ llg < o
__ In Sections 2 and 3 we have considered more general estimators i =
S - Y which are obtained by using (1.3) to select a smoother matrix S from
an ordered linear smoother S. As outlined in Segtion 2, the simple choice
S = {(1 — h) - I}x e o, 1) leads to the estimator 4 = S-Y = [1 — ¢%n/YTY] - Y,
which for large n practically coincides with the James—Stein estimator. The
ordered linear smoothers of Examples 2—6 differ from this simple method only
insofar as the smoother matrices S € S perform different amounts of shrinking
in different directions (cf. Section 2). From this point of view any one of the
estimators 1 = S - Y, obtained, for example, from smoothing splines, kernel
estimation and so on, can be considered as a straightforward generalization of
the James—Stein estimator. The basic qualitative properties of the latter carry
over:

All ordered linear smoothers given in the examples of Section 2 contain the
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identity matrix I. For all 4 € R" we thus obtain
1 Q 2 2 1 2
E;llu =S, Y| <MASE,(S,) <o°= E;”u -Y|5.
Relation (1.5) now implies that

(5.1) sup Ex|lu—§ - Y| < o+ O(n1/2).
wER n

This shows that for large n the estimators S.Y of 1 possess “almost” minimax
risk with respect to quadratic loss. On the other hand, there exist u € R” such
that MASE,(S,,) < 2. For large n the remainder term in (5.1) is negligible,
and MASE ,(S,) < o2 carries over to E[(1/n)||u—S-Y||2] < o2 by (1.5). We can
then conclude that an estimator i = S. Y, derived from one of these ordered
linear smoothers, dominates the estimator z =Y.

The results of Section 4 imply that these arguments basically still apply if
we combine a moderate number of ordered linear smoothers to yield an S of the
form (4.1).Fheorem 2 shows, however, that stochastic bounds for the difference
(1/n)||u — S - Y||2 — MASE,(S,,) tend to increase with m.

Which estimation procedures are preferable when assuming (1.2) for some
smooth function f? Clearly, this lets us expect that, different from the James—
Stein method, MASE ,(S,,) < o2 will hold for any of the smoothing methods con-
sidered. We now see that in this situation the basic concept of using smoothing
procedures for estimating y is justified from a decision-theoretic point of view
(at least for large n). A reasonable choice among the different smoothing meth-
ods is much more difficult. Perhaps, in the context of decision theory, minimax
splines as proposed by Speckman (1985) or Nussbaum (1985) are of particu-
lar interest. Asymptotically they possess an interesting additional minimax
property [cf. (2.6), (3.1) and (4.2)].

5.2. Asymptotics. Consider ordered linear smoothers resulting from
smoothing procedures like least squares regression, smoothing splines or ker-
nel estimation. In this section we will consider implications of our results in
the context of the usual asymptotic theory for nonparametric curve estimates.

Thus, let n — oo by assuming models (1.1) and (1.2) for all fixed function
f. Suppose that, for all n € N, we estimate ul= pu, = (f(x1),...,fx,)7] by a
smoothing procedure defining an ordered linear smoother S[= S(n)]. We will
additionally require that the elements of S are i/pdexed by a smoothing param-
eter i such that S = {S;}, ¢ z. In the following ﬁ, h(w) and A(p) will denote the
parameters with S; = s, Shw =S, and ;) =S,

. There has been considerable effort to derive rates of convergence for (1/n | u—
S;-Y||2 —(1/n)||u~Sy, Y2 and for |ﬁ—ﬁ(u)| in the context of kernel estimators.
Most papers concentrate on density estimation, but, for example, Rice (1984)
and Hirdle, Hall and Marron (1988) derive such rates for kernel regression
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estimators. When considering now the results of Section 3, we can immediately
derive that, for all ordered linear smoothers and any f,

1 1 _
5.2)  ~lp—S;- Y|2 - ~ 1= S Y| = Op(n~Y/2 MASE ,(S,)/?).

Relation (5.2) only provides an upper bound. We obtain faster rates if R, s(n) =
O(n) for all > 0. The following considerations indicate that this can be expected
in many situations:

Assume that the S;, are twice continuously differentiable with respect to &,
let S}, and S denote the corresponding derivatives. Furthermore, suppose that,
for sufficiently large n, h(p) is in the interior of H. Under suitable conditions
on f this assumption is, for example, satisfied for smoothing splines or kernel
estimators. It is in no way necessary, but it simplifies life. Based on the respec-
tive conditions on f and on resulting asymptotic formulas, it will then often be
possible to derive that for n sufficiently large there exist some d, d*,0 <d < 1,
1 < d* < o0, such that

MASE,(S5) < 3 - MASE,(Sh(,.))

(5.3)
ifand only if A € [d - h(u),d* - h(w)] =: H}.

Then it follows from Proposition 1(i) that, in order to prove that R, g(n) = O(n)
for any n, we only have to consider the behavior of g(S, Sk ,.))? and MASE ,(Sp,)—
MASE, (Sy) forh € Hj.

Clearly,

a(Sh, Sw)? = (b — h(w)? - -,1; (uTs;-,s;w +0? tr(s;;s;;)) = (h = hw)* - q* (),

for some suitable mean values ﬁ, By definition of g in Section 3.1 we have
q(Sh,Snw)? = O(MASE,(Sk()) for b € H}. Consider values of A € H} such
that, for some fixed ¢ > 0, (A — h(u))?/h(u)? = c. Then necessarily h(u)? - g*(h) =
O(MASE,, (S())). This motivates us to expect that

h(p)? - q*(h) )
54 — 2 -7 | =0Q).
(6.4) v (MASEu<sh<m> W
Since SMASE,,(S3)/0h14 -5 = 0, we have
2 *MASE,,(Sp)

MASE..(S;) — MASE,(Sh() = (B — h(1)) 552 O
h=h

for some suitable mean value /. The same arguments as above let us presume
that

MASE,(S),)

32
h(u)? 52h et = O(MASEM(Sh(u))) :
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Now suppose that we can even establish the stronger relation

sup M O MASE,(S,)/5%
P MASE,,.(Sh)
ol h(u)’ °MASE,(S)/0%h
1=0 ( inf, e gx MASE,,(Sh(u)) ) .

If (5.3)—(5.5) can be shown to hold, then Proposition 1(i) and the definition of
R _s imply that there exist some v < oo such that, for all n large enough,
R, S(n) < ~-n holds for all » > 0. In this case, Theorem 1 allows us to infer that

op(,ll).

Relation (5.6) remains true if h(u) is replaced by ﬁ(p). Furthermore, Theorem
1 and (5.5) then allow us to derive that

|k — h(w)|
h(w)

=0(),

(5.5)

1 1
5.6) =S5 Y18 = Sl Su - Y15 =

5.7 = Op((n - MASE,(Suw) 7).

Also, in (5.7) we might replace h(u) by ﬁ(y). If (5.2) holds, one recognizes the
interesting effect that the rate of convergence of |h — h(yw)|/h(p) is the slower,
the faster the rate of convergence of MASE,(S,). Let us consider an example.

ExAMPLE 6 [Kernel estimation (continued)]. Assume the conditions of Ex-
ample 6 in Section 2. Additionally, suppose that the kernel function K is twice
continuously differentiable. The following proposition now quantifies rates of
convergence under different assumptions on f.

PROPOSITION 2.

(i) Assume that f possesses finitely many discontinuities at some points
M < T <7 € dJ = [0,1]. Furthermore, assume that f is twice continu-
ously differentiable in each of the intervals (0,71),(7;,741), 8= 1,...,8 — 1, and
(75, 1), and that f has finite left and right first and second derivatives at each ;.
Then MASE,(Sy(,) = O(n=Y/2) and h(u) = O(n=12), n=1/2 = O(h(u)). Moreover,
(5.6) holds, and |k — k()| /h(u) = O(n=1/4).
(ii) Assume a situation as in (i) except that f is not differentiable, but contin-
uous at 7y < -+ < 75 € J. Then MASE,(Sp(y)) = On~ 3/4) and h(u) = O(n=14),
n-V4= O(h(,u)) Moreover, (5.6) holds, and |h h(w)|/h(p) = O(n=1/8).
(iii) Assume that f is twice continuously differentiable. Then MASE,(Sp,)) =
O(n=*/%) and h(u) = O(n=1/%), n=Y% = O(h(u)). Moreover, (5.6) holds, and
|h — h(w)|/h(k) = O(n=1/19),

Proor. For very large h, (1/n)||p — Sy, - pl|% is large, while for very small
hvar(S,(Y)is close to o2. In between we obtain the approximations MASE,(S})



850 A. KNEIP

= 611h +821/(nh)+O(h3+1/(n2h)), MASE,(Sy) = 61203 + 622 /(nh)+O(h* +1/(n%h))
and MASE,,(Sy,) = 613h*+692/(nh)+0(1/(n%h))+o(h*) for the situations described
in (i)—(iii). Here, the ’s denote suitable constants which can be determined by
straightforward calculations. This leads to the above conclusions about the rates
of convergence of A(x) and MASE ,(Sy(,)). Furthermore, (5.3) is an immediate
consequence. Some easy computations based on standard approximations show
that first-order approximations to (h2/n)u”S}S;u and (h2/n)pu”(S,S;, — SiI —
Si)u are of the form (constant) - #? + o(h?), where p = 1,3, 4 under (i)-(iii). In
addition, approximations to (h%/n)tr(S,S;) and (h2/n)tr(S,S; + S;'Sy) are of
the form (constant) - 1/(nk) + o(1/nh). This establishes (5.4) and (5.5). O

The above rates of convergence coincide with results established by van Es
(1992) in the context of kernel density estimation. The results of Proposition
2(iii) have previously been derived by Héirdle, Hall and Marron (1988). It should
again be noted that in the above proposition we might replace A(u) by A(u)
without invalidating results.

6. Unknown variance. In practice usually the problem will arise that
the variance o is unknown. In this section we will thus consider the situation
that S is determined by (1.3) when o2 is replaced there by an estimator &2
which is obtained from the data [62 = 5%(Y)]. Li (1986, 1987) shows that his
results generalize if 52 is consistent. Unfortunately, this is not true for the more
detailed results of Theorem 1, and we have to analyze this case more closely.

In the context of nonparametric regression (1.2), d = 1, one proposal of Rice
(1984) is to estimate o2 by

52 ._ 1 nil (Yin - Y2

n—14%
=

Other possible estimators have been established by Gasser, Sroka and Jennen-
Steinmetz (1986) and Hall, Kay and Titterington (1990). Under reasonable
conditions on f and on the design x,, . . ., %, they all satisfy E|o2 —5%| = O(n~1/2)
as n — oo. Furthermore, they share a common structural form which leads to
the following assumption on the estimator 52:

62:=(1/n)YT%,Y for some real n x n matrix , with
(6.1)
(1/n) tr(X75,) < 1,0 < g1 < 00, E(1/n)e’ Tpe = o2

For Rice’s estimator the following holds:

Ec2 =02+ ilz(uﬂl IJa =g+ 1 Z f(le) f(x))

n-—1

The quality of this estimator depends on p, sup,, ¢ g |02 — EG?| = co. This holds
for all estimators of the form (6.1). Thus, in order to generalize the results
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of Theorem 1 to the case of unknown o2, we have to restrict the class of all
possible u’s to be considered. In other words, we have to rely on an additional
model assumption: for some 0 < g3 < oo,

1
(6.2) u € Vulge) = {p e R ;pTEnp <qq -n‘l/?‘}.

If the estimator of Rice (1984) is used, (6.2) means that

1 Z f(xz+1) f(xl ) <qy- n—1/2‘

n-—1 -

This is nothing else but a more specific smoothness assumption.
As in the previous sections, we additionally require that [ exp(8x?)W(dx) <
oo for some 3. We then obtain the following generalizations of Theorems 1 and 2.

THEOREM 3. Under the above assumptions, there exist constants Cy g, 4,
and CW 1,927 dependzng only on W,q1,qs, such that the assertions of Theorem 1
hold with Cy, CW and i € R being replaced by Cw 4, , 4, Cw,q1 g and p € V,(qa).

THEOREM 4. Under the above assumptions, there exist constants Dy 4, ¢,
and DW 41,927 dependmg only on W,q1,qs, such that the assertions of Theorem

2 hold with Dy, Dy and pu € R™ being replaced by Dw 4.4 DW a1,q; and p €
Vi(go).

A proof of Theorem 3 is contained in the Appendix. Theorem 4 is easily
established when combining the arguments used to derive Theorem 3 with
those given in the proof of Theorem 2.

It is immediately seen that relation (1.5) generalizes, if 4 € R" is replaced by
i € V,(g2). The basic conclusions about minimax spline smoothers and smooth-
ing splines still hold. The results of Section 5.2 remain unchanged, since the
requirement y € V,,(g2) does not impose a real restriction in the context of or-
dinary asymptotic theory in nonparametric regression. Assume that for some
compact J C R the design satisfies the weak condition sup; |x;,1 — x;| = o(n~1/2)
as n — oo, and suppose that o2 is determined by one of the methods mentioned
above. Then for any g; > 0 and any fixed, continuously differentiable function
f there exists an n(f) € N such that u = (f(x1),...,f(x))T € V,(gs) holds for all
n > n(f). Differentiability is not even necessary. In the situation of Proposition
2(i) we also have u € V,(g3) for all n sufficiently large.

It seems to be likely that results similar to Theorems 3 and 4 can be de-
rived for generalized cross-validation [Craven and Wahba (1979)] and related
methods. It is well known that such procedures are very closely related to Cr,
methods which replace o2 by an estimate 2. An exact proof is, however, dif-
ficult. The nil-trace technique developed by Li (1985) unfortunately does not
apply in the present context.
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APPENDIX

PROOF OF PROPOSITION 1. Assertion (ii) is an immediate consequence of
the definition of R, g. We thus only have to prove assertion (i).

Consider an arbitrary ordered linear smoother S. There then exists an or-
thogonal matrix U such that for any S € S we have 8 = UTA,U for some
diagonal matrix A, with diagonal entries 0 < \; ; < 1,7 = 1,...,n. Since, for
any o, 3 > 0, (a — §)? < a? + 42 holds, we can conclude that

1 1 1
—pI I =8P+~ T =8, > ~u"(S = 8,7,

2 2 2
T te(8%) + - tr(8%) > T tr((S — S,)%).
n n n

It follows that for all S € S with ¢,(S,S,)?> > 3 - MASE,(S,) we obtain
MASE,(S,) < IMASE,(S) and

3(MASE,(S) — MASE,(S,))) > MASE,(S) + MASE,(S,) > q,.(S,S,)%.

Assertion (i) now is a consequence of assertion (ii). O

For the proof of Theorem 1 we need three auxiliary lemmata. Lemma 1 is
merely technical. Lemma 2 provides basic inequalities which can be considered
as exponential versions of the inequalities given by Whittle (1960). Lemma 3
yields the main tool for providing the theorem. Relying on a chaining argument,
exponential probability inequalities are derived which, in the proof of the theo-
rem, allow us to bound certain remainder terms quite uniformly for S € M(n),
S eSS, ue R

LEMMA 1. Let X and Z denote independent, real-valued random variables
with zero means.

(a) If, for some t > 0, E exp (X — Z)) < oo, then E exp(tX) < co and
E exp(tX) < Eexp(t(X — 2)).

(b) If X and Z are similarly distributed, then EX —Z)* =0,k =1,38,5,...,
and

EX -Zf <2*EX*, EX+2) <2*EX*, Fk=2,4.6,...,
provided these moments exist.

The proof of the lemma is straightforward and thus omitted.

" LEMMA 2. Let W denote a one-dimensional probability distribution with
the following properties:

() [xW(dx) =0, [x2W(dx) = 02,
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(ii) [ exp(Bx?)W(dx) < oo for some 3 > 0.

Then there exist constants v1, Y2, 73, V4, Yw and Sy €10,00 [such that the
following hold:

(a) Foralln € N,a € R" and i.i.d. random variables ¢, ...,¢, with e, ~ W,

PlT
n

—€a

) 1 1/2
> qnt? (EaTa) <y exp(-n®-7), e=(eg,...,e&)", n>0.

(b) For all n € N, any real n x n matrix A and i.i.d. random variables
€1,...,6p With e, ~ W

d

(c) For all n € N, each a € R", any real n x n matrix A and i.i.d. random
variables €1, ..., €, with e ~ W,

1 o? o? 172
—eTAe — — tr(A)\ > npn~1/2 (— tr(ATA)>
n n n

<7ysexp(-n-vy), e=(e1,...,&)T, n>0

1 o? 1 o? 172
ZeTa+ —eTAe — — tr(A)‘ > nqn=1/2 <—aTA +— tr(ATA))
n n n n

p(l
n

Proor. We start by considering the moments of ¢;. By assumption, B :=
E exp(Be?) < oo for an appropriate 8 > 0. We thus obtain P(|e;| > n) = P(e2 >
n?) < exp(—n?B3) - B for any 7 > 0. For all 2 € N this implies [see, e.g., Serfling
(1980), pages 46-47]

< by exp(—n - yw), e=(er,..., )T, n>0.

Ec <2k / n*~1Bexp(—n%8)dn

0
o0 (2k—1)/2 -1/2
1 /u
= 2k/ (E) B. —(—) exp(—u)du
1
= B( = J*0(% + 1).
5)

In'the following, €},...,¢; will denote i.i.d. random variables which are inde-
pendent of €1, . .., €, and satisfy e} ~ W.

We first prove assertion (a). Choose an arbitrary a = (ay,...,a,)" € R
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Using (A.1) and Lemma 1 yields, for all # > 0 and all i,
<1 +J§ (’%) jzsz(%)jF%;!l)
< g () at

j=1

2B1/2 _ 42
con(2)

(note that B > 1). For € > 0 let £, := ¢8n2/(4B'/2 .aTa). Lemma 1 and (A.2) now
lead to

(A.2)

< exp(—t.e)E exp

( Za,e, > s) < exp(—t.c)E exp( Zal€l>
i=1
()

B1/2 t2 n
< exp —tee+ 5 a?

i=1

B n®
= GXP(_ 831/2-_2'." lazs .
1=

1

Applying the same arguments to (—1/n)X}_;a;¢; proves the assertion.
Choose an arbitrary real n x n matrix A. To prove assertion (b), we first
determine moments of (1/n)a”¢,a € R". Assertion (a) implies

1
(A3) E<;j=zlajej> <'Yl< ) < -2 Za) F(k+1).

For i € {1,...,n} now let ¢; := ¥7_;a;(¢ + €¢) and & := ¢ — €, where a;
denote the entries of A. Evidently, &1, . . . , &, are mdependent symmetrlc random
variables. Moreover, conditional on the sign not being zero, the sign of ¢; is
independent of all ¢, and ¢,, k#i,r=1,...,n. Hence,

ky kn
(Ad) <¢1§1) (-’fl—"g,,) ~0

for k1,...,k, € NU {0}, whenever k;/2 ¢ NU {0} for some i € {1,...,n}.
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Using (A.1), (A.3) and Lemma 1, the Holder inequality in its general form
yields, for all k4, ...,k, e NU{0} with by +---+k, =1,

511 (e) (1?(‘”‘)“"‘) (EH&“‘)
(16 (i)
() ( (£4)

x [@2r + 1)1/ (H T(2k; + 1)1/2)

1/2

(A.5)

||’z;

noting that B*k*#0}/2 <« B For n,r € N let K(n,r) denote the set of all n-
tuples (kq,...,k;) € (NU{0})" with &y + --- + k, = r. It follows from (A.4) and
(A.5) that, for all ¢ > 0 sufficiently small,

Eexp(tZ%&)
i=1
N (2r) i
S“Em( 2 @ (zk)'EH( 5‘) )

(1,...,kn) € K(n,r)

. (2411/”B \ (@r)11/2
<1+Zt2 ( nzvzﬁ ) ( > @R)IZ .. (2k,)11/2

(k1,...,kn) EK(n,r)

/2r n n k;

S e N D S (38
n7,8 oy bre Kenyy P2 Bl S\ T
/2rB n n r

- o 2

-3 (ZEE) (553

i=1j=1

(A.6)

noting that, for any i € N, i! < (2i)!/2 < 2%i!. With = (1/\/5)(')/2,8/(25,6))1/2,
choose 2o = 7;n/(ZF., TP a2 = vin/tr(ATA))}/2. Now, combining Lemma
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1 with (A.6) we obtain, for any ¢ > 0,
n
< exp(—toe) - Eexp| ¢ 1 i ﬁ{»
> 0 On part n i

1
< exp(—tge) - (1+7i/225 .
r=1

Applying the same argument to —((1/n)eTAe — %2- tr(A)) completes the proof of
assertion (b). Noting that, for all x, y > 0, x/2 + y1/2 < 21/2(x + y)1/2 assertion
(c) is an immediate consequence of assertions (a) and (b). O

1 T 0'2 1 T 0'2
P € Ac — ;tr(A) >¢e | <exp(—toe) - Eexp| to| —¢ Ae — ;tr(A)

LEMMA 3. Under the assumptions of Theorem 1, let p; and py denote arbi-
trary polynomials with the following properties:

Forall x,y € [0,1], |p1(x)—pi1(y)| < |4x —y)|,

A7)
| p2(®) — pa(y)| < |4(x — ).

Furthermore, for any x > 0, let 1x[ denote the smallest integer such that ]x[ > x.
Then, for all n € N and u € R", each ordered linear smoother S, each S € S
and all n,e >0

- ~ 2 ~
P (%J( 1S ~ @)+ e (palS) ~ pa®)e - Ztr(a(S) - pa(8))

)2
> nn-1/2] g“(“jT’S) [5 for some S € S) < dw exp(—new),

for some constants 0 < cy,dw < oo, depending only on the error distribution W.

PrOOF. Forn € N consider an arbitrary ordered linear smoother S e M(n),
and select some arbitrary ¢ > 0, S € S and p € R™.

We start by parameterizing the problem. By assumption, for any S € S we
have S = UTAgU for some orthogonal matrix U and a diagonal matrix Ag with
diagonal entries 0 < X, < 1,i = 1,...,n. For all $,S € S we either have
A s S Aiss i=1,...,n0r\ 52> A\s, i=1,...,n. Furthermore, S is closed.

With ¢, := supgcg =7 1 Ai,s < nand ¢ :=infgcg X7y \i s > 0, this implies
that H: S — [t, t,], given by

n
HS):=) Ns, SeS,
i=1
is a continuous injective mapping. For ¢ € [¢;, ¢,] set
S@):=H"1@¢) ifte H(S),



ORDERED LINEAR SMOOTHERS 857

and with

3 < = i
zo(t) max {e<t|zeHS)} and 2 zg%t,lflt,,] {z >t|z € HES)},

set

t —zo(2)

S Tyl
8(t) := H ' (20(8)) + 20

(B (18) — H (200))

ift ¢ H(S). It is immediately seen that S defines a homeomorphism from [¢;,%,]

onto S([#;, ¢,]) 2 S. Moreover, it is easy to verify that, for allt, t* € [t;,¢,] with ¢ >

t*, we have \;(#) > N(¢*), i = 1,...,n, where M), ..., &) = diag(USx)UT).
Let? := H(S), and for x, y € [¢,¢,] set

6(x, y) = q,(8(x), 8(»)

Lo . 2 \ 1/2
= <— SN = M)+ — D (L@ - X)) ) ,
i nia
where (p1,...,pn)T = p := U - p. Relation (A.7) now implies that, for all x, y €
[tl7tu],

_ _ 2
46(x, y) > (%/LT(pl(S(x)) —pl(S(y))) p

. 1/2

+ %tr(([lz(g(x)) — P2 (E(y)))2>>
i (% Z 2 (p1(M) —p1 (W)’

(A.8)

) n o\ /2
+%Z (Pz(Ai(x)) —P2()\i(y))) ) .

i=1
Moreover, we obtain that, for all x, y,z € [#;,2,] withx >y >z,
(A9) 8(x,z)? > 8(x, y?+ 5(y,2)2.

Based on the above parameterization, the proof now relies on a chaining
technique similar to that used by Pollard [(1984), pages 144-145].

Relation (A.9) gives rise to the construction of a sequence of finite subsets
of [#;,t,] which will provide a basis for the chaining argument.

Set 9,1 =7 and for i € N define 3 points #; < #; 1 < #;,2 < -+ < t; 3 <ty by
the following:

(a) ti,3r—L=ti—1,rar=~17-'~a3i—1; N B
(b) 6(t; 1,%) = min{6(t;, £),i¥%e}; 6(¢; 3:,¢) = min {6(ts,1),i12%e};
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(©) 6(ti,3r ti—1,7) =6(ti_1,pyti1,,41)-1/V3, r=1,...,8 -1 1;
(d) 6, 5r+1,8i-1,7) = 6Gi—1,mti 1,741 V2/V3, r=1,...,8 "1 1.

From (A.9) and (a)-(d) it can be inferred that, for all i > 2 and all r ¢
{1,...,8-1_1},

(A.10) 6@t 3r i —1,,) < €/ (34~ P/2),
(A.11) 8t 3ra1,ti—1,r+1) < 8/(3(i_k)/2),
(A.12) 8(ti,3r b, 3r41) < €/ (3¢ 7P/2),

where k := max{16(t; _ 1,,,8)2/e2[,16(¢; _ 1, ,410)2/€2[}.
In the following let T; := {¢; 1,...,¢; 3}, T := U2 T; and

1 — 1 — 2 _
Z(t) = ;eTpl(S(t)),u + ’—leTpg (8@))e — %tr(pz (S(t))), telt,t,)

Evidently, T is a countable dense subset of [¢;,¢,] and for any > 0 it holds that

P(%J(pl(& =@+ 1 (p2(S) - p2(B)e

2 - Q)2
— %tr(Pz(S) - pa(S)) > nn"lm} q”—(Sez’ﬂ [6 for some S € S)
(A.13) _
5(t,t)?
22

<P (Z(t) —-Z@)y>nnV 2] [.s for some ¢ € [t;, tu]>

72
= P(Z(t) -Z@) > ﬂn_l/z] (—S(te’Tt) [a for some ¢ € T) )

The last equality follows from the continuity of S.

Thus, to prove the lemma, we only have to show that the last probability
adopts the asserted exponential bounds. For > 1og(3),i € Nand % € {1,...,i},
define events A{")(n) and A®P(7) by

AD () = {Zum,,) = Z(Nitis1,0)) 2 0726 (b1, Nitisr, ) HG0)

. 2
for somer € {2,...,8*1 -1} with]M[:k},
€

AP(n) = {Z(t;,1) - Z(F) = n~ V288, 1, DHD ()}
V{20, 90— ZD) > n=Y25(t, o DHO),
where
4(i log(6) + k'r]) and H§2)(77) - 4(i1/2 log(3) + il/zn) |
w w

HY ) =
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and where, for any s € T, 1, N;(s) denotes the element of T} with &(s, N;(s)) =
min, ¢ 1, 6(s, ). Constants yw and 6y have to be chosen according to Lemma 2.

Evidently, s = Ni(s)if s € T; N T,1. For any i € Nand k € {1,...,i}, A, ()
thus consists of at most 4 - 3"~ * nontrivial events, each of whose probabilities
can be bounded using Lemma 2 and (A.8):

P(A () < (4- 3~ F)sy exp(— ywiH M)
< 42737 2%+155 exp(—n)

[recall that n > log(3)]. For P(A®(n)) we obtain
P(AP () < 26w exp( — ywiHP (1) < 265372 +1exp(—1).

With A(7) denoting the union of all events A{')(n),AP(n), this yields, for all
n > log(3),

1

P(A() < Z APm) +> ZP (A @)

i=lk=

(66W<Z3‘2‘”2) )exp( n) = da, w exp(—1) < oo,

(A.14)

Now, consider an arbitrary s € T, and let m denote the smallest i — N such
that s € T;. Clearly, m > k :=158(s,t)?/¢%[. Set s, := s and s; := Nj(sj + 1), for
Jj=k,...,m —1. Trivially,

Z(s) - 2() = ( > Zs) - Z(si_1)> +Z(s) - Z.

i=k+1
To bound the sums on the right-hand side, note that eithers, = #_, 1, r € {0,1},
or s =t,_, gi-r, r € {0,1}. On the complement A(n)C of A(n) this leads to

Z(sp) = Z() < nV* max {8(t4,1,), 6%, 30, D}H ()

(log(3) +7)
w

é n-1251/2,  4p1/2

and, using (A.10) and (A.11),

Z(Sz) - Z(St l) <n 1/26(3”81‘1 H( )1 k(n)

e 4(G-1)log(6) +kn)

b7 " i=k+1,...,m.

< nl/2
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This implies that on A(n)°,n > log(3), bounds for Z(s) - Z(t) are as follows [note
that 222,(1/8/2) = 1/(v/3 — 1), and £2, [ — 1)/(8/2)] = 1/(v/3 — 1)]:

n=1/2¢

Z(s) - Z() < 4 (k log(3) + kn

™ (klog®)+kn (i —k — 1)log(6)
+ kzl( 3G-h/z t T 3an/e
i=k+

_ 4 log(6) log(6) )
1/2
=" ks(’YW (log(3)+ Vv3-1 +(\/§—1)2 )

12 ( 4v3 )
" = w3 - 1)

=:n"12ke cLw+ n"l/zkenczyw.
Together with (A.14) this implies that, for any > 0,

72
Pl Z@t)—Z@) > cown~ Y2 o, 0” € +coynn /2 8.0 cforsomet e T
; 22 ) 22

< dg,w exp(—7),

where dg w := max{d; w, 3}. Consequently,

7)2
P (Z(t) -Z@ > nn-1/2} 6(12_215)

c 1
< (dz,w exp (ﬁ) ) eXP( - ’flm> =: dw exp(—ncw).

Together with (A.13) this yields the desired result. O

[e for some ¢ € T)

PrROOF OF THEOREM 1. For some n € N consider an arbitrary ordered
linear smoother S and some arbitrary p € R*.
We start by introducing some notation. For S € S set
2
Z4(8) = %,ﬂ(4s —28%)e + %eT(2S —8%)e — ‘% tr(2S — S?),
2
Z5(8) = 2278+ 1278 - Tt (29),
n ) n n
1rp 2 171 o 2
Z3(S) := =€ (258 — 28%)u — —€" S% — — tr(S%);
n n n

and, for n,e > 0and s =1,2,3 set

2
Z(S) — Zy(Sy) < nn—l/z] %(i;zsﬂ) [e},

Asle,n) = {S €S

Ag = {S €8|21(S) - Z1(S,) > MASE ,(S) - MASE WS}
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Recall that MASE,,(S) = (1/n)uT(I — 8)?u + (0% /n) tr (S2). Considering the defi-
nitions of S and S, it is immediately seen that

2 ~ 2 ~
A15) Y-8, YIR+2Ztr s> Ly -8 Y+ 2 e ®),
n n n n
(A.16) MASE,(S,)) < MASE,(S).

Some easy computations show that, for all S € S,

1 , 20 1., 15
LY = 8- Y2+ 27 tr(S) = MASE,(S) — Z1(S) + ~2eTps + 2eTe
n 2% n H n n

(A.17)
Ll oy 1,7 1p
= n||,u S-Y|3 Zz(S)+n2€ pt—ee
and
1
(A.18) =i~ S - Y|} = MASE(S) - Zq(S)
Together with (A.15) and (A.16) we thus obtain
(A.19) MASE,(S) — MASE,(S,) < Z;(S) — Z1(S,.),
1 - 1 =
(A.20) ;HN -S-Y|3 - ;”N =S, Y3 < Zo(S) - Zo(S ),
1 1 -~ -~
(A.21) =Sy Y3 - —lp=8- |3 < Z3(S) — Z5(S ).

By (A.19) we obtain P(S € Ag) = 1. Condition (A.7) of Lemma 3 is fulfilled with
either of the following: p; = 4x — 2x2 and py = 2x —x2; or p; = 2x and py = 2x; or
p1 = 2x — 2x2 and py = —x2. Also, it follows that, for all ¢, > 0,

(A22)  P(SeAle,m)nAg) >1—dy exp(—ney), r=1,2,3.
Definition of R, g implies that, for any n > 0,

q/_l,(Sysp,)z

1/2(,-1/2
n'’?(n=?R, s(n) > "TMASE,(S) - MASE,(S,,)’

for all S € S with
q,.(S,S,) > n_1/2R“,s(n).
This leads to
MASE,(S) — MASE,(S,)
-1/2 q,(S, Su)z
(n-12R, s()”

N 12| _ qu(S,Sp)? l 172
S D-vz| 9SS | ep
2" ](n—1/2RM,S(U))2 v 80)

>nn (n=Y2R,, s())
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for all S € S with ¢,(S,S,) > n~Y2R, g().
We thus can infer that, for all n > 0,

(A.23) Ay (n‘l/zRu,s(n), g) NAq C {S € 9)/,(5,8,) < n~2R, s(n)}.
Combining (A.20), (A.22) and (A.23) we now obtain
1 Q 2 1 2 -1
P{—|lu—=8-Yllz — —llu=Su-Ylz < mm™ Ry s

> P(Zz(g’) ~Zy(S,) < Y2(nY2R, S(n))>
(A.24)
>P <§ € Ay (nY2R,, s(n),n) NA; (n—1/2R#, s(m), g) nAQ>

>1-2dw exp(—n%”)

Moreover, (A.21), (A.22) and (A.23) lead to
1 1 5 _
P(Hihs =S, Y15 - L5 Y13 < Ry 500)

> P<Z3(§) —Z3(S,) <nn~Y/? (n‘l/zRH,s(n))>
(A.25)
>P (§ € A3(n~Y?R, s(n),n) NA; (n‘l/zR”,s(n), g—) ﬂAq>
Cw
>1- 2dWexp<— "?)

The final step of the proof consists of bounding (1/n)|x — ‘§u Y2 - @/n)|p -
S,, - Y||2. Obviously, relations (A.19) and (A.21) remain true when replacing S
there by S .- Hence, it is immediately seen that in relations (A.22) and (A.25) S
also can be replaced by §u' Since, by definition of (1/n)||x — §u Y2,

1 S 1 1 S 1

“p-8 Y|E—-=|p-8, Y|Z<|=|lp-8 - Y|Z-=|p—-8S, Y3

“lu =8 Y5~ lu~Su-YIE< |2l =S Y| - —lu—Su Y3
RETPRERS (R A e
I =P 2~ LIk —Ou 2

this establishes assertion (i) of Theorem 1. By (A.24) and (A.25), and (A.22) and
(A.23), the same probability inequality holds for

1. = 1 S
Slu—S-YIB-Zlk—S, Y|} and MASE,(S) - MASE,(S,).
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Since, in (A.25) and in (A.22) and (A.23), S can be replaced by S, these bounds
also apply to (1/n)|lx — S, - Y|2 — 1/n)|p — S, - Y|2, and MASE,(S,)
— MASE,, (S,,). This establishes assertion (ii). O

PROOF OF THEOREM 2. Fori e {1,...,m}let §,~, S, and :S\’,L,i denote the
minimizers of (1/n)||Y — SY||2 + 2(c2/n)tr (S), MASE,(S) and (1/n)||p — SY||2
with /r\espgct toS e S;. Clearl}:,\ thel/'g exists some my,my,m3 € {1,...,m} such
that S =Sp,,,S, = Sy, m, and Sy, =S, m,.

Let Z; and Z3 be defined as above. The bounds derived in the proof of The-
orem 1 and in Proposition 1(i) allow us to establish the following inequality,
which holds for all n, 1,S,m,n > 0, s =1, 3 and both S; = S orS; = S” i

|Z5(S,,) — Z5(S))| 2
P| sup iz~
(A.26) i€ (1,-m} n=1/2(MASE,(S,, ) + 1/n)
< mCy exp(—nCy).

Set Z3(S) = Z1(S) — (1/n)2¢" u and Z3(S) = Z3(S). Lemma 2(c) and the properties
of S; then imply the existence of constants 0 < 1, f2 < oo, depending only on
W, such that, for all n, u,m,S, nand s =1, 3,

|26,
P sup iz ="
(A.27) i€{1,..,m} n=1/2(MASE(S,,,;) + 1/n)
< mp; exp(—nPs).

By (A.17) and (A.18) it follows from (A.26) and (A.27) that there are constants
0 < B3, 084 < 0o, depending only on W, such that, for all n, u, m, S and 7,

p Vil . 2>
(A.28) zE{l, .m} n=1/2(MASE,(S,,;) + 1/n)
<mfs eXP("?ﬂO»

where V; can be either one of

— MASE,(S))

~ 2
= ’1||Y -8 Y2+ 2Ltr(S,-) _ L,
n n n
or
1 ~ ~ ~ o~
V= ;“N -S; Y”% - MASE#(Si)» S; = Si»Su,i»Su,i'

Recall the definitions of S (= S,,,) and S,,(= S,,, ,). Since

—Y S, Y|2 +2itr(S)——Y 5. Y2 ——tr(S)>0
2 2
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relation (A.28) implies that

P(MASE,A@) — MASE,(S,)

A. 1
(A.29) > 1Pn=1/%(MASE,(S,, /2 + MASE,(S,)"?) + 2;772)

< mf3 exp(—npBy).
Since
MASE,(5)/2 + MASE,(S,,)"/% > MASE,(S,, m,)"/? + MASE,,(S,,)1/2,
this leads to
P(MASE,(S)/2 — MASE,(S,)"/? > 2r?n~1/2)
<mp; exp(-nBy) forn>1,
and we can conclude that, for all n > 1,
~ 1
P( MASE,(S) — MASE,(S,)) > 47*n~Y*MASE(S,)'/? + 4= 4)
(A.30) ( 7 AT n AT n77
< mpBs exp(—npBy).
Since (1/n)||x — S, - Y2 — (1/n)|ju— S, - Y||2 > 0, we can infer from (A.28) that

relation (A.29) still holds when replacing S by S, and m; by m3 (recall that
S, =8, m;). We thus additionally obtain, for all > 1,

P(MASE“(g’“) — MASE,(S,) > 4n’>n~Y/2MASE,(S,,)"/2 + 4%774)
(A.31)

< mpz exp(—npy).
The assertions of Theorem 2 now follow from (A.28), (A.30) and (A.31). O

PROOF OF THEOREM 3. For s = 1,2, let ((S) := Zg(S) + 2(0? /n)tr(S) —
2(52%/n)tr(S), where Z; and Z, are defined as in the proof of Theorem 1. By
assumption, |02 — E5?%| < qan~1/2, for all u € V,(gs). Lemma 2 can be used to
obtain an exponential probability bound for

1

~ ~ 1 1 2
[02 — E02| = ’—,uTEne + —eTEn,u +=el'S,e— z tr(2n> .
n n n n

Note that (1/n2)(tr(S) —tr(S,))? < (1/n)tr((S—S,)?) holds for all S. Together
with Lemma 3 this implies the existence of constants 0 < dw,4,,4,, ¢W,q,,9, < 00,
depending only on W and ¢, such that, for all n, 1, S, alle,n >0 and s =1, 2,

(S,8,.)?
£2

P(@(S) — 68, > nn-1/2] I [5 for some S € s)

< dW,lh g2 exp(—ncwm ﬂz)'
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When replacing Z; and Z; by ¢; and {3, u € R" by pu € V,.(q2) and dw and
cw by dw, q,,q, and cw, 4, , 4, the rest of the proof of Theorem 3 is now analogous
to the proof of Theorem 1. O

Acknowledgment. The author wishes to thank Professor Dennis D. Cox
for fruitful discussions.
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