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Previous work by Stone has been impressive, and the present paper com-
mands even more respect. In one grand sweep, he develops convergence rates
for B-spline interaction models in LS regression, in ML generalized regres-
sion, in log-density estimation and in conditional log-density estimation. In

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGJ:Y

L ®
www.jstor.org



172 DISCUSSION

some ways, Stone’s work provides a unifying theory unmatched by existing
methodology—a relatively uncommon situation. As he states at the end of
Section 2, the usefulness of extensions of MARS [Friedman (1991)] to gen-
eralized regression, density estimation and conditional density estimation is
suggested by this work.

Again with MARS in mind, Stone is very modest in stating the limitations of
his theory: adaptive selection of effects and knots is not theoretically tractable
within his framework. In this regard, in the regression context, his modeling
approach is more similar to the penalized interaction splines of the Wisconsin
school [e.g., Wahba (1990), Chapter 10] than to MARS. Penalized interaction
splines are also based on a careful a priori selection of a functional ANOVA
model. In MARS, the ANOVA decomposition is just a postprocessing step after
a voraciously greedy search among component terms that generally do not
belong to any orthogonalized main effect or interaction space.

With a piece covering as much ground as Stone’s paper, it is impossible to
comment on all or even only the major aspects. I therefore confine myself to
two points that are somewhat arbitrary but close to my own interests: (1) the
problem of identifiability in nonadaptively chosen models and (2) a suggestion
with respect to the aesthetics of some proof details.

Identifiability as a theoretical and practical problem. As a rule, to
prove strong results, strong assumptions must be made, and Stone’s work is
no exception. In the regression context, for example, he models the predictors
as realizations of a random vector taking on values in an M-dimensional cube
(w.l.o.g. [0, 11¥) and having a probability density that is bounded away from
zero and infinity. This smacks more of a somewhat unbalanced factorial ex-
periment than the type of messy observational data to which we often apply
nonparametric models. It would be premature, though, to criticize Stone’s re-
sults on grounds of his choice of technically motivated conveniences. It turns
out that the lemmas derived from these assumptions express the foundations
of his results much better than the assumptions themselves. A case in point
is Section 3, where he tackles identifiability problems among other things. A
striking statement is Lemma 3.1: Its assertion,

1) E [(;hs(x))2

>CY E[r(X)],

for some C > 0, is one way of limiting confounding (unidentifiability) in the
ANOVA decomposition for the population model. Complete confounding de-
scribes a situation where one main effect or interaction can be expressed as
the sum of other types of main effects or interactions. This is equivalent to the
existence of a nontrivial additive relation, Y ;4,(X) = 0, that would clearly vio-
late (1). Now, confounding is, of course, a real problem in real data. Curiously,
the technical assertion (1) is a pointer to a practical method for the detection
of confounding. To this end, consider the following constrained optimization
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problem:
@) E [(Zhs(x)) ] =min subjectto Y E[h(X)]=1.

If, for given data, a solution to this problem could be estimated, one would
obtain a fair idea of the nature of confounding and the extent of its danger.
As it turns out, this minimization problem can be tackled and solutions can
be practically estimated. We [Donnell, Buja and Stuetzle (1994)] hope to have
a paper on this topic soon (“Analysis of additive dependencies and concurvi-
ties using smallest additive principal components”). Our work concerns the
analysis of confounding in additive models, but it is trivial to extend the idea
to the analysis of main effects and interactions in an ANOVA-type decompo-
sition of a space of fits. The underlying principle is always the same: Given
a decomposition of a Hilbert space H = H; + --- + H,, minimize |TA;||? un-
der 3||A;||? = 1, k; € H;. In Stone’s context, the component spaces H; are the
orthogonalized main effects and interaction spaces HY.

In one guise or another, this idea of “generalized canonical analysis”
has been around for a long time, usually formulated in terms of data rather
than populations, and most frequently in the form of the corresponding max-
imization problem, as, for example, in multiple correspondence analysis
[e.g., de Leeuw (1982)]. Apparently, it is Kettenring (1971) who first intro-
duced the minimization problem. The current preoccupation with nonpara-
metric estimation was missing in those days, so the ideas were presented as
generalizations of canonical analysis to more than two blocks of variables.
Consequently, the interpretation in terms of the detection of confounding in
the decomposition of a space of fits is missing as well.

It would be interesting to hear in more detail how the author thinks about
the problem of confounding, both theoretically and in terms of guidance for
practitioners.

Some technical remarks. The second point I would like to discuss con-
cerns the proofs of Lemmas 3.3 and 3.4. There, Stone shows that, on spaces
of fits, the empirical inner product is uniformly close to the population inner
product. The lemmas are crucial as it is here that the rates emerge at which
the number K of spline intervals can be increased as a function of the sample
size n. (The main results of the paper are formulated in terms of </, the di-
mension of the space of splines obtained when subdividing a variable into K
intervals. Rates in terms of J are the same as those in terms of K due to an
obvious linear relationship. See Stone’s remarks after his Condition 2.)

Stone’s strategy is to prove closeness of empirical and population inner
products for spaces of multivariate polynomials on a single cube (Lemma 3.3)
and then extend this to spaces of functions that are piecewise polynomials on
small cubes (Lemma 3.4). His technique for stitching the cubes together is
through conditioning on the lattice of cubes and applying Lemma 3.3 to the
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polynomials in each cube. This may sound straightforward, but the details are
hairy, involving estimates for the convergence of the numerators and denomi-
nators of the conditional expectations. Having used Hoeffding’s inequality for
Lemma 3.3, Stone needs Bernstein’s inequality to bound denominators in his
proof of Lemma 3.4.

This approach violated my sense of aesthetics to such a degree that I tried
an alternative method. It turns out that a mild modification of the proof of
Lemma 3.3 yields both a simplified proof and a slight strengthening of Lem-
ma 3.4. To rid the proofs of conditioning, we calculate unconditional bounds
on small cubes of edge length 1/K within the unit cube [0, 1}¥, the main
difference being that we look at small cubes with small mass, while Stone’s
conditioning normalizes the mass of small cubes to 1, thus artificially intro-
ducing unpleasant denominators. .

We use Stone’s assumptions and notations: the unit cube [0,1¥ supports
the data distribution given by a density f(x) that is bounded away from zero
and infinity, 1/M; < f(x) < M;. Let X denote a random vector with density f.
Deviating from Stone for now, we denote by I;/x) a cube of edge length 1/K
within [0, 1]%, and by I /k)(X) we denote its indicator function. By p,(x) and
Pp2(x) we denote M-variable polynomials of degree less than or equal to m; in
each variable. To shorten notation, we write |E, — E|(Y) for |E,Y — EY|, where
E, is the mean operator based on an i.i.d. sample of size n.

LEMMA 3.3'. For t > 0, the inequalities

|E, — E| [p1(X)p2(X) /6 (X)] o
< em, MM, (E [p2(X)I /5 (X)) E [p2(X)I1/5)(X)]) 2t ¥ p1,pas

hold, except on an event having probability at most

n M2t2 )

2(1 + 2m1)M exp (—ﬁm
3

PROOF. We need Bernstein’s inequality in the following form: If |Y| < b
and o%= Var [Y], then, for s > 0,

E.—E|[Y]<s

holds, except on an event having probability at most
2/ 2
2 exp (—n————s{U—> .
2 (1 + §bs / o 2)

(See Stone’s reference to Hoeffding. We use s rather than ¢ in anticipation of
a reparametrization.) We apply the inequality to

Y = (KXY 5 (X),
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where w.l.o.g. I3/x) = (0,1 /KM (otherwise apply a simple shift to the cube and
the monomials Y). Thus, a simple bound for all multiexponents j;,js is b = 1.
We observe that the exception probability of the inequality is increasing in o2,

hence it is conservative to replace o2 by a rough upper bound:
0% <E[Y?] < My/K™.

Since Lemma 3.3’ is about polynomials of partial degrees less than or equal to
my, we constrain j; and js to {0,1, ..., m;}™. Note thatj;+j; € {0,1, ...,2m  }M.
We want Bernstein’s inequality to hold simultaneously for all j; and je, whence
we inflate the exception probability conservatively:

3) |En — EI [(KX)j1+j2](1/K)(X)] <s le,jz € {‘0, 1,... ,ml}M,

except on an event having probability at most

2 M
2(1+2m;)™ exp (—n K™ /My ) :

2 (1+ s KM /M,)

The extension from monomials to poiynomials follows Stone’s proof, with the
exception of a scaling step to adjust for the size of the cube I(; /k): Let q1(x) =
Zjlagll)le and go(x) = Ejza;f)sz be two polynomials of partial degrees less than
or equal to my, that is, the sum is over j;,js € {0,1,...,m;}¥. On event (3) it

follows that
1B, ~ B [01(KX) g2 (KX)o /m0(X)] < 3 [af?] 3 |a?
J J2

‘jo S, v q1,q2.

The desired bounds for the right-hand side are obtained as follows:

E [¢3(KX)Iq/x)(X)] > IT}I / a3 (Kx)I1 /) (x) dx

1
- i | BEo(x)dx

2
1
> s (Z11)

where the middle equality is a change of scale from I(;/k) to the unit cube
Iy = [0,11™, and the second inequality makes use of the fact that any two
norms on a finite-dimensional linear space are equivalent [see Stone’s remark
(3.5)]. The same holds of course for g2, so on event (3) we get

|En — E| [1(KX) q2(KX) I x)(X))]
< MK ey, (E [g3(KX) I/ (X)) E [03(BX) Lo/ (X)]) sV a1,40.
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By renaming p;(x) = q1(Kx), p2(x) = g2(Kx) and reparametrizing ¢ = sK™ /M,,
Lemma 3.3’ follows. O

We turn to Lemma 3.4: Following Stone’s notation, let I be the cube of
edge length 1/K rooted at ((k; — 1)/K, (ks — 1)/K, ...,(kyy — 1)/K) [where
k = (ky,ks, ..., ky) € {1,2, ...,K}¥]. Denote by g:(x) = Lup1(x)x(x) and
g2(x) = Y pox(X)M(x) functions that are polynomials of partial degrees less
than or equal to m; on the cubes Iy. The following is a slightly sharper version
of Lemma 3.4, in the form referred to in Stone’s proof.

LEMMA 3.4’. For t > 0 the inequalities

|E,, — E|[g1(X) g2(X)]
< enyMiMy (E [E2(X)] E [g3(X)]) ¢ V180

hold, except on an event having probability at most

M,t?
2(1 + 2m1)MKM exp (—};—M é—(Ii—lB—) .
3

PROOF. The inequality of Lemma 3.3’ holds simultaneously on all cubes
Iy, except on an event having probability at most K¥ times the exception
probability of Lemma 3.3'. We then get the following bounds for all g; and gs:

|E. — E|[g1(X)g2(X)]
< D 1B — E|[pi (X)pax (X)1k (X))
k

<emMiMy 3 (B [ph (X)L (X)) E [l (X)I(X)]) 2

1/2
< co Mills (ZE P OR)] S E [psk(xm(x)]) :

= cm, MM (E [3(X)) E [g3(X))) "2

The second inequality uses Lemma 3.3/, and the third inequality is an appli-
cation of Cauchy—Schwarz in the form $y/221/2 < (Sys2)V/2. O

From Lemma 3.4/, we see that in order to let the exception probability go
to zero, the growth of K = K, must be limited by the condition

@ Cé’a—, —logK¥ — 00, (n—o0) VC>0.

Stone’s assumption KM = o(n!~%) is certainly sufficient for (4).
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Professor Stone has done an admirable job in leading us through the difficult
mathematics needed to build a firmer theoretical framework around high-
dimensional nonparametric regression and density estimation techniques.
ANOVA decompositions of regression surfaces are no longer confined to the
case when the predictors are categorical; we can now play the same games
in function spaces. Gu and Wahba (1991) describe similar decompositions in
reproducing-kernel Hilbert spaces using tensor-product smoothing splines.

This comment moves us to the opposite boundary of the field and describes
some computational tools for expressing and fitting tensor-product spline mod-
els of this kind in the S language [Becker, Chambers and Wilks (1988)].

In S there is a formula language for expressing models, primarily aimed at
traditional ANOVA and linear models. For example, the formula ~ a % (b + c)
expands to ~ a+ b+ c + ab + a:c and expresses a model with main effects and
interactions. Typically the variables a,b and c are factors. The formula is con-
verted into a model matrix where the factors are coded via contrast matrices,
and their interactions as matrix tensor products of these. The contrast ma-
trix for a factor is a basis for representing the piecewise constant effect as a
function of its levels; this is the default behavior for factors, and in fact a de-
fault contrast coding is used. This notion is extended by allowing the following
in formulas: (i) variables representing matrices and (ii) expressions that are
calls to functions, which evaluate to matrices.

We now elaborate in the context of regression splines.

There are some primitive functions in S, for example, poly(x,...), bs(x,...)
and ns(x,...), for producing polynomial, B-spline and natural B-spline bases,
respectively. The function bs( ) (which we focus on here) has additional argu-
ments relating to knot placement and degree, and returns a matrix correspond-
ing to the specified B-spline basis evaluated at the values of x. For example,



