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OPTIMAL DESIGNS FOR IDENTIFYING THE DEGREE
OF A POLYNOMIAL REGRESSION!

By HOLGER DETTE

Technische Universitit Dresden

If an experimenter wants to determine the degree of a polynomial
regression on the basis of a sample of observations, Anderson showed that
the following method is optimal. Starting with the highest (specified)
degree the procedure is to test in sequence whether the coefficients are 0.
In this paper optimal designs for Anderson’s procedure are determined
explicitly. The optimal design maximizes the minimum power of a given
set of alternatives.

1. Introduction. A frequent problem in regression analysis is to deter-
mine how many independent variables have to be included in the fitted
regression function. In many cases (e.g., polynomial regression) the underly-
ing models are nested

l
(1.1) hi(x) = 'gﬁifi(x), 1=0,...,n,

and based on a sample of observations the experimenter has to identify the
appropriate model 4,(x). Anderson (1962) studied the following decision rule.
For a given set of levels (ay, ..., a,) the procedure chooses the largest integer
in {1,..., n}, for which the F-test in the model % ,(x) rejects the hypotheses
H,: 9, =0 at the levels a;, j=1,...,n. It is well known that Anderson’s
method has several optimality properties [see Anderson (1962) or Spruill
(1990)]. In the following, Y;,...,Y, denote m independent normally dis-
tributed observations with common variance o2 > 0 and mean given by one
of the models in (1.1), that is,

Y=Z0,+¢ forsomel=0,...,n,

where Y = (Y;,...,Y,), ¢ ~M0,0%,), 0,=(y,...,9) and Z, =
(FlaDiZ82k, 1=0,..., n. For Anderson’s procedure the probability of the
error of choosing too many functions is independent of the matrix Z; provided

that Z, has full rank [see Anderson (1962)]. If the model is 2 ,(x) = A,_(x) +
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9, f,(x), the distribution of the test statistic of the F-test for the hypothesis
H,: 9, = 0 has the noncentrality parameter

2 1912 1 (7 -1 -1
(1.2) & =;2—(el(Z,Z,) ez) ]

where e; = (0,...,0,1)’ € R!*! [see Pukelsheim (1993), page 70]. Conse-
quently, the probability of deciding in favor of 4;_;(x) [when the model is in
fact h,(x)] is a decreasing function of &7, and a good choice of a design
Xg,-- -, X, will make the quantities in (1.2) as large as possible.

In a recent paper Spruill (1990) considered similar problems and deter-
mined the optimal approximate design with respect to a maximin criterion
which maximizes the local power of the F-tests. In this paper we investigate
a different maximin criterion which depends directly on the noncentrality
parameters in testing the degree of a polynomial regression using Anderson’s
method. Therefore the structure of the optimal design changes completely
when the observations can be taken in a different design space or different
alternatives are assumed. In Section 2 we describe some general aspects of
(approximate) design theory and introduce the optimality criterion. Section 3
gives a short review of the theory of canonical moments which were intro-
duced by Studden (1980, 1982a, b) in the context of design theory. These
results are applied in Sections 8 and 4 in order to obtain a complete solution
of the proposed optimal design problem. In the special case [a, b] = [—1,1],
%, =1,1=1,...,n, the design with respect to the proposed criterion coin-
cides with the locally maximin design given in Spruill (1990). Finally, some
asymptotic considerations and examples are presented in Section 5.

2. The optimality criterion. Let 2 denote a compact space with a
sigma field containing all one-point sets and at least n + 1 points. In the
following we consider n + 1 linearly independent, real-valued and continuous
regression functions fy(x),..., f,(x) (defined on £) and collect the first [ + 1
functions in a vector g,(x) = (fo(x),..., f(x))', L =0,...,n. The model in
(1.1) can now be written as A,(x) = 6;g,(x). An (approximate) design § is a
probability measure on £ and the matrix

M(€) = f% g/(x)g;(x) dé(x)

is called the information matrix for the model A,(x), [ =0,...,n. If { puts
masses m;/m, i = 1,...,s, at the points x,,..., x,, the experimenter takes
m uncorrelated observations, m; at each «x;, i = 1,...,s, and the inverse of

the information matrix M,(¢) (in the model %;) is proportional to the
covariance matrix of the least squares estimator for 6,, that is, o %(Z}Z,)"*.
According to the discussion following (1.2), we call an approximate design &
(maximin) optimal discriminating design if ¢ maximizes the function

(2.1) (&) = min{ﬁlz(e’lel(g)el)_lll —1,...,n}.
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Note that this optimality criterion is a local criterion in the sense that it
depends on the alternatives 9; of the corresponding hypotheses H,: 9, = 0,
l=1,...,n. Spruill’s (1990) locally maximin designs on the interval [ -1, 1]
agree with the optimal discriminating designs for the alternatives 4, = -+ =
¥, = 1, and we will discuss a generalization of this special choice in the
following sections. An extremely useful tool for determining optimal (ap-
proximate) designs is the concept of equivalence theorems which provides
necessary and sufficient conditions for a design to be optimal [see, e.g.,
Pukelsheim (1993)]. In order to derive such a result for the optimality
criterion (2.1), we define, for a design ¢ with nonsingular information matrix

M, (),

M(¢)
M(f) = c. e Rn(n+3)/2xn(n+3)/2,

M,(§)

191_131

K= . e RMn+3)/2xn
5 te,
and
- - _ -1
Cx(M) = (K'M(¢)'K)

92(ey My (£)e;) "
I Rnxn'

82(e, M;1(£)e,) ™"

[Note that all other entries in these matrices are zero and that an optimal
discriminating design must have nonsingular matrices M,(¢),..., M, (£).] If
an information function j is defined on the nonnegative definite n X n
matrices by j(A) = A;,(A) [here A_; (A) denotes the minimum eigenvalue of
Al, then it follows for criterion (2.1) that

®(£) =j(Cx(M(£))), det M,(£) > 0.

By an application of the general equivalence theorem in Pukelsheim [(1993),
page 175] it is now straightforward to show the following equivalence theo-
rem for the optimality criterion defined in (2.1).

THEOREM 2.1. Let ¢ denote a design such that M,(¢) is nonsingular, and
let /(&) = {jl9%(e; M 1(€)e)™! = min7_, 92(e;M;1(&)e,)™ ). The design ¢
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is an optimal discriminating design if and only if there exist nonnegative
numbers «;, | € N &), with Liemey = 1 such that

(M '(£)g(x)" _
M (&e,

(2.2) Y o

les¢)

for all x € Z. Moreover, in (2.2) equality holds for all support points of every
optimal discriminating design.

REMARK 2.2. Theorem 2.1 can easily be generalized by changing the e, to
arbitrary vectors ¢, € R'*! and not necessarily nested regression functions.
In this case the design ¢ has to satisfy ¢, € range(M,(¢)), 1 =1,...,n, and
the inverses in Theorem 2.1 have to be replaced by general inverses [see
Pukelsheim (1993), page 283].

3. Polynomial regression models. Let g,(x) =(1, x,..., x')" denote
the vector of monomials up to the order / and 2°= [a, b]. Thus the problem of
Sections 1 and 2 is to determine the optimal design when Anderson’s proce-
dure is applied for testing the degree of a polynomial regression. For this
purpose we need some basic facts about canonical moments which were
introduced in the context of design theory by Studden (1980, 1982a, b) [see
also Lau (1983) for more details]. Let ¢ denote a probability measure on

[a, b] with moments c; = [’x? d£(x). For a given set of moments c,...,c;_;
let ¢ denote the maximum of the ith moment [°x’ d¢(x) over the set of all
probability measures w on [a, b] having the given moments C0sClyeverCisye

Similarly let ¢; denote the corresponding minimum. The ith canonical
moment is defined by

Ci—ci

p; = R 1=1,2,....

e —e;
Note that 0 <p; <1 and that the canonical moments are left undefined
whenever c;=¢;. If i is the first index for which this equality holds, then
0<p,<Ll,k=1,...,i -2, p,_, must have the value 0 or 1 and the design ¢
is supported at a finite number of points. In this case ¢ is the “lower” or
“upper principal representation” of its corresponding moment point
(cg,...,¢;_1) [see Skibinsky (1986), Section 1, or Chang, Kemperman and

Studden (1993)]. The optimality criterion (2.1) can easily be expressed in
terms of canonical moments [see, e.g., Lau and Studden (1985)]:

det M,(¢) | _ . n}

(I)( f) = min{ﬂfm

(3.1)

l
. 21
= mln{ﬂlz(b —a) _l_[l‘I2j—2P2j—1Q2j—1p2jl = L---Jl}
j=
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(here ¢; =1 —p;, j = 1, q, = 1). A probability measure ¢ is symmetric about
the pomt (a + b) /2 if and only if all canonical moments of odd order satisfy
P21 =

The followmg result shows that every symmetric design maximizes a
(weighted) geometric mean of the ratios det M,(£)/det M,;_,(¢) and can be
proved by similar arguments as in Dette (1991).

THEOREM 3.1. Let ¢* denote a design with canonical moments (3, p%,
%,PI, ’2ap2n 2 2’1) anddeﬁne

g3\ =1 q3;
(3.2) B (1——)1‘[ =2 l=1,...,n.
Pzzjlpz,

Then the design ¢* maximizes the weighted geometric mean

no( det My(£) %
I:I(detM 1(g))

among all designs on the interval [a, b].

If ¢ has canonical moments (p,, p,, p3, P4, Ps,---), then its reflection ¢’
about the point (a + b)/2 has canonical moments (g, ps, g3, P4> g5, - - -) [see,
e.g., Lau and Studden (1985), page 387]. Consequently, we obtain from (3.1)
that ®(¢) = ®(¢'), and it follows by standard arguments of optimal design
theory that the optimal discriminating design is symmetric about the point
(a +b)/2.

THEOREM 3.2. The optimal discriminating design ¢* has canonical mo-

ments 3, Py, 5, Pf,%,.-s P5,_2,3,1, where the canonical moments of even

order are defined for j = 1,...,n — 1 recursively by (p%, = 1)

'l?nz_j b_a _2j _
(33) p3<,,_,~)=max{1— 2552 T @ }
n i=n—j+1

PROOF Cons1der the design ¢* with canonical moments (3, p},
3s-+-13> P5n_2,3,1) defined by (3.3), and let

132 . b —a -2j n—1
m 1o nd * %
Vi 92 ( 2 ) (i=nlj£+1Q2tP2z

-1

, j=1,...,n—1.

If y; > 3, then it is easy to see [observing (3.1) and (3.3)] that

, detM, (&%) det M, (&%)
"det M, ; ,(£*) " detM, j(£%)
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On the other hand, if y; < 3, then p%, ; = ¢%,_,, = 3 and it follows that
(1 — y)~* < 2, which implies

19712 det Mn(g*) det Mn—j—l(g*) qu.k(n—j)

92 ; det M, (&%) det M, ;(£*) 1-v;
Consequently, the set #/(¢*) defined in Theorem 2.1 is given by (y, == 1)
(3.4) ME)={ie(d,...n)|n;=3)
By Theorem 3.1 the design ¢* maximizes the weighted geometric mean

n o det M,(£) \*
i=1\ det M;_,(§) ’

where the weights B are defined in (3.2). If all weights satisfy B;* > 0,
l=1,...,n, then Dette [(1993), Theorem 2.2] shows that this property is
equivalent to the condition

R 2
(3.5) i B (eiM;'(£%)g.( %))

il e;M;H(£%)e
for all x € [a, b]. If I €4(£¢%), then we have vy, _; < 3, by (8.3), p}, = 3 and
by (3.2) this implies B = 0. On the other hand, if y,_, > 3, it follows from
p3; = % that B/ > 0. Therefore Theorem 2.2 in Dette (1993) can be applied
and (3.5) may be rewritten as

R 2
Z B (ele 1( ‘f*)gl(x)) <
leM¢*) l e;M; (€% )e, -

for all x € [a, b]. The assertion follows now from Theorem 2.1. O

<1.

<1,

The weights and the support points of the optimal discriminating design
£* corresponding to the terminating sequence of canonical moments can be
calculated by standard techniques [see Lau (1988)]. Define o = (b — a)/2,
T=(a +b)/2,

bO _1
al bl _1
K( a; a, ) det .
= e ‘ .
by, b; - b :
0 1 n bn_l -1
a, b,
(all other entries in the matrix are 0) and the polynomials
(3.6) P(x)=K —0%q5, 2 D3, —o’q3p} ,
" X—T Xx—T = X—T X—T

2 % * 2 % %
3.7 — K| 9 P2n-492n-2 —O0"Paqy
(3.7) @n-a(®) ( X—T xX—7 e X —T X-— T
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[Py(x) = Qy(x) = 1, Pi(x) = @,(x) =x — 7], then the following result holds
[see, e.g., Lau (1988)].

ProOPOSITION 3.3. The optimal discriminating design £* is supported at
the n + 1 zeros x,...,x, of the polynomial (x —aXx — b)Q,_,(x) with
masses

Pn(xj)

f*({xl}) = d/dx[(x ) (x - b)Qn—l(x)] |x=xj , Jj=0,...,n.

EXAMPLE 3.4. Let a = —b = —1 and n = 2 (quadratic regression), by
Theorem 3.2 the optimal discriminating design has canonical moments (of
even order) p, = 1 and p, = max(1 — 92/9¢, 1/2}. Therefore, if | 9,| is small
in proportion to |9,| (i.e., [%;] < |9,/ V2), the optimal design £} puts masses
1/2 — 92 /2983, 92 /92,1/2 — 92/(292) at the points —1,0, 1. This corre-
sponds to the somewhat intuitive fact that one only needs a few observations
at zero in order to distinguish between a linear or quadratic regression on
[—1,1] when it is known that the extremum of the quadratic function is
attained in a neighborhood of 0. On the other hand, if |3¥,| is small compared
to |9,| Gie., |9,] > |9,1/ V2), the optimal discriminating design £ has p% = 1
and masses §, 3,7 at —1,0,1. In this case the minimum of the quadratic
polynomial is attained outside of the interval [ —1,1] and the linear and
quadratic functions have a similar form inside [ — 1, 1]. In order to distinguish
between these models, one has to take the best design for testing the highest
coefficient of the quadratic regression which is given by &5 [see also Kiefer
and Wolfowitz (1959)]. '

4. Explicit solutions. Throughout this and the following section we
consider the model of Section 3 with a special set of alternatives. More
precisely, we will assume that the unknown parameters in criterion (2.1)
satisfy 9, = 9!, I =1,...,n, for some 9> 0. For this case criterion (2.1)
reduces to [observing (3.1) and the fact that the optimal discriminating
design is symmetric, which means p,; ; = 3, j=1,...,n]

det M,(£)
det M, ,(¢)

d)(§)=min{021 l=1,...,n}

(4.1)

l «
= min{p2l ']___quj—2p2j l= 1’ LR n} ’
j=

where p = 9(b — a)/2. An optimal design with respect to the criterion (4.1)
maximizes the noncentrality parameters of the corresponding F-distributions
assuming that the alternatives ¥, of the hypotheses H,: 9, = 0 are of the
form 9, = 9!, 1 =1,...,n, for some & > 0.

The following result gives the canonical moments of the optimal design
with respect to this criterion. Here and throughout this paper U,(x) will
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denote the Chebyshev polynomial of the second kind [see, e.g., Rivlin (1990),
page 7].

THEOREM 4.1. The optimal dzscrtminating design [with respect to criterion
(4.1] has canonical moments (3,%,..., %5, Dir>3s+-» 3> Phn_o, 3, 1), where

Un—j+1( P/2)

4.2 = j = -1,...
( ) p2] pUn_J( p/2) ’ .] n,n 1, ,k’
and
2
(4.3) k=min{js Lﬂ((pp/%)l —fori=j,...,n

PrOOF. Let &, = 1 and consider the sequence

-2

(44) e =1- , j=n-1,...,1.
€iv1

It is straightforward to show that ¢; < ¢;,; whenever ¢,,..., £:1>0 and
obviously &, = 1 = U,(p/2)/pUy p/2) [see Rivlin (1990), page 39]. In the
following we show that & is given by the right-hand side of (4.2) for all
J=1,...,n. To this end we use the recursive relation for the Chebyshev
polynomials of the second kind,

Uiii(%) = 22U (x) = U, 4(x), Up(x) =1,U_(x) =0

[see Rivlin (1990), page 40] and obtain by induction (j + 1 — j) that
“2U,_._ 2 U, .. 2

(45) 8j=1—p pnjl(p/)= jl(p/)’
Un—j( P/2) pUn—j( P/2)

By Theorem 3.2 the canonical moments of even order of the optimal discrimi-
nating design [with respect to criterion (4.1)] are given by

j=1,...,n.

) n—1 1
(4.6) p§j=max{1—p‘2(”‘f) I1 (qgipgi)_lﬁg}'
i+1

i=j

If p < 1, then we have pj; = 3,7=1,...,n— 1, and k = n because it follows

from (4.3)-(4.5) that ¢, _; = Uz( p/2)/pU1( p/2) =1-p 2 <0. In this case
the assertion of Theorem 4.1 is obviously correct. On the other hand, if p > 2,
then we obtain from (4.6) that p}, ,=1-p % > 2 and by an induction

argument that p3; > 3,J =1,...,n. In this case we have, from (4.6),

-1
(47) p;]: 1_P_2(n_j)(.n qZLPZI) ’ J=n_ 1’“"1’

i=j+1

and it can easily be seen that (4.7) and (4.4) define the same sequences. The
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assertion now follows from the representation (4.5) [note that we obtain
= 11in (4.3)]. Finally, if 1 < p < 2 and there exists an index 2 — 1 such that

n—1 -1
—2(n—k+1 1
1— p2nmke )(I-.!quip’;i) <32
ie

then p%,_, = 3 and we obtain

n—1

n—1 -1 -1
1- P_2(n_k+2)(. l:[ 1‘135;‘}73;‘) =1- P_z(n_k+1)( 11 q;ip;i) 4p7% < 3,
i=k— i=

which also implies p%,_, = 3. Consequently, the sequence of canonical mo-
ments of the optimal discriminating design is of the form (3,...,
P53y 3 D50 0,5, 1), where p},,..., p5,_5 > 3 can be calculated re-
cursively by (4.4) [or, equivalently, by (4.7)]. The assertion of the theorem now
follows from (4.5), which shows that % is defined by (4.3). O

REMARK 4.2. The proof of Theorem 4.1 shows that there are three differ-
ent cases for the sequence of canonical moments of the optimal discriminat-
ing design £*:

(@) p < 1. ¢* has canonical moments (3,..., 3, 1). In this case the optimal

discriminating design coincides with the locally maximin designs considered
by Spruill (1990) (b = —a = 1, 9 = 1) and the set #(£*) of Theorem 3.1 is
given by #(£*) = {n}.

(b) 1 < p < 2. In this case there exists an index 1 < 2 < n (depending on n
and p) such that ¢* has canonical moments

(%,---,%,P§k,%w-,%,P’;n—z,%’l),
where p¥. > 1, j=k,...,n — 1, is defined recursively by (p%, = 1)
2j 2 2n
-2
(4.8) psj=1—-——, j=n-—-1,...,k,
P2ji2

and explicitly given by (4.2). It is straightforward to show that for sufficiently
large n this index always satisfies £ > 1 (this is a consequence of the fact
that for p < 2 the equation 1 — p~2/z = z has no fixed point and that the

case k = 1 implies 3 < p}; < p};,,, for all j=1,...,n — 1). For this choice
we have
. P p
{k,...,n}, 1f2Un—k+2(§) < pUn—k+1(§)’
AE) = P P
{k_l,k,...,n}, if2Un—k+2(§) _pUn—k+l(2)
(© p=2. £&* has canonical moments (3, p},%,..., 3, P5,_2,3, 1), where

the canonical moments of even order p}; > 3 are defined recursively by (4.8)
for all j=1,...,n — 1'[or, equivalently, by (4.2)]. In this case we have
MEF) ={1,...,n}.
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In the following we will identify the support points and the weights of the

optimal discriminating design ¢* in Theorem 4.1. At first we will consider
the case p > 2, which turns out to be essential for the general case.

THEOREM 4.3. Let p > 2. Then the support points x, ..., x, of the optimal
discriminating design ¢* are givenbyx; =z; + (a + )/2,j =0,..., n, where
Zy,..., 2, are the zeros of the polynomial

x p x p
Un+1(——2—)Un—1(§) - Un—l(?)Un+1(§)

and the weights at these points are

é({x) = 2U,(2,9/2)U,1( p/2)
J U7:+1(Zjﬁ/2)Un—1( p/2) - U,:_l(zjﬁ/z)UrH_l( p/2) ’

Jj=0,....n

ProOF. From Remark 4.2 we have £ = 1 in Theorem 4.1. The support
points and weights of the optimal discriminating design ¢* are given in
Proposition 3.3. It is easy to see that the polynomials @,(x) and P,(x) are
functions of x — (a + b)/2, and we may assume without loss of generality
that the design space is the interval [-(b — a)/2,(b — a)/2], that is, 7 = (a
+ b)/2 = 0 (note that by Theorem 4.1 the canonical moments of the optimal
design depend on the interval [a, b] only by its length). By Studden [(1982b),
Lemma 2.10], the design ¢ with canonical moments (3, p,,
2’ ’2’p2n 2 2’1)and

_ Ui 1(p/2) _ Ui-1(p/2)
pU(p/2)  pU(p/2)°
j=1,...,n—1,

5. =1 —pt . =
(4'9) DPgj Pon-j

has the same support points as ¢* [here we used (4.2) and the recursive
relation for the Chebyshev polynomials of the second kind; see, e.g., Rivlin
(1990), page 40]. An expansion of the determinant in (3.7) yields that the
support points of £ are given by zeros of the polynomial (x2 - az)Qn 1(x),
where o = (b — a)/2 and Ql(x) is defined recursively by

Ql+ (x) = le(x) - 02}32152“2@1—1(95)

(4.10) . L, U i(p/2)U;,5( p/2)
=) S U /2)

Q- 1(x),
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1=0,...,n -2, Qo(x) =1, @,(x) = x. Using the recursive relation for the
polynomials U;(x), it now follows by an induction argument and formula
(22.7.26) in Abramowitz and Stegun (1964) that

Uss2(x9/2)U( p/2) = Ul(x9/2)U;.5( p/2)
9 ((x9)* = p*)Uy(p/2)

Ui+ o(x9/2)Uy( p/2) = Ul(x9/2) Uy, 5( p/2)
9% (2% = o*)Uy(p/2) ’

and the assertion about the support points is an immediate consequence of
Proposition 3.3 (note that p = 30 ). For the second part we remark that the
polynomial @, _,(x) in (8.7) (corresponding to the canonical moments of £*)
satisfies @, (x) = @,_,(x). Because p > 2 we have #/(¢*) =({1,...,n} and
obtain, from (4.1) and the discussion in the proof of Theorem 4.1,
(4.12) Q5 p5o=p2=029% 1=1,...,n- 1.
For the polynomials P,(x) defined in (3.6), this implies that

P, (x) =xP(x) — 9 2P,_(x), 1=0,1,...,n—1,

Py(x) =1 and P/(x) = x, and it is easy to see that these polynomials are
given by

Qz( x) =
(4.11)

P(x) = 0—%,(%9).

The assertion about the weights now follows directly from Proposition 3.3 and
4.11). o

THEOREM 4.4. Let p > 0 and let k be defined by (4.3). Then the support
points x, ..., x, of the optimal discriminating design are given by x;=2z;+
(@ +b)/2,j=0,...,n, where z,,..., z, are the zeros of the polynomial

Ho() = U {0 5 o[ 3) - s JOhnee(3)]
e 2k

xU p
_Un—k—l(_z—)Un—k+1(§)}’

while the weights are given by
£({x})

_ Un 111(2,9/2)U, 1(2;9/ p)U, 4(p/2) —U,_, (2;8/2) U _5(2,9/ p)U, _111(p/2)
971 (d/dx) Hyoo( %)=,

2

J=0,...,n.
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PROOF. As in the proof of Theorem 4.3 we assume without loss of general-
ity that the design space is given by the interval [—(b — a)/2,(b — a)/2] and
consider the reversed sequence (3, py, 3,.--» %> Pan_2, 3> 1), where py; =1 —
Psn-j» J =1,...,n — 1. The corresponding design £ has the same support
points as £*, and from the definition of %2 in (4.3) and Remark 4.2 we have
Daj = L j=n—-k+1,...,n— 1 Thus it follows from (8.7) that [c = (b —

a)/2]

k-2
. o\2 o\2
Q,_1(x) =K _(5) ‘(5) _UzﬁZ(n—k)q~2(n—k+l) _U'ZPQ%
X X e X X ves X X
k-2
o\? o\? 'Uzﬁz(n—k—n(iz(n—k) _0'213254
=K| ==} - =|= K
2 2 x x x
X X x
k-3
”- ) o\2 o\2
-0 p2(n—k)q2(n—k+1)K _(5) _(E)
_UzﬁZ(n—k—Z)dZ(n—k~1) _02152974
XK ,

where the last line follows from Sylvester’s identity [see Lau (1983), page 23].
Observing the reasoning (4.10) and (4.11) in the proof of Theorem 4.3, we see
that the second factors in both terms are given by (4.11) for [ =n — k and
I = n — k — 1, respectively. By the same reasoning as at the end of the proof
of Theorem 4.3, the first factors satisfy the recurrence relation

Broi(x) = B(x) ~ (5] B,

P (x)=0 and Pyx)=1 and are given by (0/2)* 'U,_,(x/0) and
(0/2)¥72U,_y(x/0), respectively. Thus it follows from (4.2) and p,; =1 —
DP3n—j that

Qn—l(x) = (‘g)k_l[qu(f;) (%)

o Uy a(p/2) (%0
“; U._.(p/2) Uk—z(_) n«k«l(x)jl’
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where @} (x) is defined by (4.11). This yields

; oyt Hy, ()
4.13 x2 - o2 Q, (x) = (__) Jh-n-2. n+1
@ WOl =13 Up_i(p/2)

and proves the assertion for the support points. For the calculation of the
weights of the design ¢£* we obtain for the polynomial P,(x) in (3.6), by a
similar reasoning,

P,(x) - (U/Uzn)_kk_(lj/kz_;_l {Un_k“(%?)Uk_l(%?)Un_k(ﬁ)

(414 O (oo 2o (5]

and Theorem 4.4 follows by a further application of Proposition 3.3. O

[\

REMARK 4.5. If[a, b] =[—1,1], 9 = 1, the optimal discriminating design
coincides with the locally maximin design determined by Spruill (1990). In
this case we have p=1 and k£ =n in Theorem 4.1, and the polynomial
H,, (x) in Theorem 4.4 is given by

U,-1(x)(x* - 1).

Moreover, it is not too hard to show that the weights at the support points
x; = —cos((w/n)j), j =0,...,n, are proportional to 1:2: --- :2:1 [see Spruill
(1990)]. Another case of interest is p = 2 because at this point the sequence
in (4.4) changes from a divergent sequence into a convergent sequence
(j » —). Observing (4.2) and U,(1) = n + 1, we obtain

N n—j+2 1
p2j_2(n_J)+2’ J=4...,n,
D31 = 1, and Theorem 2.5 of Dette (1992) yields that in this case the
optimal discriminating design ¢* has masses proportional to 2:3: -+ :3:2

at the zeros of the polynomial
(22 = DU (x).

5. Asymptotic distributions. In this section we consider the same
setting as in Section 4 when the degree n of the polynomial is large. By
Theorem 4.1 and (4.8), the canonical moments (of even order) of the optimal
discriminating design ¢* are given by

1
3 1<j<k-1,
(5.1) pi; = =

> k<j<n-1,
DP3jyi2

where % is defined in (4.3). If p < 2, then it follows from the discussion in
Remark 4.2 that for sufficiently large n there exists an index j, such that
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ps; = 3 for all i <n — j,. Consequently, the optimal discriminating design
converges (weakly) to the probability measure with canonical moments p, = 4
for all i € N. If p > 2, then Remark 4.2 shows that p} ;> 2 for all j € N. The
sequence (5.1) is decreasing (i.e., p} ;-2 < Dp3;) and consequently, as n tends to
infinity, the canonical moments of the optimal design ¢* converge to the

distribution for which

= =1
Py =2, Poj1= 32,

for all j € N, where z > ; is the fixed point of the equation z =1 — p~2/z,

that is,
(5.2) z=3+3Y/1—4p72.

THEOREM 5.1.

(a) If p <2, then the optimal discriminating design ¢* converges weakly
to the arcsin distribution with density

1 1

— —, ifa<x<b,
f(x) ={ ™ V(x—a)(b-x)

0, otherwise.

(b) If p = 2, then the optimal discriminating design &* converges weakly
to a distribution m which has a discrete and an absolute continuous compo-
nent. The absolute continuous component of the limit distribution m is given

by

2(b - a) V16972 — (2x — (a + b))
™ |o-a) V- - 16577 |[(6 ~a)° - (2x — (a +b))"]
f(=x) = b
if o = —5—| < 2|97,
0, otherwise,

and, additionally, n has two isolated jumps of magnitude

4—p2+p\/p2—4
4

at the points a and b.

PrOOF. By the discussion at the beginning of this section, we have to
identify the (unique) probability measure 7 corresponding to the sequence of
canonical moments
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where z > 3. Let o0 = (b — a)/2 and 7 = (a + b)/2. Then it follows [see, e.g.,
Dette (1992), page 245] that the Stieltjes transform of 7 is given by the
continued fraction expansion

pdn(t) 1

® = -
(w) vl;w—t w—1-0%22G(w)’
where
1 | c?z(1-2) o22(1-2)
G(w)_lw—r_ | w—-7 | w-7
1

w—1—0%2(1-2)G(w)’

Solving with respect to G(w) yields

—7—\/(w—7)2—402(1—z)z

Glw) = 20%z(1 - 2) ’

where the square root is defined such that

w—rT (w - 1')2 B
20v/2(1 - 2) " 40%z(1 - 2)

[see VanAssche, (1987), page 176], and consequently we obtain, by straight-
forward calculation,

(5.3) 1

>1

1 (1-22)(w-7) = V(w-1)’ - 40%(1 - 2)

d(w) = —
() 22 (w—-1)° - a?

A delicate analysis of the sign of the square root defined by (5.3) shows that ®

has no poles if z < 3. If z > 1 the Stieltjes transform of n has two simple

poles at the points a and b with residues

2z -1 4—p2+p\/p2—4

(5.4) P 1

From the inversion formula for Stieltjes transforms [see, e.g., Perron (1954)],
it now follows that the absolute continuous component of the limit distribu-
tion 7 is given by

1 Vdo?z(1-—2z)— (x—17)2
L S S

b
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where |x — 71* < 4022(1 — 2). If p > 2, then 4022(1 — z) = 492 [which fol-

lows from (4.12)], 7= (a + b)/2 and, using (5.2), the absolute continuous
component of 1 can be written as

2(b — a)

f(x) = —

y V16972 — (2x — (a + b))’
[(6-a) + V(b -a) - 16572 |[(6 - a)* ~ (25 — (a +b))"]

lx — (a + b)/2| < 2|9~". Additionally, the limit distribution 1 has two jumps
of magnitude (2z — 1)/2z at the points a and b, which proves part (b) of the
theorem.

Finally, if p < 2, it follows that z = + and 7 is absolutely continuous. For
the density, we obtain from (5.5), by straightforward calculations,

fe) =~ 1
TV - (x-a)

which proves part (a) of the theorem. O

a<x<b,

REMARK 5.2. If p < 2, then the limit distribution 7 of the optimal discrim-
inating design is the arcsin law, which is also the limit distribution of many
other sequences of designs [see, e.g., Lau (1988]. If p > 2, the situation is
changing and 7 has two additional jumps at the points a and b. For example,
if [a,6] =[-1,1] and 9 = 2.5 = p, we obtain that n has masses 2 at the
points —1 and 1, while the remaining mass is distributed over the interval
[ £, %] according to the “density”

\/16——257{ 4}.

*_I _
(1) M =3

Note that in the case p — © we have z — 1 [from (5.2)] and (5.4) yields that
the limit distribution approximates the two-point design with equal masses
at the points a and b.

f(x) =

ExamPLE 5.3. It might be of interest how the designs behave in a situa-
tion where they are not optimal. To this end consider the case ¢ = — b, 9 =1,
p=>b and n = 3 (cubic regression). If b < V2, then the locally maximin
design determined by Spruill (1990) is also the optimal discriminating design,
that is,

-b _5
§1= 1

wW| = | o

b
1
3 6
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and the canonical moments (of even order) of &; are p, = p, = 3 and pg = 1
(this follows from Theorems 4.1 and 4.3). If Y2 < b < V3, we obtain from the
results of Section 4 that the optimal discriminating design is given by

1 1

0 7z z °
111 1 1 b2 182-1 |
22b2-1 22b2—-1 222—-1 2262-1

with canonical moments (of even order) p, =3, p,=1—5"2 and ps = 1.
Note that the interior support points are independent of b € [V2,V3]. Fi-

nally, if b > V3, the optimal design is

b % -2 b2 -2
b2 -1 b2 -1
§3= »

11 b2 1 b? 1 b? 11 b?
2 bt — 2% + 2 2b*—-2b2+2 2b1-2b2+2 2 bt — 262+ 2

with canonical moment (of even order) p, = (62 - 2)/(b%2 - 1), p, =1 — b2
and pg = 1 (this follows from Theorem 4.3 or 4.4). For the values of the
optimality criterion (4.1) at these points, we obtain the following:

b6

TR ifb <2,

4
Q(¢,) = 5 ifV2 <b <2,

2

- if2<b;

2

T(1)2—1), ifl<b<v3,
(I)(§2)= b2

—é-, ifb>\/§;

2

2
D( &) =b262_ T forall b > V2.

Table 1 gives some efficiencies for different values of the parameter 4. Note
that the designs ¢, and &; are not defined if b is too small (i.e., b < 1 for &,
and b < V2 for £,). This is caused by the fact that the designs have to satisfy
MEy) =1{2,3} and #(&;) = (1,2, 3}, which is impossible if b is too small. We
conclude with the statement that the performance of the different designs
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TABLE 1
Efficiencies of the designs &,, &, and &5 for different intervals [ —b, b]

b
Design /2 1.5 1.6 1.7 V3 2 3 10 o
& 1 09 0.8205 0.7646 0.75 0.75 05714 05051 0.5
£ 1 1 1 1 1 0.75 05714 05051 05
£, 0 064 09204 09966 1 1 1 1 1

with respect to the criterion (2.1) will depend heavily on the length of the
interval.
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