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ON THE STAHEL–DONOHO ESTIMATOR AND DEPTH-WEIGHTED
MEANS OF MULTIVARIATE DATA

BY YIJUN ZUO,1 HENGJIAN CUI2 AND XUMING HE3

Michigan State University, Beijing Normal University
and University of Illinois at Urbana-Champaign

The depth of multivariate data can be used to construct weighted means
as robust estimators of location. The use of projection depth leads to the
Stahel–Donoho estimator as a special case. In contrast to maximal depth
estimators, the depth-weighted means are shown to be asymptotically normal
under appropriate conditions met by depth functions commonly used in the
current literature. We also confirm through a finite-sample study that the
Stahel–Donoho estimator achieves a desirable balance between robustness
and efficiency at Gaussian models.

1. Introduction. Depth functions for multivariate data have piqued the
interest of researchers in robust and nonparametric statistics for quite some
time. A number of data depth measures, including the half-space depth of
Tukey (1975), the simplicial depth of Liu (1990) and the projection depth
discussed in Liu (1992) and Zuo and Serfling (2000a), have been proposed
and discussed for outlier detection, data ranking and robust estimation. General
discussions of the properties of data depth can be found in Liu and Singh (1993),
He and Wang (1997), Rousseeuw and Hubert (1999) and Zuo and Serfling
(2000b). More extensive studies of Tukey’s half-space depth and the associated
location estimators were made by Donoho and Gasko (1992) on robustness and
Massé (1999) on asymptotics. The Stahel–Donoho estimator [Stahel (1981) and
Donoho (1982)], a location estimator based on projection depth, has been studied
by Tyler (1994) on robustness and by Maronna and Yohai (1995) on asymptotics.
The limiting distribution of the Stahel–Donoho estimator has not been worked out,
notwithstanding.

The present paper focuses on the asymptotic behavior of the depth-weighted
L-type location estimators. Following Liu (1990) and Liu, Parelius and Singh
(1999), we shall call them DL-estimators of location. We give sufficient conditions
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under which the DL-estimators are asymptotically normal and note that these
conditions have already been established in the literature for some commonly used
depth measures. We then specialize to a class of projection depth functions and
show that the corresponding DL-estimators satisfy all the conditions needed for
Gaussian limiting distributions. The asymptotic normality of the Stahel–Donoho
estimator follows as a special case.

The asymptotic properties established in the paper are basic to statistical
inference based on depth or the induced statistics. They also supplement the work
of Bai and He (1999), Zuo (2003) and Kim and Hwang (2001) on the asymptotic
distributions of maximal depth estimators. The DL-estimators we consider here
require positive weights to a portion of observations around the maximal depth
point, and, consequently, their limiting distributions are still Gaussian. If we take
a single point of maximal depth, the limiting distribution is no longer Gaussian.
For location estimation, the efficiency consideration always favors using the
observations around the “median,” not just the “median” itself. The difference
in the form of limiting distributions is yet another reason for choosing weighted
means.

The rest of the paper is organized as follows. In Section 2, we establish, under
appropriate conditions on the depth function and the weight function, a general
asymptotic representation theorem for the DL-estimators from which the influence
function can be identified and a Gaussian limiting distribution can be derived.
Section 3 is devoted to the projection depth function and verifies that it satisfies
all the conditions needed for the corresponding DL-estimators to have Gaussian
limiting distributions. We also discuss the finite-sample efficiency and breakdown
robustness of such location estimators. Technical proofs of all asymptotic results
are provided in the Appendix.

2. Asymptotics of DL-estimators. DL-estimators were first considered in
Liu (1990) and then discussed in great length in Liu, Parelius and Singh
(1999). This section deals with the asymptotics of the estimators. We work
with a general depth function D(x,F ) and the corresponding DL-estimators of
multivariate location. More specifically, we assume, without loss of generality,
that D(x,F ) ∈ [0,1] and define for a multivariate distribution F and a weight
function W the following functional:

L(F ) =
∫

xW(D(x,F ))F (dx)∫
W(D(x,F ))F (dx)

.(2.1)

Given a random sample X1, . . . ,Xn, we shall write L(Fn) as the empirical version
of L(F ). The mean or trimmed mean can be viewed as an interesting case within
our framework. The maximal depth estimator may be viewed as a limiting case
of (2.1) where W places all its weight on the points with maximal depth, but it
is excluded in this paper. Let us first impose the following conditions to ensure a
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well-defined L(F ):∫
W

(
D(x,F )

)
F(dx) > 0,

∫
‖x‖ W

(
D(x,F )

)
F(dx) < ∞.(2.2)

The first part of (2.2) holds in typical cases and the second part becomes trivial
if E‖X‖ < ∞ or if W(D(x,F )) is 0 outside some bounded set.

2.1.
√

n-consistency and asymptotic normality. The asymptotic properties
of L(Fn) depend on those of Dn(x) = D(x,Fn) as demonstrated in the following
theorem. For the sake of convenience, we define

νn = √
n(Fn − F), Hn(·) = √

n
(
Dn(·,Fn) − D(·,F )

)
(2.3)

and denote ‖Hn‖∞ = supx∈Rd‖Hn(x)‖. Let Dr = {x :D(x,F ) ≥ r} for r ≥ 0 and
let W ′ be the derivative of W . For convenience, we itemize the assumptions as
follows:

(A1) W ′ is continuous and W(r) = 0 for r ∈ [0, αr0] with some α > 1;
(A2) ‖Hn‖∞ = Op(1) and supx∈Dr0

‖x‖|Hn(x)| = Op(1) for some r0 ≥ 0;

(A3)
∫ ‖x‖2(W(D(x,F )))2F(dx) < ∞;

(A4) there exists h(x, y) such that Hn(x) = ∫
h(x, y)νn(dy) + op(1) uniformly

on Sn ⊂ Dr0 with P (Dr0 − Sn) = o(1) and
∫ [∫ ‖y‖|W ′(D(y,F ))h(y,

x)|F(dy)]2F(dx) < ∞.

REMARK 2.1. Condition (A1) is rather trivial for a sufficiently smooth weight
W(r) that is 0 for r in a neighborhood of 0. Condition (A3) is required for
the existence of the covariance matrix of the DL-estimator and becomes trivial
if E‖X‖2 < ∞ or if W(D(x,F )) is 0 outside some bounded set. The set Dr0

in (A2) could be replaced by any bounded set containing Dr0 or the whole
space R

d , depending on the applications.

THEOREM 2.1. Assume (2.2) and let θ = L(F ).

1. Under conditions (A1) and (A2), we have L(Fn) − θ = Op(1/
√

n).

2. Under conditions (A1)–(A4), we have

L(Fn) − θ = n−1
n∑

i=1

(
Kθ(Xi) − EKθ(X)

) + op(n−1/2),

where

Kθ(x) =
∫
(y − θ)W ′(D(y,F ))h(y, x)F (dy) + (x − θ)W(D(x,F ))∫

W(D(x,F ))F (dx)
.
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The detailed proof of Theorem 2.1 is given in the Appendix, but it is based
on an approximation to the numerator of

√
nL(Fn). Owing to equivariance of the

estimator, we may assume without loss of generality that θ = L(F ) = 0. We then
have
√

n

∫
xW

(
D(x,Fn)

)
Fn(dx)

=
∫

xW
(
D(x,F )

)
νn(dx) + √

n

∫
x
[
W

(
D(x,Fn)

) − W
(
D(x,F )

)]
Fn(dx)

=
∫

xW ′(θn(x)
)
Hn(x)Fn(dx) +

∫
xW

(
D(x,F )

)
νn(dx)

=
∫ {∫

yW ′(D(y,F )
)
h(y, x)F (dy) + xW

(
D(x,F )

)}
νn(dx) + op(1)

for some θn(x) between D(x,Fn) and D(x,F ). The last equality above is obtained
by replacing Hn(x) by its linear approximation given in (A4). The asymptotic
representation in Theorem 2.1 follows from the above arguments. A consequence
of the representation is

√
n
(
L(Fn) − θ

) d→ N(0,�),

with � = Cov(Kθ(X)). In addition, by considering the differentiability of the
functional L(F ), it can be formally proven that the influence function for the
DL-estimators is of the form Kθ(x), but the technical details are not pursued here.

REMARK 2.2. Theorem 2.1 is stated for weak convergence but the strong
consistency of the estimators can be established in a similar fashion if the in-
probability bound of (A2) holds almost surely.

2.2. A look at some common depth functions. Theorem 2.1 provides a general
means to establish the asymptotic normality for DL-estimators. Through the
following examples, we shall illustrate that conditions (A2)–(A4) hold for some
commonly used depth functions.

Most depth functions satisfy a so-called “vanishing at infinity” property in
the sense that lim‖x‖→∞D(x,F ) = 0; see Liu (1990) and Zuo and Serfling
(2000a). When r0 > 0, Dr0 is bounded for such depth functions. Consequently,
(2.2) and (A3) become trivial for the smooth weight W in (A1), and the second
part of (A2) follows directly from the first part. Therefore, if (A1) holds for some
r0 > 0, one just needs to focus on (A4) and the first part of (A2) when using
Theorem 2.1.

EXAMPLE 2.1. The half-space depth function HD(x,F ) = inf{P (Hx)},
where Hx is any closed half-space containing x [Tukey (1975)]. Clearly, HD(·, ·)
vanishes at ∞. Conditions (A2) and (A4) can be verified using the analyses of
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Massé (1999). Therefore, for any weight function satisfying (A1) with r0 > 0,
the DL-estimator constructed with HD(·, ·) is asymptotically normal. In this case,
Theorem 2.1 agrees with the result obtained by Massé (1999) for half-space depth
trimmed means.

EXAMPLE 2.2. The simplicial depth function SD(x,F ) = P (x ∈ S[X1, . . . ,

Xd+1]), where X1, . . . ,Xd+1 is a random sample from F and S[x1, . . . , xd+1]
denotes the d-dimensional simplex with vertices x1, . . . , xd+1 [Liu (1990)]. By
virtue of the asymptotic results of SD(·, ·) in Sections 2 and 3 of Dümbgen (1992),
conditions (A2) and (A4) hold for SD(·, ·) with r0 > 0. Asymptotics of SD(·, ·) are
also treated in Arcones and Giné (1993).

It is worth noting that conditions (A2)–(A4) fail for SD and HD if r0 = 0.
Therefore, the asymptotic normality of the corresponding DL-estimators is
established only when the observations with sufficiently low depth are trimmed.
The next example allows for more general weighting.

EXAMPLE 2.3. The Mahalanobis depth MD(x,F ) = (1 + (x −µF )′�−1
F (x −

µF ))−1, where µF and �F are some location and scatter functionals at F [see Liu
(1992) and Zuo and Serfling (2000a)]. If n1/2(µFn −µF ) = ∫

h1(y)νn(dy)+op(1)

and n1/2(�Fn − �F) = ∫
h2(y)νn(dy) + op(1), it is then straightforward to

check that (A2) and (A4) hold for MD(·, ·) with r0 = 0 and h(x, y) = (2(x −
µF )′�−1

F h1(y) + (x − µF )′�−1
F h2(y)�−1

F (x − µF ))/(1 + (x − µF )′�−1
F (x −

µF ))2. If W(r) is continuously differentiable on [0,1] and EF‖X‖2 < ∞, then
(A1)–(A4) hold with r0 = 0.

We shall show in the next section that (A1)–(A4) also hold for a class of
projection depth functions with r0 = 0.

3. Projection depth and the Stahel–Donoho estimator. In this section, we
turn to a class of projection depth functions and the corresponding DL-estimators
with the Stahel–Donoho estimator as a special case.

The projection depth functions discussed in the paper can be described as
follows. Let µ and σ be location and scale functionals in R

1. The outlyingness
of a point x ∈ R

d with respect to a given distribution function F of X ∈ R
d , d ≥ 1,

can be defined as

O(x,F ) = sup
‖u‖=1

g(x,u,F ),(3.1)

where

g(x,u,F ) = |u′x − µ(Fu)|/σ (Fu),(3.2)

with Fu the distribution of u′X, u ∈ R
d . If u′x − µ(Fu) = σ(Fu) = 0, we define

g(x,u,F ) to be 0. The projection depth of a point x ∈ R
d with respect to the

distribution F is then defined as

PD(x,F ) = 1/
(
1 + O(x,F )

)
.(3.3)
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Throughout our discussions, µ and σ are assumed to exist for all univariate dis-
tributions involved. We also assume that µ is translation and scale equivariant and
σ is scale equivariant and translation invariant, that is, µ(FsY+c) = sµ(FY ) + c

and σ(FsY+c) = |s|σ(FY ), respectively, for any scalars s and c and random vari-
able Y ∈ R

1. The empirical versions of g(x,u,F ), O(x,F ) and PD(x,F ) shall
be denoted by gn(x,u), On(x) and PDn(x), respectively. They are obtained by
replacing F by the corresponding empirical distribution Fn.

Note that (3.1) has long been used as a measure of outlyingness for multivariate
data; see Mosteller and Tukey (1977), Stahel (1981) and Donoho (1982). It is
affine invariant, and provides an ordering of points from the center outwards. Any
monotone decreasing function of O(x,F ) can be taken as a measure of depth, but
the particular choice of (3.3) ensures that 0 ≤ PD(x,F ) ≤ 1 for x ∈ R

d . With
µ and σ being the median (Med) and the median absolute deviation (MAD),
respectively, Liu (1992) suggested PD(x,Fn) as a depth function.

3.1. Asymptotic normality. Since the projection depth function is based on a
univariate location and scale functional, basic conditions on µ and σ are given
first. We use Fnu as the empirical distribution function of {u′Xi, i = 1, . . . , n} for
any u ∈ R

d .

(C0) sup‖u‖=1|µ(Fu)| < ∞, sup‖u‖=1σ(Fu) < ∞ and inf‖u‖=1σ(Fu) > 0;
(C1) sup‖u‖=1|µ(Fnu) − µ(Fu)| = op(1), and sup‖u‖=1|σ(Fnu) − σ(Fu)| =

op(1);
(C2) sup‖u‖=1

√
n|µ(Fnu) − µ(Fu)| = Op(1) and sup‖u‖=1

√
n|σ(Fnu) −

σ(Fu)| = Op(1);
(C3) the asymptotic representations

µ(Fnu) − µ(Fu) = 1

n

n∑
i=1

f1(Xi, u) + op

(
1/

√
n

)
(3.4)

and

σ(Fnu) − σ(Fu) = 1

n

n∑
i=1

f2(Xi, u) + op

(
1/

√
n

)
(3.5)

hold uniformly in u, and the graph set of {fj (X,u) :‖u‖ = 1} forms a poly-
nomial set class with E(fj (X,u)) = 0 for any ‖u‖ = 1, E sup‖u‖=1 f 2

j (X,

u) < +∞ and

E sup
|u1−u2|≤δ

‖u1‖=‖u2‖=1

|fj (X,u1) − fj (X,u2)|2 → 0

as δ → 0 for j = 1,2.
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For more details on the polynomial set classes, we refer to Pollard (1984). Note
that conditions (C1)–(C3) are nested in the sense that (C3) implies (C2) and (C2) is
stronger than (C1). We shall discuss the applicability of these conditions later in
the section. First, we give the following lemma that relates to the convergence
property of the projection depth function. The proof is omitted here as it is similar
to that of Theorem 2.3 of Zuo (2003).

LEMMA 3.1. Under (C0), we have:

1. supx∈Rd (1 + ‖x‖) |PD(x,Fn) − PD(x,F )| = op(C1) if (C1) holds;
2. supx∈Rd (1 + ‖x‖) |PD(x,Fn) − PD(x,F )| = Op(n−1/2) if (C2) holds.

For any x, let u(x) be the set of directions satisfying (u′x − µ(Fu))/σ (Fu) =
O(x,F ). If u(x) is a singleton, we also use u(x) as the unique direction. If X is a
continuous random variable, the nonuniqueness of u(x) may occur at finitely many
points.

We can now apply Theorem 2.1 to estimators based on the projection depth PD.
Under (C3), condition (A2) holds with r0 = 0 and Dr0 = R

d as implied by
Lemma 3.1, and (A1) is automatically true for smooth weight functions. In the
proof of the following theorem (see the Appendix), we show that (A3) and (A4)
are indeed true for the projection depth.

THEOREM 3.1. Assume (2.2), (C3) and that W(r) is continuously differen-
tiable with W(0) = 0. In addition, assume that µ(Fu) and σ(Fu) are continu-
ous in u, σ(Fu) > 0, and u(x) is a singleton except for finitely many points of x

with zero probability. Then the projection depth-based estimator L(Fn) is consis-
tent for θ = L(F ) and

√
n
(
L(Fn) − θ

) d→ N
(
0,Cov

(
Kθ(X)

))
,

where

Kθ(x) =
∫
(y − θ)W ′(PD(y,F ))f (y, x)F (dy) + (x − θ)W(PD(x,F ))∫

W(PD(x,F ))F (dx)
,(3.6)

with

f (y, x) = O(y,F )f2(x,u(y)) + f1(x,u(y))

σ (Fu(y))(1 + O(y,F ))2 .

Maronna and Yohai (1995) discussed the
√

n-consistency of the Stahel–Donoho
estimator with µ and σ being Med and MAD functionals. We shall demonstrate
that the asymptotic normality result of Theorem 3.1 holds for a wide class of depth-
weighted means, including the Stahel–Donoho estimator.

For simplicity of presentation, we focus on any distribution F that is elliptically
symmetric about θ . For any unit vector u, there exists a positive definite �0 such
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that Y = (u′�0u)−1/2u′(X − θ) is a univariate symmetric variable with density
function p(y). Let MAD(Y ) = m0. In the special case of multivariate normality
with �0 = Cov(X), m0 = �−1(3

4 ), where �−1(·) is the quantile function of the
standard normal distribution.

Under the elliptical symmetry of F , the choice of σ(·) has no impact on the
covariance matrix. To see this, assume, without loss of generality, that θ = 0
and σ(·) is Fisher consistent for a given scale parameter, say, m0(u

′�0u)1/2 at
any Fu. Because of scale equivariance, f2(x,u(y)) is an even function in y,
and so are the outlying function O(y,F ) and the depth function PD(y,F ).
Therefore,

∫
yW ′(PD(y,F ))f2(x,u(y))O(y,F )/(σ (Fu(y))(1 +O(y,F ))2F(dy)

is equal to 0 by symmetry, which means that the function Kθ(x) does not depend
on the choice of the scale functional. For this reason, we shall use the MAD
functional throughout the paper.

We now consider any M-functional µ that satisfies Eψ((Y −µ)/MAD(Y )) = 0
for some odd and bounded score function ψ . For technical reasons, we assume
ψ to be differentiable anywhere except at finitely many points. The following
lemma is based on Cui and Tian (1994).

LEMMA 3.2. If p(y) is continuous with p(0)p(m0) > 0, then, for the above
choice of µ and σ = MAD, conditions (C0)–(C3) are satisfied with

f1(x,u) = m0
√

u′�0u

Eψ ′(Y/m0)
ψ

(
u′(x − θ)/m0

√
u′�0u

)
and

f2(x,u) =
√

u′�0u

2p(m0)

(
1

2
− I

{|u′(x − θ)| ≤ m0
√

u′�0u
})

.

In the special case with (µ,σ ) = (Med, MAD), we have ψ(x) = sign(x), and
the expression for f1(x,u) specializes to f1(x,u) = (

√
u′�0u)/(p(0))(1/2 −

I {u′(x − θ) ≤ 0}). This case was handled by Cui and Tian (1994), but the same
arguments apply to other M-functionals. We also refer to Zhang (1991) for a
general treatment that leads to uniform asymptotic results as in (C3).

If the weight function W is continuously differentiable, Lemma 3.2 implies
that the Stahel–Donoho estimator satisfies the conditions of Theorem 3.1 and
therefore is asymptotically normal. Lemma 3.2 also indicates that the Stahel–
Donoho estimator has a bounded influence function in the form of (3.6). We
shall now derive the covariance matrix for the Stahel–Donoho estimator and make
asymptotic efficiency comparisons as follows.

Let V = ‖�−1/2
0 (X − θ)‖/m0 and U = |e′

1�
−1/2
0 (X − θ)|/‖�−1/2

0 (X − θ)‖
with e1 = (1,0, . . . ,0)′. Let c1 = EW(1/(1 +V )) and c2 = m0(Eψ ′(Y/m0))

−1 ×
E{V W ′(1/(1 + V ))/(1 + V )2}. By Theorem 3.1 and using the fact that U is
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independent of V , the asymptotic variance–covariance matrix of the Stahel–
Donoho estimator takes a simpler form:

� = (dc2
1)

−1EV

(
m0V W

(
1/(1 + V )

) + c2EU [Uψ(UV )])2
�0(3.7)

as compared to �0, the covariance matrix of
√

n(Xn − θ) when X is Gaussian.
Note that U2 ∼ Beta(1/2, (d − 1)/2) and, under normality, (m0V )2 ∼ χ2

d . The
relative asymptotic efficiency would then depend on the dimension d and the
weight function W .

We suggest using W(r), which would assign weight 1 to the half of the points
with higher depth. This would balance efficiency with robustness. The other half
of the points with lower depth could be viewed as outliers, so a low weight should
be given. An ad hoc choice of the weight function with the above property in mind
takes the form of

W(r) =



exp(−K(1 − r/C)2) − exp(−K)

1 − exp(−K)
, if r < C,

1, if r ≥ C,

where the parameter K controls how much we would like to discriminate points
with different projection depth, but the parameter C is defined to be the median
of PD(X,F ), which is about 0.36 for the bivariate standard normal model. In
practice, a consistent estimate of C, the median of PD(X1), . . . ,PD(Xn), may
be used. See Figure 1 for this weight function with two different sets of tuning
parameters.

For the above weight function with K = 3, Table 1 gives the relative asymptotic
efficiencies of the depth-weighted means with respect to the sample mean at the
normal model for two choices of the location functionals, mean and median. These
two choices represent the two extremes of Huber-type M-functionals. It is clear
that the depth-weighted means are highly efficient at the normal model and the

FIG. 1. Behavior of W(r) with different K values.
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TABLE 1
Asymptotic relative efficiency of depth-weighted means

relative to sample mean at d-variate normal models

µ(·) d = 2 d = 3 d = 10

Mean 0.956 0.970 0.992
Median 0.935 0.957 0.990

efficiency varies only slightly with the choice of µ. For instance, the Stahel–
Donoho estimator with µ = Med has an asymptotic relative efficiency of nearly
96% at d = 3 as compared to 97% with µ being the mean functional. For any
Huber-type M-functional, the efficiency lies in between.

3.2. Breakdown point. Here we consider finite-sample robustness of the
Stahel–Donoho-type estimators when µ and σ are the Med and modified MAD
functionals.

The notion of finite-sample breakdown was introduced in Donoho and Huber
(1983). Let Xn = {X1, . . . ,Xn} be a sample of size n from X in R

d , d ≥ 1. The
replacement breakdown point (RBP) of an estimator T at Xn is defined as

RBP(T ,Xn) = min
{

m

n
: sup

Xn
m

‖T (Xn
m) − T (Xn)‖ = ∞

}
,

where Xn
m denotes a contaminated sample by replacing m points of Xn with

arbitrary values.
In the following discussion, µ and σ are taken to be the Med and MADk ,

where MADk is a modification of MAD resulting in an estimator, denoted by Lk
n,

with a breakdown point reaching the upper bound given in Davies (1987). More
specifically, define

MADk(x
n) = Medk

({|x1 − Med(xn)|, . . . , |xn − Med(xn)|})
and

Medk(x
n) = (

x(�(n+k)/2�) + x(�(n+1+k)/2�)
)
/2

for 1 ≤ k ≤ n, where �x� is the largest integer no larger than x, and x(1) ≤ · · · ≤ x(n)

are the ordered values of x1, . . . , xn in R
1. The usual Med–MAD combination cor-

responds to Lk
n with k = 1.

A random sample Xn is said to be in general position if there are no more than
d sample points of Xn lying in any (d − 1)-dimensional subspace. The breakdown
point of Lk

n is given in the following theorem.
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THEOREM 3.2. Let W(r) be continuous on [0,1] and let 0 < W(r) < Mr

on (0,1] for some M > 0. Then, for any Xn in general position with n > 2d + k,

RBP(Lk
n,X

n) =




�(n − k + 2)/2�
n

, if d = 1,

min
{�(n − k + 2)/2�

n
,
�(n + k − 1)/2�

n

}
, if d = 2,

min
{�(n − k + 2)/2�

n
,
�(n − 2d + 1 + k)/2�

n

}
, if d > 2.

The main idea of the proof is as follows. The estimator Lk
n breaks down only if

Med(Fnu) or MADk(Fnu) breaks down for some direction u. However, Med(Fnu)

is uniformly bounded from above over the directions u for any contamination less
than 50%. So the RBP of Lk

n depends solely on the smallest RBP of MADk(Fnu)

over the directions u. This corresponds to the uniform breakdown point of MADk

used by Tyler (1994). Since MAD can be exploded (→ ∞) or imploded (→ 0),
the RBP of Lk

n is determined by two quantities for d ≥ 2, corresponding to the
explosion and implosion of MADk , respectively. To explain the difference in the
expressions of RBP for d = 2 and d > 2, we note that there are more ways to place
least favorable outliers in three or higher dimensions than in two dimensions. For
example, any two lines in d = 2 can intersect at one (finite) point, but any two
planes in d = 3 may intersect at a line. Outliers may be placed on the intersecting
line that are arbitrarily far away from the bulk of the data.

REMARK 3.1. (i) Theorem 3.2 focuses on the case (µ,σ ) = (Med,MADk).
The result, however, can be extended to general M-functionals µ and σ with the
same uniform breakdown points as those of Med and MADk . More generally, the
RBP of the DL-estimators will be no less than the minimum of the uniform RBP’s
of any functionals µ and σ . (ii) For our choice (µ,σ ) = (Med,MADk), the RBP
of Lk

n reaches �(n − d + 2)/2�/n for d ≤ 2 (when k = d ) or �(n − d + 1)/2�/n

for d > 2 (when k = d). The latter attains the upper bound on RBP for affine
equivariant location and scatter estimators [see Davies (1987)].

Our modification of MAD is similar to that of Gather and Hilker (1997) and
slightly more general than that of Tyler (1994). The breakdown point of a similar
estimator was given in Tyler (1994) without detailed calculations but a misprint
there causes the difference between his and ours. We hope that Theorem 3.2
documents a complete answer to breakdown points of Lk

n, including the Stahel–
Donoho estimator.

3.3. Finite sample efficiency. There is always a valid concern that a high-
breakdown-point estimator may lose efficiency at the Gaussian model. The
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CM-estimators of Kent and Tyler (1996) and the cross-checking method consid-
ered in He (1991) and He and Wang (1996) are just a few examples to retain high
efficiency for high-breakdown estimators. We shall demonstrate via simulations
that the Stahel–Donoho estimator can achieve a good balance between robustness
and efficiency.

With the specific choice of W in Section 3.1, we conducted a simulation study to
see how L1

n performs in finite samples at normal and contaminated normal models.
We generated 25,000 samples from the bivariate standard normal distribution
for different sample sizes n = 10,20, . . . ,100. An approximate algorithm with
time complexity O(n3) for fixed d = 2 was utilized for computing all PDn(Xi),
i = 1, . . . , n, and the weighted mean L1

n. We calculate for any estimator T the
empirical mean squared error (EMSE) with EMSE = (1/m)

∑m
j=1 ‖Tj − θ‖2,

where m = 25,000, θ = (0,0)τ and Tj is the estimate from the j th sample. The
relative efficiency (RE) of T is then obtained by dividing the EMSE of the sample
mean by that of T .

We also considered the contaminated samples from the model (1 − ε) ×
N((0,0)τ , I) + εN((µ1,µ2)

τ , σ 2I) with µ1 = µ2 = 10 and σ = 5, ε = 0%,10%
and 20%, where I is the bivariate identity matrix. Some simulation results are given
in Table 2.

The finite-sample relative efficiency of L1
n for the bivariate standard normal

model is about 93%. This is substantially higher than those of the transformation–
retransformation median [Chakraborty, Chaudhuri and Oja (1998)], the half-space
median [Rousseeuw and Ruts (1998)] and the projection median [Zuo (2003)]
at about 72%, 76% and 79%, respectively. Table 2 shows that the DL-estimator
is highly competitive with the optimal estimator (sample mean) at the normal

TABLE 2
Empirical mean squared error and relative efficiency

ε = 0% ε = 10% ε = 20%

n DL Mean DL Mean DL Mean

20 EMSE 0.1038 0.0951 0.1296 2.3350 0.1957 8.5222
RE 0.92 1.00 18.01 1.00 43.54 1.00

40 EMSE 0.0524 0.0487 0.0692 2.1800 0.1453 8.3873
RE 0.93 1.00 31.52 1.00 57.73 1.00

60 EMSE 0.0338 0.0313 0.0523 2.101 0.1255 8.1928
RE 0.92 1.00 40.21 1.00 65.30 1.00

80 EMSE 0.0261 0.0243 0.0412 2.0641 0.1151 8.1115
RE 0.93 1.00 50.12 1.00 70.47 1.00

100 EMSE 0.0215 0.0200 0.0354 2.0524 0.1124 8.1291
RE 0.93 1.00 58.00 1.00 72.32 1.00
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model but performs much better when there is contamination. This is true for all
sample sizes considered. Our results are consistent with a smaller scale simulation
conducted by Maronna and Yohai (1995) using a different weight function.

The high efficiency of this estimator at the Gaussian model is directly
attributable to the form of the weight function. It is helpful that the weight function
decreases to 0 smoothly for outlying observations. If hard trimming is used so
that W(r) takes the value 1 for the (deeper) half of the observations but 0 for the
other half, the efficiency of the estimator can drop noticeably. In the univariate
case, for example, such a depth-based trimming would yield a location estimator
that is even less efficient than the maximal depth point (i.e., median). Of course, it
will also be much less efficient than the usual 25%-trimmed mean at the Gaussian
model.

REMARK 3.2. Like all other high-breakdown estimators, the Stahel–Donoho
estimator is computationally intensive. An exact algorithm is available from the
first author for d = 2 with the computational complexity of O(n2) for each depth
calculation. In higher dimensions, approximate algorithms are usually used to
compute depth by searching over a large number of directions perpendicular to
hyperplanes that pass through d observations; see Stahel (1981) and Maronna and
Yohai (1995). Future research on faster algorithms and the ever-increasing power
of computers is expected to make the computation of high-breakdown procedures
less painful.

4. Concluding remarks. In the present paper, we provide a set of sufficient
conditions on the depth and weight functions under which the depth-weighted
means are asymptotically normal. For the half-space depth and the simplicial
depth, those conditions have been positively established in the recent literature.
A main purpose of the paper is to show that they also hold for a class of projection
depth functions. As a consequence, the Stahel–Donoho estimator is shown to have
an asymptotically normal distribution, which allows us to study its efficiency and
influence function and to carry out large sample inference.

We expect future advances in algorithms and in computer power to make pos-
sible routine use of the Stahel–Donoho estimator in high dimensions. However,
we have demonstrated in the paper that the estimator enjoys several good prop-
erties, including affine equivariance, high breakdown point (in any dimension),
high finite-sample and asymptotic efficiencies at the normal model and a bounded
influence function.

APPENDIX

PROOF OF THEOREM 2.1. By equivariance, assume, without loss of general-
ity, that θ = L(F ) = 0. We shall prove part (2). The proof for part (1) is similar
and is omitted.
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First, observe that

√
n

∫
x W

(
D(x,Fn)

)
Fn(dx)

= √
n

∫
x W

(
D(x,Fn)

)
Fn(dx) − √

n

∫
x W

(
D(x,F )

)
F(dx)

=
∫

x W ′(θn(x)
)
Hn(x)Fn(dx) +

∫
x W

(
D(x,F )

)
νn(dx),

where θn(x) is a point between D(x,Fn) and D(x,F ) and supx∈Rd |θn(x) −
D(x,F )| = Op(1/

√
n ).

On one hand, we have∣∣∣∣
∫

x
(
W ′(θn(x)

) − W ′(D(x,F )
))

Hn(x)Fn(dx)

∣∣∣∣
≤

∫
{θn(x)>r1}∪{D(x,F )>r1}

‖x‖ |Hn(x)| ∣∣(W ′(θn(x)
) − W ′(D(x,F )

))∣∣Fn(dx)

≤
∫
{D(x,F )+OP (1/

√
n)≥r1}

‖x‖ |Hn(x)| ∣∣(W ′(θn(x)
) − W ′(D(x,F )

))∣∣Fn(dx)

= op(1),

by (A1) and (A2), and thus∫
x W ′(θn(x)

)
Hn(x)Fn(dx)

=
∫

x W ′(D(x,F )
)
Hn(x)Fn(dx) + op(1).

On the other hand,∣∣∣∣
∫

x W ′(D(x,F )
)
Hn(x)(Fn − F)(dx)

∣∣∣∣
≤ 1√

n

∣∣∣∣
∫
Dr0

xHn(x)W ′(D(x,F )
)
νn(dx)

∣∣∣∣
+ 1√

n

∣∣∣∣
∫
D̄r0

x W ′(D(x,F )
)
Hn(x)νn(dx)

∣∣∣∣
= op(1),

and therefore ∫
x W ′(θn(x)

)
Hn(x)Fn(dx)

=
∫

x W ′(D(x,F )
)
Hn(x)F (dx) + op(1).
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By Fubini’s theorem and (A4),∫
x W ′(θn(x)

)
Hn(x)Fn(dx) =

∫
x W ′(D(x,F )

)
Hn(x)F (dx) + op(1)

=
∫
Dr0

x W ′(D(x,F )
)(∫

h(x, y)νn(dy)

)
F(dx) + op(1)

=
∫ ∫

y W ′(D(y,F )
)
h(y, x)F (dy)νn(dx) + op(1).

Likewise, we can show that∫
W

(
D(x,Fn)

)
Fn(dx) =

∫
W

(
D(x,F )

)
F(dx) + Op

(
1/

√
n

)
.

The desired result now follows immediately from (A3), (A4), the central limit
theorem and Slutsky’s theorem. �

PROOF OF THEOREM 3.1. We employ Theorem 2.1. By Lemma 3.1 and the
given conditions, (A1) and (A2) hold with Dr0 = R

d and r0 = 0. Following the
proof of Theorem 2.2 of Zuo (2003), we see that ‖x‖2(PD(x,F ))2 is uniformly
bounded with respect to x ∈ R

d . Thus,∫
‖x‖2(

W
(
PD(x,F )

))2
F(dx) ≤

∫
‖x‖2(

PD(x,F )
)2

(
sup

0≤r≤1
W ′(r)

)
F(dx)

is finite. Hence, (A3) holds. To check (A4), we establish the following two lemmas.
For the rest of the paper, we assume, without loss of generality, that u(x) is a
singleton except for x = 0 and that P (X = 0) = 0.

For the rest of the Appendix, we use an alternative definition g(x,u,F ) =
(u′x − µ(Fu))/σ (Fu) to (1.2). For the projection depth when µ and σ are affine
equivariant, this leads to the same depth function PD(x,F ). �

LEMMA A.1. Let g(δ) = inf1/M≤‖x‖≤M inf‖u−u(x)‖≥δ,‖u‖=1[g(x,u(x),F ) −
g(x,u,F )], where M = M(δ) is continuous and monotone in δ with
limδ↓0 M(δ) = ∞. Then, under condition (1) of Theorem 3.1, g(·) is a continu-
ous and increasing function with g(0) = 0 and g(δ) > 0 for any δ > 0.

PROOF. Define g∗(x, δ) = inf‖u−u(x)‖≥δ, ‖u‖=1(g(x,u(x),F ) − g(x,u,F )),
which is monotone in δ > 0. It is easy to see that g∗(x, δ) is continuous in
x and δ, is positive for δ > 0 and x �= 0 and tends to 0 as δ → 0. Since
g(δ) = inf1/M≤‖x‖≤M g∗(x, δ), we conclude that g(δ) is continuous, nonnegative
and monotone with g(0) = 0. Now we show that g(δ) is positive for δ > 0.

If g(δ) = 0 for some δ > 0, then there exists a sequence xm satisfying
1/M ≤ ‖xm‖ ≤ M such that g∗(xm, δ) → 0 as m → ∞. We can then choose
a subsequence {xm′ } of {xm} such that xm′ → x0 (‖x0‖ ≥ 1/M > 0). By the
continuity of g∗(x, δ) in x, we have g∗(x0, δ) = 0. This contradicts the positivity
of g∗(x, δ) for δ > 0. �
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LEMMA A.2. Under the conditions of Theorem 3.1, there exists a sequence of
sets Sn ⊂ R

d such that 1 − P {Sn} = o(1) and Hn(x) = ∫
f (x, y)νn(dy) + op(1)

uniformly over Sn with

f (x, y) = O(x,F )f2(y,u(x)) + f1(y,u(x))

σ (Fu(x))(1 + O(x,F ))2
.

PROOF. By the conditions of Theorem 3.1, (C0) and (C2) hold so that we can
apply Lemma 3.1 to verify that

PD(x,Fn) − PD(x,F )

= − O(x,Fn) − O(x,F )

(1 + O(x,Fn))(1 + O(x,F ))

= −sup‖u‖=1 g(x,u,Fn) − g(x,u(x),F )

(1 + O(x,F ))2
+ op

(
1√
n

)

= −g(x,u(x),Fn) − g(x,u(x),F )

(1 + O(x,F ))2
− In(x)

(1 + O(x,F ))2
+ op

(
1√
n

)
,

where In(x) = sup‖u‖=1 In(u, x) and

In(u, x) = [
g(x,u,Fn) − g(x,u,F ) − (

g
(
x,u(x),Fn

) − g
(
x,u(x),F

))]
− [

g
(
x,u(x),F

) − g(x,u,F )
]

=: Jn(u, x) − [
g
(
x,u(x),F

) − g(x,u,F )
] ≤ Jn(u, x).

Denote t (δ) = ∑4
j=1 tj (δ), where

tj (δ) =
{
E

[
sup

‖u1−u2‖≤δ

|fj (X,u1) − fj (X,u2)|2
]}1/2

, j = 1,2,

t3(δ) = sup
‖u1−u2‖≤δ

∣∣µ(
Fu1

) − µ
(
Fu2

)∣∣,
t4(δ) = sup

‖u1−u2‖≤δ

∣∣σ (
Fu1

) − σ
(
Fu2

)∣∣.
By the conditions of Theorem 3.1, t (δ) → 0 as δ → 0. Let M(δ) = [t (δ) + δ]−1/2.
Then M(δ) → ∞ and M(δ)t (δ) → 0 as δ → 0. By Lemma A.1, we can choose
a positive sequence δn → 0, such that

√
ng(δn) → ∞. Let τn = 1/M(δn),

Mn = M(δn), and Sn = {x : τn ≤ ‖x‖ ≤ Mn}. Then τn → 0 and Mn → ∞ and
P {Sn} → 1 as n → ∞.

Now we show that In(x) = op(1/
√

n) uniformly for x ∈ Sn. Observe that, for
x ∈ Sn,

In(x) = max
{

sup
‖u−u(x)‖≤δn

In(u, x), sup
‖u−u(x)‖≥δn

In(u, x)

}
.
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Since

sup
x∈Sn,‖u−u(x)‖≥δn

√
nIn(u, x) ≤ sup

x∈Sn

√
n |Jn(u, x)| − √

ng(δn) → −∞

as n → ∞ and In(x) ≥ In(u(x), x) = 0, thus, for x ∈ Sn and n sufficiently large,
√

nIn(x) = sup
‖u−u(x)‖≤δn

√
nIn(u, x) ≤ sup

‖u−u(x)‖≤δn

√
n |Jn(u, x)|.

If we can show that supx∈Sn,‖u−u(x)‖≤δn

√
nJn(u, x) = op(1), then In(x) =

op(1/
√

n) uniformly over Sn.
Write ln(u) = µ(Fnu) − µ(Fu) and sn(u) = σ(Fnu) − σ(Fu). Then, for x ∈ Sn,

‖u − u(x)‖ ≤ δn and for sufficiently large n we have
√

nJn(u, x)

= −(u′x − µ(Fu))
√

nsn(u) + σ(Fu)
√

nln(u)

σ 2(Fu)

+ (u(x)′x − µ(Fu(x)))
√

nsn(u(x)) + σ(Fu(x))
√

nln(u(x))

σ 2(Fu(x))
+ op(1)

= −(u′x − µ(Fu))(1/
√

n)
∑n

i=1 f2(Xi, u) + σ(Fu)(1/
√

n )
∑n

i=1 f1(Xi, u)

σ 2(Fu)

+ (u(x)′x − µ(Fu(x)))(1/
√

n)
∑n

i=1 f2(Xi, u(x))

σ 2(Fu(x))

+ σ(Fu(x))(1/
√

n )
∑n

i=1 f1(Xi, u(x))

σ 2(Fu(x))
+ op(1)

=: J1n(u, x) + J2n(u, x) + op(1),

where

J1n(u, x) =
(

1

σ(Fu(x))
− 1

σ(Fu)

)
1√
n

n∑
i=1

f1(Xi, u)

+
(

u(x)′x − µ(Fu(x))

σ 2(Fu(x))
− u′x − µ(Fu)

σ 2(Fu)

)
1√
n

n∑
i=1

f2(Xi, u)

and

J2n(u, x) = 1

σ(Fu(x))

1√
n

n∑
i=1

(
f1

(
Xi,u(x)

) − f1(Xi, u)
)

+ u(x)′x − µ(Fu(x))

σ 2(Fu(x))

1√
n

n∑
i=1

(
f2

(
Xi,u(x)

) − f2(Xi, u)
)
.
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By the conditions of Theorem 3.1, we see that

sup
x∈Sn,‖u−u(x)‖≤δn

|J1n(u, x)| = op(1).

By the Cauchy–Schwarz inequality, the maximum inequality [see Pollard (1990),
Chapter 5] and the conditions of Theorem 3.1, we have

E

(
sup

x∈Sn,‖u−u(x)‖≤δn

|J2n(u, x)|2
)

≤ CE

[
sup

‖u1−u2‖≤δn

(
1√
n

n∑
i=1

[
f1(Xi, u1) − f1(Xi, u2)

])2]

+ CM2
nE

[
sup

‖u1−u2‖≤δn

(
1√
n

n∑
i=1

[
f2(Xi, u1) − f2(Xi, u2)

])2]

≤ CE

[
sup

‖u1−u2‖≤δn

(
f1(X,u1) − f1(X,u2)

)2
]

+ CM2
nE

[
sup

‖u1−u2‖≤δn

(
f2(X,u1) − f2(X,u2)

)2
]

≤ C
[
t (δn)

2 + (
Mnt(δn)

)2] → 0

as n → ∞, where C stands for some generic constant that may vary from line to
line. It then follows that

sup
x∈Sn,‖u−u(x)‖≤δn

|J2n(u, x)| = op(1),

and therefore
√

nIn(x) = op(1) uniformly for x ∈ Sn.
Now we have

PD(x,Fn) − PD(x,F )

= −g(x,u(x),Fn) − g(x,u(x),F )

(1 + O(x,F ))2
+ op

(
1√
n

)

= 1

n

n∑
i=1

(
(u(x)′x − µ(Fu(x))/σ

2(Fu(x)))f2(Xi, u(x))

(1 + O(x,F ))2

+(1/σ (Fu(x)))f1(Xi, u(x))

(1 + O(x,F ))2

)
+ op

(
1√
n

)
,

where op(·) is uniform for x ∈ Sn. Hence, Hn(x) = ∫
f (x, y)νn(dy) + op(1)

uniformly over Sn with f (x, y) as specified in the lemma. �

PROOF OF THEOREM 3.2. We focus on the cases with d = 2 and d > 2.
The case with d = 1 is simpler and thus omitted here. Recall that (u′y −
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Med(u′Z))/MADk(u
′Z) = 0 if u′y − Med(u′Z) = MADk(u

′Z) = 0 for any
Z = {Z1, . . . ,Zn} in R

d .
First, we consider the case with d = 2 and k = 1.

(i) m = �n/2� points are sufficient for breakdown of Lk
n. Let l be a line

determined by two sample points from Xn and let Xj be a point not on l. Consider
replacing m other points in Xn (not from l or Xj ) by y, a point on the line l.
Choose two unit vectors u1 and u2 perpendicular to l and to the line connecting
y and Xj , respectively. Since m + 1 > n/2, it follows that O(Zi,Z) = ∞ for all
points except at y, where Z denotes the contaminated sample. This means that
Lk

n(Z) = y, so a breakdown occurs as ‖y‖ → ∞.
(ii) m = �n/2� − 1 points are not sufficient for breakdown of Lk

n. Since
m < �(n + 1)/2� and n − m > n/2, it is clear that there exists a constant
C < ∞ such that |µn(u

′Z)|, σn(u
′Z) ≤ C uniformly over any unit vector u

and contaminated sample Z. It suffices to show that the numerator of Lk
n is

always bounded above and the denominator is bounded away from 0. To see
the former, note that, for any nonzero Zi ∈ Z and u0 = Zi/‖Zi‖, we have
‖Zi‖ ≤ σn(u

′
0Z)O(Zi,Z) + |µn(u

′
0Z)| ≤ C/PD(Zi,Z). By the assumption that

W(r) < Mr , we have W(PD(Zi,Z))‖Zi‖ ≤ MC, implying that the numerator of
Lk

n is bounded above.

Now we show that the denominator of Lk
n is uniformly bounded away from 0

for any Z. Otherwise, there is a sequence of contaminating data sets {Zt } with
Zt = {Z1t , . . . ,Znt } such that W(PD(Zit ,Zt )) → 0 as t → ∞ for 1 ≤ i ≤ n.
Since there are at least n − m points in Zt such that |u′Zit − µn(u

′Zt)| is
uniformly bounded for any u, σn(u

′
tZt ) must approach 0 for some unit vector

ut as t → ∞. This happens only if �n + 2�/2 points in Zt approach (or lie on)
the same line as t → ∞. Hence, we have to move at least m points in Xn to
a line lt determined by two points in Xn. However, for points Zit approaching
or on lt to have W(PD(Zit ,Zt )) → 0 as t → ∞, there must be �n + 2�/2
points of Zt approaching or on another line l′t determined by points in Xn.
Thus, l′t must intersect lt at a point yt and the m contaminating points must
approach yt as t → ∞. Since there are only finitely many yt , we can assume
w.l.o.g. that yt = y for sufficiently large t by taking a subsequence of {Zt } if
necessary. For simplicity, assume n is odd. For a given unit vector ut , assume
that |u′

tZk1t − µn(u
′
tZt )| ≤ · · · ≤ |u′

tZknt − µn(u
′
tZt )|, where {Zk1t , . . . ,Zknt }

is a permutation of {Z1, . . . ,Zn}. Then there are at least two original points
from Xn among {Zk1t , . . . ,Zkst } with s = �(n + 2)/2�. If there are exactly two
such points, then |g(Zit , ut ,Zt )| ≤ 1 for each of the m contaminating points
Zit approaching yt as t → ∞. If there are at least three such points, say,
X1,X2,X3, then it is direct to verify that σ(u′

tZt ) ≥ 1
2 max1≤j≤k≤3 |u′

t (Xj −
Xk)| ≥ 1

2 min1≤j1≤j2≤j3≤n maxj,k∈{j1,j2,j3} |u′
t (Xj − Xk)|, and, therefore,

|g(Zit , ut ,Zt )| ≤ sup
u

4 supi |u′y − u′Xi |
min1≤j1≤j2≤j3≤n maxj,k∈{j1,j2,j3} |u′(Xj − Xk)| ,
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bounded by a finite constant (depending only on Xn) for each of the m contaminat-
ing points Zit approaching yt as t → ∞. In either case, O(Zit ,Zt ) are bounded
uniformly over t and Zt for m contaminating points, contradicting the assertion
that W(PD(Zit ,Zt )) → 0 as t → ∞ for 1 ≤ i ≤ n.

Now we consider the case with d = 2 and k > 1.

(i) m = �(n − k)/2� + 1 points are sufficient for breakdown of Lk
n. Move

m points in Xn to the same site y far away from the original convex hull of Xn

and let ‖y‖ approach ∞. Since n − m < (n + k)/2, |σn(u
′Z)| is unbounded as

‖y‖ → ∞ for any u not perpendicular to y. Consequently, we have O(Zi,Z) ≤ 2
as ‖y‖ → ∞ for all points Zi = y. Therefore, ‖Lk

n(Z)‖ → ∞ as ‖y‖ → ∞.
(ii) m = �(n − k)/2� points are not sufficient for breakdown of Lk

n. Since
m < �(n + 1)/2� and n−m > (n+k−1)/2, it is clear that |µn(u

′Z)| and σn(u
′Z)

are uniformly bounded above for any unit vector u and contaminated data set Z.
Similar to the case with k = 1, we see that the numerator of Lk

n is bounded from
above. It remains to show that the denominator of Lk

n is uniformly bounded away
from 0 for any Z. Otherwise, there is a sequence of contaminating data sets {Zt }
with Zt = {Z1t , . . . ,Znt } such that W(PD(Zit ,Zt )) → 0 as t → ∞ for 1 ≤ i ≤ n.
Note that |u′Zi −µ(u′Z)| is uniformly bounded for at least n−m uncontaminated
points; thus, to have W(PD(Zit ,Zt )) → 0, σn(u

′Zt) must approach 0 for some
u as t → ∞. This happens only if �n + k + 1�/2 points in Zt approach (or lie
on) a line lt . When k ≥ d + 1, it is impossible for �n + k + 1�/2 points in Zt to
approach (or lie on) a line lt as m + d < �(n + k)/2�. When k = d and n is odd,
m + d < �(n + k + 1)/2�. Thus, we need to focus only on the case that k = d and
n is even. Applying the same arguments for the case with k = 1, we can reach a
contradiction to the assertion that W(PD(Zit ,Zt )) → 0 as t → ∞ for 1 ≤ i ≤ n.

Now we move to the case with d > 2 and k ≤ d .

(i) m = �(n − 2d + 1 + k)/2� points are sufficient for breakdown of Lk
n. Let

H1 and H2 be two hyperplanes, each containing d points in Xn and intersecting at
a line l containing no points in Xn; these two planes exist since n ≥ 2d and Xn is
in general position. Move m points of Xn not on H1 and H2 to a point y on the
line l. Since d +m > (n+ k − 1)/2, we can choose two unit vectors perpendicular
to the two hyperplanes, respectively. It then follows that O(Zi,Z) = ∞ for all Zi

not equal to y. Hence, Lk
n(Z) = y, and a breakdown occurs as ‖y‖ → ∞.

(ii) m = �(n − 2d + 1 + k)/2� − 1 points are not sufficient for breakdown
of Lk

n. When m < �(n + 1)/2� and n − m > (n + k − 1)/2, we have |µn(u
′Z)|

and σn(u
′Z) uniformly bounded above for any unit vector u and contaminated

data set Z. By similar arguments to those used above for d = 2, we can show that
the numerator of Lk

n is uniformly bounded above for any contaminated data set Z

but the denominator is uniformly bounded away from 0.

The case with d > 2 and k > d can be handled using the arguments made above,
so we omit the details. �
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