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Siegmund and Worsley considered the problem of testing for a signal
with unknown location and scale in a Gaussian random field defined on R

N .
The test statistic was the maximum of a Gaussian random field in an
(N + 1)-dimensional “scale space,” N dimensions for location and one
dimension for the scale of a smoothing kernel. Siegmund and Worsley used
two methods, one involving the expected Euler characteristic of the excursion
set and the other involving the volume of tubes, to derive an approximate null
distribution. The purpose of this paper is to extend the scale space result to the
rotation space random field when N = 2, where the maximum is taken over
all rotations of the filter as well as scales. We apply this result to the problem
of searching for activation in brain images obtained by functional magnetic
resonance imaging (fMRI).

1. Introduction. In a variety of applications in astronomy, neural imaging
and genetics, one searches a large space of noisy data for a relatively small number
of signals in the form of “bumps” in the random noise. This paper builds on the
method suggested by Siegmund and Worsley (1995) to detect such signals, with
particular attention to fMRI images.

In recent years, very detailed images of the brain, produced by modern sensor
technologies, have given the neuroscientist the opportunity to study the functional
activation of the brain under different conditions. The main statistical problem is
to locate the isolated regions of the brain where activation has occurred (the signal)
and separate them from the rest of the brain where no activation can be detected
(the noise). To do this, Worsley, Evans, Marrett and Neelin (1992) and Worsley
(1994) have shown that the images of the brain can be modeled as a Gaussian
random field X(t), where t ∈ R

N is a location vector in the brain C ⊂ R
N , N = 3.

Usually, Xmax, the global maximum of the random field in C, is chosen as the test
statistic for detecting signals in the brain.

The images may be spatially smoothed before analysis by convolution with a
filter of the form σ−N/2k(t/σ ) to enhance the signal-to-noise ratio. Often, k(t) is
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proportional to a Gaussian density k(t) ∝ exp(−‖t‖2/2). The motivation for this
comes from the matched filter theorem of signal processing, which states that a
signal added to white noise is best detected by smoothing with a filter whose shape
matches that of the signal. A problem is that the scale σ of the signal is usually
unknown. It is natural to consider searching over filter scale as well as location, that
is, with scale σ varying over a predetermined interval [σ1, σ2]. This adds an extra
dimension to the search space, called the scale space [see Poline and Mazoyer
(1994)]. Siegmund and Worsley (1995) show that Xmax, the global maximum
over all locations in C and all scales σ in [σ1, σ2], is the likelihood ratio statistic
for testing for a signal proportional to σ−N/2k(t/σ ) with unknown location and
scale. Using two different approaches—(i) the expected Euler characteristic of the
excursion set or (ii) the volume of tubes—they find an approximate P -value of the
maximum of the scale space filtered image.

A possible weakness of the scale space random field is a lack of power to
detect signals that are not spherically symmetric. In this paper, we extend the scale
space result to rotating filters of the form |S|−1/4k(S−1/2t), where k is spherically
symmetric and S is now an N × N positive-definite symmetric matrix that rotates
and scales the axes of the filter. Filters of this form add extra dimensions to the
search space, which we call rotation space. They are expected to have better power
to detect signals that are (approximately) ellipsoidally shaped. A challenging
theoretical problem is to deal adequately with the lack of identifiability of the
rotation parameter that occurs when the scale parameters are equal.

The concept of scale space has been explored in many image processing tasks
[see Lindeberg (1994)] where the filter is usually normalized to preserve the mean;
that is, the filter at scale S is |S|−1/2k(S−1/2t). In image processing, there is usually
no random component, and scale space is used to characterize features in the image
that are observed without noise. In our case, likelihood principles (see Section 2)
dictate that the filter should be normalized to preserve the variance of the filtered
white-noise background, which leads to a normalization of |S|−1/4 instead.

The normalization used here is the same as that employed by the continuous
wavelet transform [Daubechies (1992)], where the filter or mother wavelet is
usually chosen so that

∫
k(t) dt = 0, as well as

∫
k(t)2 dt = 1. The main difference

is that the wavelet transform seeks to represent the image at different scales; here
the aim is to detect a localized image increase at an unknown scale and rotation.

The organization of the paper is as follows. In Section 2, we review the scale
space random field and introduce the rotation space random field. In Section 3,
we introduce the Euler characteristic (EC) approach to making inference about
localized signals in these random fields. In Section 4, we introduce a different
parameterization of the rotation space field, which we then study from the
viewpoint of the volume of tubes. Approximate P -values obtained by the tubes
method are shown numerically to be comparable to those obtained by the EC
method.
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Although we have used two different methods with two slightly different
parameterizations, there is strong evidence to suggest that these two methods
should yield the same P -value approximations, at least to the first few terms in the
threshold x. The evidence for this comes from Takemura and Kuriki (2002) who
show that if the random field has a terminating Karhunen–Loève expansion then
the EC approach and the tubes approach always give the same answer. In our case
(and most interesting cases), the expansion does not terminate, so the agreement
between the two approaches is still an open question. To illustrate the different
approaches, we use the EC approach with one parameterization and the tubes
method with another.

Finally, the power of the rotation space statistic is discussed in Section 5 and
is compared to the power of the scale space statistic. In Section 6, we apply the
rotation space methods to an fMRI data set. Section 7 contains some concluding
remarks. Lengthy technical derivations are given in two appendixes.

2. Scale space and rotation space random fields. Let k be an N -dimensional
kernel such that ∫

k2(t) dt = 1.

A common choice is the Gaussian kernel:

k(t) = π−N/4 exp(−‖t‖2/2).(1)

The Gaussian scale space random field is defined as

X(t, σ ) = σ−N/2
∫

k[σ−1(h − t)]dZ(h),

where Z(h) is a Gaussian random field defined on a subset of R
N and σ is a

positive constant.
A justification for working on Gaussian scale space random fields, which also

serves to motivate the rotation space random field of the following section, is as
follows. Assume the random field Z(t), t ∈ R

N , satisfies

dZ(t) = ξσ
−N/2
0 k[σ−1

0 (t − t0)]dt + dW(t),

where t0 ∈ C ⊂ R
N , ξ ≥ 0 and σ0 > 0 are fixed values and W is an N -dimensional

Brownian sheet. The unknown parameter (ξ, t0, σ0) represents the amplitude,
location and scale of a signal added to the noise dW(t). In other words, the shape
of the signal in dZ(t) matches the shape of the filter k. Models of this form have
been used in different scientific contexts, for example, in the study of human brain
function via positron emission tomography [Worsley, Evans, Marrett and Neelin
(1992) and Worsley (1994)], in functional magnetic resonance imaging [Worsley
(2001)] and for geographical clustering of disease incidences [Rabinowitz (1994)].



RANDOM FIELDS AND fMRI DATA 1735

Now, for testing the hypothesis of no signal, that is, ξ = 0, consider the test statistic
that rejects for large positive values of

Xmax = max
(t,σ )∈C×[σ1,σ2]

X(t, σ ).

It can be shown [see Siegmund and Worsley (1995)] that the log-likelihood
function is

ξX(t, σ ) − ξ2/2,

so the test defined by Xmax is the likelihood ratio test for testing ξ = 0.
We now extend the concept of the scale space random field to the rotation space

random field, which is obtained by rotating as well as scaling the smoothing filter.
Using this rotation space random field should increase the sensitivity of the test
statistic in detecting ellipsoidal-shaped signals that might be missed by a circular-
shaped filter.

The Gaussian rotation space random field is defined as

X(t,S) = det(S)−1/4
∫

k[S−1/2(h − t)]dZ(h),

where k is spherically symmetric and S is an N × N symmetric positive-definite
matrix. The same likelihood-based argument as above for working on the scale
space random field justifies working on the rotation space random field. Assume
the random field Z(t), t ∈ R

N , satisfies

dZ(t) = ξ det(S0)
−1/4k[S−1/2

0 (t − t0)]dt + dW(t),(2)

where S0 is a member of a fixed parameter set Q of positive-definite matrices. The
unknown parameter (ξ, t0,S0) represents the amplitude, location, orientation and
scale of the signal and dW(t) represents noise. The test statistic that rejects for
large positive values of

Xmax = max
(t,S)∈C×Q

X(t,S)

is the likelihood ratio test for testing the hypothesis of no signal, that is, ξ = 0.
In this paper, we consider two parameter sets, denoted by Q and Q∗, as search

regions for the 2 × 2 positive-definite matrix S. These are shown schematically in
Figure 1. For Q, both eigenvalues are in a fixed interval; for Q∗, one eigenvalue is
in a fixed interval, and the ratio of the two eigenvalues is in another fixed interval.
As explained in Section 1, we will use two different approaches for the two
different parameterizations: the Euler characteristic approach for Q (Section 3)
and the tubes approach for Q∗ (Section 4). The choice is arbitrary—we expect
both methods to give very similar results on the same parameterization.
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FIG. 1. Two-dimensional (N = 2) examples of the two types of rotation space search regions
Q and Q∗ for S shown as contours of the unrotated filter. The axes are the square roots of the
two eigenvalues l and m of S.

3. The Euler characteristic approach. In this paper, we are primarily
concerned with finding the P -value of Xmax. A very good approximation is to
use the expectation of the EC of the excursion set of the random field inside the
search region for the maximum [Adler (1981)]. Specifically,

P {Xmax ≥ x} ≈ E[χ(Ax)],
where χ denotes the EC and the excursion set Ax is the set of points in the
search region where the random field exceeds the threshold x. The idea behind
the success of this approach is that for high thresholds the “handles” and “holes”
in the excursion set tend to disappear, and the EC counts the number of connected
components of the excursion set. For even higher thresholds, near the maximum,
the excursion set contains at most one component, so the EC takes the value 1
if the maximum is above x and 0 if it is below. Hence, the expected EC should
accurately approximate the probability that the maximum exceeds x. The appeal of
this approach is that in many cases we can obtain an exact closed-form expression
for E[χ(Ax)] for all thresholds. Moreover, this closed-form expression typically
gives a very good approximation to the P -value of the maximum for search regions
of almost any size or shape [see Adler (2000)].

There are two main technical challenges to using the EC method. The first is
to find a point set representation for the EC using either Morse theory or the
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Hadwiger recursive definition, so that the EC can be represented as the integral
of this point set representation over the interior and boundary of the search
region. The second step is to evaluate the resulting rather complicated expectations
involving the random field and its first two derivatives. The calculations in this
second step, in the case of the rotation space random field, are so complicated that
we have used the computer algebra package MAPLE to produce the results [see
Shafie (1998) and www.math.mcgill.ca/shafie]. For the scale space random field, a
general result can be found by hand [Siegmund and Worsley (1995) and Worsley
(2001)], and for comparison with the rotation space results yet to come, we now
give those results.

3.1. Scale space.

3.1.1. Point set representation. The excursion set of the scale space random
field is

Ax = {
(t, σ ) ∈ C × [σ1, σ2] :X(t, σ ) ≥ x

}
.

Let Ẋt = ∂X/∂t, Ẍt = ∂2X/∂t ∂t′ and c be the inside curvature matrix of ∂C.
For a fixed σ , we denote the gradient vector of X in the direction of the inside
normal to ∂C by Ẋ⊥ and the gradient (N − 1)-vector in the tangent plane to ∂C

by ẊT. In addition, let Ẋσ = ∂X/∂σ and Ẋ+
σ = Ẋσ (Ẋσ > 0). If X(t, σ ) satisfies

the regularity conditions given by Adler (1981), Theorem 5.2.2, then

E[χ(Ax)]
=

∫
C

∫ σ2

σ1

E[Ẋ+
σ det(−Ẍt)|Ẋt = 0,X = x]φ(0, x) dtdσ

+
∫
C

[
E[(X ≥ x)det(−Ẍt)|Ẋt = 0]θ(0)

]
σ=σ1

dt
(3)

+
∫
∂C

∫ σ2

σ1

E[Ẋ+
σ (Ẋ⊥ < 0)det(−ẌT − Ẋ⊥c)|ẊT = 0,X = x]

× φT(0, x) dσ dt

+
∫
∂C

[
E[(X ≥ x)(Ẋ⊥ < 0)det(−ẌT − Ẋ⊥c)|ẊT = 0]θT(0)

]
σ=σ1

dt,

where φ(·, ·), θ(·), φT(·, ·) and θT(·) are the densities of (Ẋt,X), Ẋt, (ẊT,X) and
ẊT, respectively.

3.1.2. Expected Euler characteristic. For the second step, Worsley (2001)
evaluates this expectation for any number of dimensions N , but for comparison
with our later rotation space results, we just give the result for N = 2. Let
k̇(h) = ∂k(h)/∂h,

βI =
∫

k̇(h)k̇′(h) dh, κ =
∫

[h′k̇(h) + (N/2)k(h)]2 dh.
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For a Gaussian kernel (1), β = 1/2 and κ = N/2. Let r = σ1/σ2, φ(x) =
exp(−x2/2)/

√
(2π) and 
(x) = ∫ x

−∞ φ(z) dz. Then

E[χ(Ax)] = |C|βσ−2
1

{
κ1/2(2π)−1/2(1 − r2)(x2 − 1 + 1/κ)/2 + (1 + r2)x/2

}
× φ(x)/(2π)

+ |∂C|β1/2σ−1
1

{
κ1/2(2π)−1/2(1 − r)x/2 + (1 + r)/4

}
(4)

× φ(x)/(2π)1/2

+ χ(C)
{[1 − 
(x)] − κ1/2(2π)−1/2 log rφ(x)

}
.

3.2. Rotation space. Turning now to the rotation space random field, we first
define the search region. Introducing the rotation filter adds N(N + 1)/2 − 1
dimensions to the search space. In general, it is complicated to find the expectation
of the EC for such a high-dimensional nonstationary random field, so from now
on we consider the simplest case N = 2. We assume that the rotation parameter
S =

(
a c

c b

)
of the random field is restricted to positive-definite matrices with

eigenvalues limited to the range [σ 2
1 , σ 2

2 ]. The set Q′ of such matrices, embedded
in R

3, is the union of two cones as shown in Figure 2.
To simplify the calculation, we reparameterize Q′ and write

S =
[
a c

c b

]
=

[
cos θ − sin θ

sin θ cosθ

][
l 0
0 m

][
cosθ sin θ

− sin θ cos θ

]
,

FIG. 2. Rotation parameter space Q′ for S = [(a, c)′(c, b)′] as the union of two cones with common
axes along the line a = b (PP). The eigenvalues l and m of S are in the interval [σ 2

1 , σ 2
2 ]. An example

of the excursion set at a single pixel is added (blob at top right).
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FIG. 3. Same rotation space as in Figure 2 but reparameterized in terms of eigenvalues
l ≥ m ∈ [σ 2

1 , σ 2
2 ] and twice the rotation angle ϕ ∈ [0,2π], now denoted by Q. The same example of

the excursion set at a single pixel is added (blob at top right).

where the eigenvalues l and m are in [σ 2
1 , σ 2

2 ]. Rewriting S in terms of ϕ = 2θ , we
have

S =
[

(l + m)/2 + ((l − m)/2) cosϕ ((l − m)/2) sinϕ

((l − m)/2) sinϕ (l + m)/2 − ((l − m)/2) cosϕ

]
.

In this section, we use s = (l,m,ϕ) instead of S as the parameter of rotation space.
Then the domain of the values for s can be considered as

Q = {
(l,m,ϕ) :σ 2

1 ≤ m ≤ l ≤ σ 2
2 , 0 ≤ ϕ ≤ 2π

}
.

The set Q is shown in Figure 3. Our aim is to derive E[χ(Ax)], where

Ax = {
(t, s) ∈ C × Q :X(t, s) ≥ x

}
.

3.2.1. Point set representation. The first step is to find the point set represen-
tation for the EC of Ax and take its expectation. As for scale space, we partition
C × Q into different pieces and obtain the contribution of each piece to the EC of
the excursion set. Then, using the additivity property of the EC and a generalized
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form of (3), we can obtain the expected EC of the excursion set. In partitioning the
search set, we face another problem: that the rotation space random field X has
some irregular behavior on P = {(l,m,ϕ) : l = m}. On this set, the random field X

is a constant function of ϕ. Going back to the original rotation space, the union of
two cones Q′, the set P is the image of P ′, the rotation axis of Q′. The rotation
space random field on this axis is equivalent to a scale space random field. To solve
this irregularity, consider the following. We take away the rotation axis of Q′ and
unfold the rest of Q′ to get Q\P and then map the line P ′ to P . Then we consider
the contribution of the image of P ′, P , to the EC of the excursion set separately.
The same kind of argument that enables us to separate a part of the search set has
been used in the astrophysics literature [see Gott et al. (1990)].

For simplicity in notation, we henceforth denote the set Q\P by Q and proceed
by partitioning the rest of the search set as C × Q = (C◦ × Q◦) ∪ (∂C × Q◦) ∪
(C × ∂Q) ∪ (∂C × ∂Q), where “◦” denotes the interior of a set. In turn, the
boundary of Q itself can be partitioned as

∂Q = B1 ∪ B2 ∪ L ∪ B3 ∪ B4,(5)

where

L = {
(l,m,ϕ) : l = σ 2

2 , m = σ 2
1 , 0 < ϕ < 2π

}
,

B1 = {
(l,m,ϕ) :σ 2

1 ≤ l ≤ σ 2
2 , m = σ 2

1 , 0 < ϕ < 2π
}
,

B2 = {
(l,m,ϕ) : l = σ 2

2 , σ 2
1 ≤ m ≤ σ 2

2 , 0 < ϕ < 2π
}
,

B3 = {
(l,m,ϕ) :σ 2

1 ≤ m ≤ l ≤ σ 2
2 , ϕ = 0

}
,

B4 = {
(l,m,ϕ) :σ 2

1 ≤ m ≤ l ≤ σ 2
2 , ϕ = 2π

}
.

A diagram of the above partition is shown in Figure 3. We obtain the contribution
of P and of each component of the partition of ∂Q in Appendix A.

3.2.2. Expected Euler characteristic. The second step is to evaluate the
expected point set representation just found. To do this, we need to have the joint
distribution of X and its first two derivatives. This distribution can be obtained by
using derivatives of Cov[X(t1,S1),X(t2,S2)]. We have

Cov[X(t1,S1),X(t2,S2)]
= det(S1S2)

−1/4
∫

k[S−1/2
1 (h − t1)]k[S−1/2

2 (h − t2)]dh

= det(S1S2)
−1/4

∫
k[S−1/2

1 (h + t2 − t1)]k[S−1/2
2 h]dh.

This shows that, for a fixed value of S, X(t,S) is stationary in t, but X(t,S) is
not stationary in (t,S). When k(t) is the Gaussian kernel, the covariance function
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simplifies to

Cov[X(t1,S1),X(t2,S2)]

= 2N/2 |S1|1/4|S2|1/4

|S1 + S2|1/2
exp

(−(t1 − t2)
′(S1 + S2)

−1(t1 − t2)/2
)
.

Note that in the case of the Gaussian kernel there are functional relationships
between different derivatives of the rotation space random field X(t,S). Let

ẊS = ∂X/∂S =
[
∂X/∂S11 ∂X/∂S12
∂X/∂S12 ∂X/∂S22

]

and Ẍt = ∂2X/∂t ∂t′. Using the heat equation, we can prove that

ẊS(t,S) = 2N/2−2πN/4(2S−1 − diag(S−1)
)
X(t,S) + Ẍt(t,S).

As a consequence, it would not be a surprise to see later that some of the
conditional distributions are singular.

For simplicity of notation, derivatives of X with respect to ti will be denoted by
dot notation with a subscript i, i = 1,2. Derivatives with respect to l, m and ϕ

will be denoted by subscripts l, m and ϕ. To calculate the expectation of the
EC, we need to have the distribution of Y = (X, Ẋϕ, Ẋ12lm, Ẍ12lm) at a fixed
point (t, s), where Ẍ12lm is arranged in the same way that the vech operator
arranges symmetric matrices [see Searle (1982)]. We know Y has a multivariate
Gaussian distribution with zero mean. The covariance matrix of Y is obtained
by taking suitable derivatives of Cov[X(t1, s1),X(t2, s2)] then setting t1 = t2 and
s1 = s2.

The algebra involved in taking these derivatives for a general kernel is very
complicated. We decided to choose the Gaussian kernel as the kernel of the rotation
space random field. We used the computer algebra program MAPLE to derive the
covariance matrix for the Gaussian kernel, although our MAPLE code works for
any kernel (see www.math.mcgill.ca/shafie). For the Gaussian kernel, we get

Var(Y) =



1 0 0 −Var(Ẋ12lm)

0 (l − m)2/(16lm) 0 Cov(Ẋϕ, Ẍ12lm)

0 0 Var(Ẋ12lm) Cov(Ẋ12lm, Ẍ12lm)

−Var(Ẋ12lm)′ Cov(Ẋϕ, Ẍ12lm)′ Cov(Ẋ12lm, Ẍ12lm)′ Var(Ẍ12lm)


 .

For a detailed evaluation of the elements of Var(Y), see Shafie (1998).
Another complication in obtaining the expected EC is the calculation of the

expectation of the determinant of submatrices of Ẍ12lm. From Adler (1981),
Lemma 5.3.1, it is evident that these expectations depend on the elements of the
conditional covariance and mean of Ẍ12lm given (X, Ẋ). But, unlike the stationary
case, the elements of this covariance matrix are not a symmetric function of the
indices (1,2, l,m) [see Adler (1981), page 109]. So to obtain the expectation of the
random determinants, we used MAPLE. The final result is the following theorem.
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THEOREM 1. For the rotation space random field with a Gaussian kernel, we
have

E[χ(Ax)]

= |C|
√

2

σ 2
1

{
−((log r)(1 + r2) + (1 − r2))x4

128π3/2 − (log r)(1 − r2)x3

64π

+ ((2π + 15)(1 − r2) + 7(log r)(1 + r2))x2

128π3/2

+ (2
√

2(1 + r2) + 3(log r)(1 − r2))x

32π
− (π + 2)(1 − r2)

32π3/2

}
φ(x)

+ |∂C| 1

σ1

{∫ (1−r2)1/2

0
f (t) dt(6)

+ g +
[√

2

8π
(r − 1)x + 1

8
√

π
(r + 1)

]}
φ(x)

+ χ(C)

√
2

8

{[
(2r(log r) − r2 + 1)x2

2
√

πr
− (2r − r2 − 1)x

r

+ −5r(log r) + (π − 1)(1 − r2)√
πr

]
φ(x)

+ 1 − 
(x)

}
,

where

f (t) =
√

2

32π2

{[(
t3

t ′3
− rt3

t ′4
)
x3 +

(√
πt3

t ′3
−

√
πrt3

t ′6
)
x2

+
(−8 + 6t2 + 5t4

t ′3t
− (8 − 6t2 − 5t4)r

t ′4
)
x

+ (4 − 2t2 − 3t4)
√

π

t ′3t
+ (−4 + 6t2 + t4)

√
πr

t ′6
]
E(t)

+
[(

−2(4 − t2)r

tt ′
+ 2(4 − 5t2 + 2t4)r)

tt ′4
)
x

− 4
√

π

tt ′
+ 4

√
πr

tt ′2
]
K(t)

}
,

g =
√

2

32π3/2r

[
4r2K[(1 − r2)1/2]
− (

(1 − r2)
√

πx + 2(1 + r2)
)
E[(1 − r2)1/2]],
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t ′ = (1 − t2)1/2 and K(·) and E(·) are complete elliptic integrals of the first and
second kinds, respectively.

The elliptic integrals are defined by K(y) = ∫ π/2
0 (1 − y2 sin2 θ)−1/2 dθ and

E(y) = ∫ π/2
0 (1 − y2 sin2 θ)1/2 dθ and are easily evaluated numerically [cf.

Abramowitz and Stegun (1964)]. If only moderate accuracy is required, a simple
approximation is obtained by expanding the integrands as power series in y and
integrating term by term.

A simple example of (6) as a function of the threshold level x when C is a circle
of radius 50 and [σ 2

1 , σ 2
2 ] = [2,50] is drawn in Figure 4. Note that the expected EC

approaches χ(C) = 1 as x → −∞. To find approximate level α critical thresholds
for testing the existence of a signal using Xmax, we can equate E[χ(Ax)] to α and
solve for x. For the purpose of comparison, these critical values at the α = 0.05
level, as a function of the radius of the circle C for rotation space, scale space
[from (4)] and two different values of fixed scale [(4) with σ1 = σ2] are plotted in
Figure 5. As we can see from this plot, the critical values for rotation space are
somewhat larger than those of scale space and fixed scales due to searching over a
bigger set.

FIG. 4. Expectation of the Euler characteristic (EC) when the search region C is a circle of
radius 50 and [σ 2

1 , σ 2
2 ] = [2,50], as a function of the threshold x.
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FIG. 5. Comparison of critical values at the 0.05 level for a circular search region C with
[σ 2

1 , σ 2
2 ] = [2,50], as a function of the circle radius.

4. The tubes approach. In this section, we study the same problem from the
point of view of the volume of tubes, initiated in the classical papers of Hotelling
(1939) and Weyl (1939) and developed for applications to statistics in Knowles
and Siegmund (1989) and Naiman (1990), among others. Although neither the
tube method nor the expected EC is guaranteed to be a good approximation to
the probability of interest, in geometrically well behaved problems they seem
to agree with each other [Siegmund and Worsley (1995) and Takemura and
Kuriki (2002)] and to be reasonably accurate as judged by numerical comparisons
with simulations. The present problem is poorly behaved in the sense that the
rotation parameter is not identifiable when the scale parameters are equal. This
manifests itself in a singularity in the five-dimensional space determined by two
spatial, two scale and one rotation parameter, which induces local overlap in the
tube. There is the additional, comparatively minor nuisance that the definition
of the search space itself contains some arbitrariness not found in earlier related
research.

We begin with the definition of the search space, for which we now propose to
use C × Q∗, where Q∗ = {(l,m, θ) :σ 2

1 ≤ m ≤ σ 2
2 , c2

1m ≤ l ≤ c2
2m, 0 ≤ θ ≤ π}

and 1 ≤ c1 < c2. Since θ = ϕ/2, some changes are only notational. Specifically,
let m = σ 2 and l/m = c2. Then Q∗ = {(θ, σ, c) : 0 ≤ θ ≤ π , σ1 ≤ σ ≤ σ2, c1 ≤
c ≤ c2}. An important conceptual difference is that now the maximum value of the
ratio, c2, of the length of the major axis of the ellipse to the length of the minor axis
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is the same for all permissible lengths of the minor axis (i.e., the ellipse is no longer
required to become more circular when the minor axis approaches its maximum
permitted length). Note that if c1 = 1 and c2 = σ2/σ1, then Q∗ contains Q (see
Figure 1). A second important difference is that by explicitly introducing the
possibility that c1 > 1, we are now providing a device to gather some information
about the singular behavior that occurs at c1 = 1. As a conceptual statistical matter,
the first difference seems more important, but the mathematics connected with the
second difference poses particularly challenging problems. Although this problem
does not seem to pose a serious impediment to applications, we have not been able
to solve it to our satisfaction. (See the remark at the end of this section.)

Note that if we replace the relations 1 ≤ c1 < c2 by c1 < c2 ≤ 1, while leaving
the constraints on l and m unchanged, or, equivalently, we interchange l and m

while leaving c1 and c2 unchanged, we obtain a different search region. It would
also be possible to consider the union of the two search regions, but we have not
made the appropriate calculations.

We recall that the volume-of-tubes viewpoint is based first of all on the possibly
fictitious assumption that the Gaussian field of interest, say X(u), which is
standardized to have mean function 0 and variance function 1 as u runs through an
arbitrary indexing set, has a terminating Karhunen–Loève expansion, say X(u) =∑d

1 γi(u)Zi . Here the Zi are independent standard normal random variables, and
γ (u) = (γ1(u), . . . , γd(u))′ is a vector of Euclidean norm equal to 1, which as
a function of u defines a submanifold � of the unit sphere in d-dimensional
Euclidean space. Since the final approximation depends only on quantities that
can be calculated from the metric tensor of the manifold, the finiteness of d is not
required for the approximating expression to make sense. Hence, we can and do
use the tubes method whether the assumption of a finite expansion is satisfied or
not. Little is known about the mathematical validity of the approximation when
d = ∞ [see, however, Sun (1993)], but simulations show it is quite accurate. See
Adler (2000) for a more thorough discussion.

Now we give the volume-of-tubes approximation when the kernel k can be
expressed as k(h) = π−1/2g(h′h) for a one-dimensional nonincreasing function g

defined on [0,∞) and satisfying
∫∞

0 g(x)2 dx = 1. The associated Gaussian field
is defined by

X(t,S) = π−1/2 det(S)−1/4
∫

R2
g[(h − t)′S−1(h − t)]dW(h),

where W is Gaussian white noise and S is a symmetric, positive-definite 2 × 2
matrix. With this notation, we can now state our approximation for the general
radial kernel and c1 > 1. The approximation for c2 < 1 is obtained from (8) by
changing the sign of the expression on the right-hand side of (8) and by changing
the elliptic integral E(·) to c−1E[(1 − c2)1/2] each time it appears. For c1 = 1, see
below.
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THEOREM 2. For the rotation space random field with a general radial kernel,
for each σ1 < σ2 and 1 < c1 < c2, and as x → ∞, we have

P

{
max

(t,θ,σ,c)∈C×Q∗ X(t,S) ≥ x

}

≈ φ(x)x4

(2π)5/2

πβ1β2(4β2 − 1)1/2|C|
4

(1 − r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)

+ φ(x)x3

(2π)2

{
π |C|β1[β2(6β2 − 1)]1/2

4
√

2

(1 + r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)

+ πβ1[β2(4β2 − 1)]1/2|C|
2
√

2

(1 − r2)

σ 2
1

(
2 − 1

c2
2

− 1

c2
1

)

+ β2(β1(4β2 − 1))1/2|∂C|
21/2

(1 − r)

σ1

×
∫ c2

c1

c2 − 1

c2 E

[(
c2 − 1

c2

)1/2]
dc

}

+ φ(x)x2

(2π)5/2

{
π |C|β1[−6β2(4β2 − 1) − (3β2 − 1)]

4(4β2 − 1)1/2

× (1 − r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)
(7)

− β2(4β2 − 1)1/2π2χ(C)(log r)

(
c2 − c1 + 1

c2
− 1

c1

)

+ (β1β2(6β2 − 1))1/2|∂C|π
2

(1 + r)

σ1

×
∫ c2

c1

c2 − 1

c2 E

[(
c2 − 1

c2

)1/2]
dc

+ (
β1β2(4β2 − 1)

)1/2|∂C|π (1 − r)

σ1

×
2∑

i=1

c2
i − 1

ci

E

[(
c2
i − 1

c2
i

)1/2]

+ β1(2β2)
1/2π |C| 1

σ 2
1

×
(

c2
1 − 1

c2
1

(
r2 arccosβ3 + (π − arccosβ3)

)

+ c2
2 − 1

c2
2

(
arccosβ3 + r2(π − arccosβ3)

))}
,
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where

β1 =
∫ ∞

0
ġ(x)2x dx, β2 =

∫ ∞
0

ġ(x)2x2 dx,

β3 = [(4β2 − 1)/(6β2 − 1)]1/2.

The formula for the Gaussian kernel g(x) = exp(−x/2) can be obtained by
taking β1 = 1/4 and β2 = 1/2.

COROLLARY 1. For the rotation space random field with a Gaussian kernel,
we have

P

{
max

(t,θ,σ,c)∈C×Q∗ X(t, θ, σ, c) ≥ x

}

≈ φ(x)x4

(2π)5/2

π |C|
32

(1 − r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)

+ φ(x)x3

(2π)2

{
π |C|
16

√
2

(1 + r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)

+ π |C|
16

(1 − r2)

σ 2
1

(
2 − 1

c2
2

− 1

c2
1

)

+ |∂C|
4
√

2

(1 − r)

σ1

∫ c2

c1

c2 − 1

c2
E

[(
c2 − 1

c2

)1/2]
dc

}

+ φ(x)x2

(2π)5/2

{
(−7)π |C|

32

(1 − r2)

σ 2
1

(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)

− π2χ(C)

2
log r

(
c2 − c1 + 1

c2
− 1

c1

)
(8)

+ |∂C|π
4

(1 + r)

σ1

∫ c2

c1

c2 − 1

c2
E

[(
c2 − 1

c2

)1/2]
dc

+ |∂C|π
2
√

2

(1 − r)

σ1

2∑
i=1

c2
i − 1

ci

E

[(
c2
i − 1

c2
i

)1/2]

+ π2|C|
16

(
(c2

1 − 1)

c2
1

(r2 + 3)

σ 2
1

+ (c2
2 − 1)

c2
2

(3r2 + 1)

σ 2
1

)}
.

This approximation involves the three leading terms in descending powers
of x of the complete tube approximation, which, like the expected Hadwiger
characteristic, contains five terms. For large x, these are the dominant terms, which
involve the volume of the manifold �, the volume of its boundary ∂�, the scalar
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curvature of the manifold and the geodesic mean curvature of the boundary [cf.
Siegmund and Worsley (1995)]. If we rewrite (6) in decreasing powers of x up to
three first leading terms, we have

P

{
max

(t,l,m,ϕ)∈C×Q
X(t, l,m,ϕ) ≥ x

}

≈ φ(x)x4

(2π)5/2

π |C|
16σ 2

1

{−(1 + r2) log r − (1 − r2)
}

+ φ(x)x3

(2π)2

{
−

√
2π |C|
16σ 2

1

(1 − r2) log r

+
√

2|∂C|
8σ1

∫ (1−r2)1/2

0

(
t3

t ′3
− t3r

t ′4
)
E(t) dt

}

+ φ(x)x2

(2π)5/2

{
π |C|
16σ 2

1

{
(2π + 15)(1 − r2) + 7(1 + r2) log r

}

+ π |∂C|
4σ1

∫ (1−r2)1/2

0

(
t3

t ′3
− t3r

t ′6
)
E(t) dt

+ π3/2χ(C)

2

(
2 log r − r + 1

r

)}
.

We can see “corresponding” terms, which involve the same power of x, the same
geometric characteristic of C and the same numerical constant, while expressions
involving parameters of the search regions differ somewhat as a reflection of
the differences in the definition of the search regions. As we indicate below, the
approximation seems to be adequate for practical purposes. It would not, however,
suffice to consider only the leading term. For the values of x that occur in typical
examples, the second term is often larger than the first term, while the third term
is comparatively small.

We have compared (8) with simulations in problems involving a small search
space. The simulations are quite time consuming and would be difficult to
carry out for a search space as large as those discussed above. The results
indicate that (8) is reasonably accurate when c1 ≥ 1.5. [See Sigal (1998) for
details.] The singular behavior of the rotation field at c1 = 1 is such that in
typical examples the approximation (8) begins to decrease as c1 decreases from
about 1.5, although the true probability must certainly increase. It is easy to
explore numerically for the onset of this pathology and choose c1 large enough
to avoid it. This probably has negligible impact on the power. If it is thought
desirable to include nearly spherical kernels in the search space, we recommend
the following alternative approximation: set c1 = 1 in (8) and add twice the leading
term of the scale space P -value given in (4). This modified approximation has
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the boundary term at c1 deleted (since there is no boundary when c1 = 1) and
a term to account for the singularity at c1 = 1 added. It results in a slightly
more conservative P -value. For a numerical example, for C a circle of radius 50,
σ 2

1 = 2, σ 2
2 = 50, c1 = 1.5 and c2 = 5, according to (8) the 0.05 significance level

requires a threshold x = 4.78. (Note that this result is consistent with Figure 5.)
For the same value of x and c1 = 1.25, (8) gives 0.049; for c1 = 1, it gives 0.044.
Addition of the boundary correction suggested above puts the 0.05 threshold back
up to x = 4.80 when c1 = 1. Since the suggested alternative approximation is to
some extent arbitrary, it is reassuring that the result does not depend critically on
whether or not we use it.

For the fMRI example to be discussed in Section 6, but with the slightly larger
search region used here, the 0.05 threshold obtained from (8) with c1 = 1.5 is 4.59.
The suggested modification at c1 = 1 increases the threshold to 4.62.

REMARK. The fact that for c1 close to 1 the formal tube volume can decrease
as c1 decreases is an indication of local overlap in the tube, which can lead to
negative values for the Jacobian involved in the volume calculation. Siegmund
and Zhang (1993) give a number of simple examples to show that the formal tube
volume can badly underestimate the true volume, although that does not seem
to occur here. To get some insight into this phenomenon in a very simple case,
observe that if t and σ are held fixed in the metric tensor given in Appendix B,
the surface defined by ϕ = 2θ and c behaves locally near c = 1 like the cone
in three-dimensional space obtained by rotating the line z = x in the xz-plane
about the z-axis. The tube about this cone, considered as a surface in three-
dimensional space, has local overlap in the interior of the cone near the vertex. It
is straightforward to compute for a tube of (small) radius r the actual volume, the
leading term of which is proportional to r times the square of the height of the cone.
The true volume is larger than the formal Weyl volume by πr3/(3

√
2 ), which

is negligible when r is small compared to the height of the cone. The modified
approximation suggested in the preceding paragraph is to some extent motivated
by our analysis of this simple example.

5. Power. In this section, we will assume that a signal is actually present and
that the shape of this signal is known, so that we can choose the kernel to match
the signal, as in (2). Since we have assumed that the kernel is radially symmetric,
we can write k(h) = π−1/2g(h′h) as in the previous section, where g > 0 is some
decreasing and square integrable function of the squared radius. The matrix S−1

0
can be written as

S−1
0 =

[
cos θ0 − sin θ0
sin θ0 cosθ0

][
1/σ 2

0 0
0 1/c2

0σ
2
0

][
cosθ0 sin θ0

− sin θ0 cosθ0

]
,

so we obtain

dZ(t) = ξ(πσ 2
0 c0)

−1/2g[(t − t0)
′S−1

0 (t − t0)]dt + dW(t).
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We are concerned with the probability

P

{
max

u∈C×Q∗ X(u) ≥ x

}
,

where X(u) is the convolution of dZ(t) with the kernel k from some family
parameterized by u, which will be described below together with the set C × Q∗
over which the maximization is taken. We will be interested primarily in two
cases.

(i) The search is over rotation space, that is, u = (t, θ, σ, c),

X(t, θ, σ, c) = (πσ 2c)−1/2
∫

g[(h − t)′S−1(h − t)]dZ(h).

It is also assumed that we search adaptively over C ×Q∗ (of the form discussed in
the preceding section) containing the true values t0, σ0, c0 and θ ∈ [θ0 −π/2, θ0 +
π/2].

(ii) The search is over scale space, that is, u = (t, σ ). This situation may arise,
for example, if one would like to reduce computational effort or if it is assumed,
possibly erroneously, that the signal is close to being isotropic.

For case (i), we obtain the power approximation

1 − 
(x − ξ) + φ(x − ξ)
(
1 − (x/ξ)5/2)/(ξ − x).

Since the calculations follow closely those of Siegmund and Worsley, we omit the
details. Note that the calculations are based on simple expansions of the random
field about the point in the search space where the signal is maximized, rather than
the EC or tubes approaches of the previous sections.

For case (ii), the approximation is more complicated. The random field X is of
the form

X(t, σ ) = ξµ(t, σ ) + (πσ 2)−1/2
∫

g[(h − t)′(h − t)/σ 2]dW(h),

where

µ(t, σ ) = (π2σ 2
0 c0σ

2)−1/2
∫

g[(h − t0)
′S−1

0 (h − t0)]g[(h − t)′(h − t)/σ 2]dh.

For the analysis of this case, we can assume that θ0 = 0. For the Gaussian kernel,
it is easy to show that

arg
(

max
(t,σ )∈C×(0,∞)

µ(t, σ )

)
= (t0, σ0c

1/2
0 ),

whenever C is a subset of R
2 that contains the true location t0. In this case,

µ(t, σ ) can be found in closed form as a convolution of two normalized two-
dimensional Gaussian densities, which is again a normalized Gaussian density. For
the general signal shape g, it can be shown through some manipulation of integrals
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that (t0, σ0c
1/2
0 ) is a critical point of the function µ(t, σ ). The Gaussian kernel

example gives a reason to believe that this is actually the point of global maximum
for general g, although we have not succeeded in proving this rigorously. Let

µ0 = µ(t0, σ0c
1/2
0 ) = π−1

∫
g(h′h)g(h′B0h) dh,

where B0 =
(

c0 0
0 1/c0

)
. In particular, for the Gaussian kernel µ0 = 2c

1/2
0 /(1 + c0).

If the scale space search region equals C×[σ1, σ2], where [σ1, σ2] contains σ0c
1/2
0 ,

then for the Gaussian kernels the final approximation takes the form

1 − 
(x − ξµ0) + φ(x − ξµ0)(ξµ0 − x)−1(1 − η1η2),

where

η1 = [(
x2(c0 + 1)2 − ξ2µ2

0(c0 − 1)2)/(4ξ2µ2
0c0)

]1/2
,

η2 = [(
x(c0 + 1)2 − ξµ0(c0 − 1)2)/(4ξµ0c0)

]1/2
.

EXAMPLE. Assume that the signal can be well approximated by the elliptical
Gaussian kernel with the smaller scale σ0, which is believed to equal 1, but can
be as small as 0.4 and as large as, say, 2.5. The ratio of axes c0 is believed to
be 2 but can be close to 1 (isotropic signal) or as large as 2.5. The signal can
be located anywhere in C = [−5,5] × [−5,5] and is assumed to have unknown
orientation. To test for the presence of such a signal, we use two methods.
First, we search using elliptically shaped Gaussian kernels with (t, θ, σ, c) ∈ C ×
[0, π ] × [0.4,2.5] × [1,2.5]. Second, we search using spherical Gaussian kernels,
with (t, σ ) ∈ C × [0.4,2.53/2]. We use the relative efficiency as the criterion to
compare these two approaches. Assuming the amplitude ξ is proportional to the
square root of the sample size, the efficiency is calculated as a square of the
ratio of the amplitudes (call them ξe and ξs, where the subscripts e and s stand
for elliptical and spherical correspondingly) necessary to achieve prespecified
power. In particular, we will be interested in comparing the efficiency for different
elongation parameters c0. For rotation space, for the 5% threshold we obtained
x = 4.18 from (8) with c1 = 1.5, and x = 4.23 from (8) and (6) with c1 = 1 (edge
corrected). For our numerical examples, we have used the value xe = 4.18. For
scale space, we determined the threshold xs = 3.93 from the equality (3.6) of
Siegmund and Worsley (1995). Results for different values of the power β are
presented in Table 1(a).

To allow for more elongated ellipses and a larger search region, we consider the
same two tests but the corresponding regions are as follows:

1. (t, θ, σ, c) ∈ [−100,100] × [−100,100] × [0, π ] × [0.4,2.5] × [2,6];
2. (t, σ ) ∈ [−100,100] × [−100,100] × [0.4

√
2,2.5

√
6 ].
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TABLE 1
Relative efficiency ξ2

e /ξ2
s of the two tests for (a) ellipses with ratio of axes

close to 1 and (b) ellipses with ratio of axes moderately or significantly
different from 1. The probability of detection of the signal is β

(a) (b)
c0 c0

β 1.25 2.25 β 3.00 5.00

0.85 0.99 0.89 0.85 0.87 0.69
0.90 1.00 0.89 0.90 0.87 0.69
0.95 1.00 0.89 0.95 0.87 0.69

This time, the threshold xe = 5.68 is determined from the approximation (8), and
xs = 5.17. Results are presented in Table 1(b). As can be seen, for this choice of
search region, our test is more efficient when the true ratio of axes is moderately
or significantly different from 1.

6. Application. In this section, we shall apply the rotation space random field
method to a simple fMRI experiment. One of the first experiments in fMRI was
to locate the regions of the brain that respond to a simple visual stimulus [Kwong
et al. (1992)]. In a similar experiment at the Montreal Neurological Institute, a
subject was given a simple visual stimulus, flashing red dots, presented through
light-tight goggles [Ouyang, Pike and Evans (1994)]. The stimulus was switched
off for 4 scans, then on for 4 scans. This procedure was repeated 5 times, giving
40 scans. The time interval between scans was 6 seconds and the stimulus period
was T = 48 seconds. Hence, the data consist of a time series of 40 two-dimensional
images, each 128 × 128 pixels of size 2 mm. The response at one pixel is shown in
Figure 6. Full details of the analysis can be found in Worsley (2001) where the data
are analyzed using the χ2 scale space method. To apply the rotation space method,
we fit a linear model at each pixel in sine and cosine waves with a period matching
that of the stimulus. The coefficients of these two components, normalized to
have unit variance, are shown in Figure 7. These images will be referred to as
sine and cosine components of the data. The phase was chosen so that we expect
all the signal to be in the cosine component (shown in Figure 6 at one pixel),
whereas the sine component should have no signal (zero mean). The rotation space
method was applied to both components separately. Based on previous analyses,
the search region for l and m, [σ 2

1 , σ 2
2 ], was chosen to be [2.552,12.752] so that

r = σ1/σ2 = 0.2.
The global maximum of the sine component is 3.69 at location (t1, t2) =

(168,54) mm and filter s = (12.752,12.752,0◦). For the cosine component, the
global maximum is 14.87 at location (t1, t2) = (138,68) mm and filter s =
(5.702,2.552,144◦). The images of the sine and cosine components smoothed with
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FIG. 6. ON–OFF stimulus, response at one pixel and fitted sinusoid for the fMRI data.

FIG. 7. Sine and cosine components of the fMRI data. See Figure 10 for a detail of the boxed
region.
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FIG. 8. Sine component smoothed with different values of m and ϕ. The value of l is fixed at 162.30.

The lower right image is the smoothed image with the maximizing filter.

some values of s, including the maximizing ones, are shown in Figures 8 and 9,
respectively.

FIG. 9. Cosine component smoothed with different values of l and ϕ. The value of m is fixed at 6.49.

The middle image is the smoothed image with the maximizing filter.
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FIG. 10. Left: detail of the cosine component (outlined in Figure 7) along with a contour of the
maximizing filter at half its height, outlined in white. Right: the same detail but showing the maximum
of X over all scales and rotations, maxs∈Q X(t, s), thresholded at the p = 0.05 critical value of 5.25,

which covers most of the visual cortex.

For the purpose of finding the P -value, the slice of the brain was approximated
by a circle of radius 61.77 mm chosen so that its area matched that of the slice.
Hence, |C| = 11,960 mm2, |∂C| = 388 mm and χ(C) = 1. Then E[χ(Ax)] was
calculated using (6). To find the critical value, this expectation was equated to 0.05
and solved for the value of x. The critical value at the level of 0.05 was found
to be 4.52. Therefore, the result for the maximum of the sine component is not
significant, but the result for the cosine component is highly significant. The
images of the cosine component, along with a contour of the maximizing filter,
and the excursion set for the location above the critical value of 0.05 are shown in
Figure 10. This indicates that the activation was taking place in the visual cortex
as expected.

7. Conclusion. In this paper, we obtained the expected EC for the Gaussian
rotation space random field with a Gaussian kernel when N = 2. This result can
be used as an approximation of the null distribution of the test statistic Xmax
for detecting ellipsoidal-shaped signals. A feature of the derivation is the use of
MAPLE to perform extensive algebraic manipulations. Using the MAPLE code
in the Appendix of Shafie (1998) (available at www.math.mcgill.ca/shafie), one
can extend the result to more general smoothing kernels. The calculation of the
expected EC can also be extended to the χ2 rotation space random field.
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We have also used the volume-of-tubes method to derive a three-term approxi-
mation to the distribution of Xmax and have shown that this approach gives essen-
tially the same numerical results as those based on the expected EC.

The method proposed in this paper for detecting signals in a noisy image has the
potential advantage of greater sensitivity at detecting signals of rotated elliptical
shapes. The disadvantage of this method is that signals which are close together
might be detected as a single broader signal rather than separate signals. Another
limitation of the method is the time required to search for the global maximum
over the five-dimensional rotation space (although this is less an impediment to
data analysis, where the search must only be done once, than to an evaluation of
the P -value by simulation, where the search must be done repeatedly).

In a brief power comparison, we have shown that the rotation space field is
moderately more efficient than the scale space field when the true signal has an
elliptical shape.

The theory developed and the images analyzed in the paper are two-dimensional.
Most often, the images of the brain are collected in three-dimensional space. In
principle, the method can be applied to three dimensions, but now the search space
is nine-dimensional (three for location, six for rotation and scaling) which would
enormously complicate both the theory and the application.

A potential area of application that we have not explored is the detection of line
segments or broken lines representing, for example, faults in materials or edges of
images.

APPENDIX A

Proof of Theorem 1. Before going through the proof of Theorem 1, note that
in the following the joint distribution of X and a subvector Xa of Ẋ is denoted
by φa . Also, symmetric submatrices of Ẍ are treated interchangeably as a matrix
or a vector. The vector version of these submatrices, derived as explained above, is
used for distributional purposes. For simplicity, we will denote Ẋa (Ẋa > 0) and
Ẋa (Ẋa < 0) by Ẋ+

a and Ẋ−
a , respectively. Also, we denote the contribution of the

set B ∩ Ax to the EC of excursion set Ax by Con(B).

A.1. Contribution of C◦ × Q◦. The contribution of C◦ × Q◦ is similar to the
contribution of the interior of the prism in (3). Let ϕ be the last coordinate, so that
from (3) we have

Con(C◦ × Q◦)

=
∫
C×Q

E[Ẋ+
ϕ det(−Ẍ12lm)|X = x, Ẋ12lm = 0]φ12lm(x,0) ds dt.

To calculate the expectation in the integrand of Con(C◦ × Q◦), we first condition
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on Ẋϕ . The distribution of Ẍ12lm given (X = x, Ẋ12lm = 0, Ẋϕ) is N(µ,�) with

µ = 1

8

[
−2

(l + m − (l − m) cos(ϕ))x

lm
− 16

sin(ϕ)Ẋϕ

l − m
,

2
sin(ϕ)(l − m)x

lm
+ 16

cos(ϕ)Ẋϕ

l − m
,0,0,

− 2
(l + m + (l − m) cos(ϕ))x

lm
+ 16

sin(ϕ)Ẋϕ

l − m
,0,0,− x

l2
,0,− x

m2

]′
,

and � = [V1,V2,V3]. The matrices V1,V2 and V3 are given in the Appendix of
Shafie (1998).

Using MAPLE, we get

E[det(−Ẍ12lm)|X = x, Ẋ12lm = 0, Ẋϕ]

= − (x2 − 1)Ẋ2
ϕ

16(l − m)2l2m2 + 10 + x4 − 9x2

256m3l3 .

The random variable Ẋϕ is independent of (X, Ẋ12lm) and is distributed as
N(0, (l − m)2/16lm). The joint density of (X, Ẋ12lm) evaluated at (x,0) is

φ12lm(x,0) = (lm)3/2

16(2π)5/2 e−x2/2.

Since

E[Ẋj
ϕ(Ẋϕ > 0)] = Var(Ẋϕ)j/22(j−1)/2�[(j + 1)/2]/(2π)1/2,

we get

E[Ẋ+
ϕ det(−Ẍ12lm)|X = x, Ẋ12lm = 0]φ12lm(x,0) = (l − m)

512π3m2l2
h(x),

where h(x) = (x4 − 11x2 + 12)e−x2/2. After integration on Q and C, we obtain

Con(C◦ × Q◦)

= |C|
256π2

(
logσ 2

2

σ 2
2

− logσ 2
1

σ 2
2

+ 2

σ 2
2

− 2

σ 2
1

+ log σ 2
2

σ 2
1

− logσ 2
1

σ 2
1

)
h(x).

A.2. Contribution of ∂C × Q◦ to the expected EC. The set ∂C × Q◦ is a
part of the boundary of the search region, so to obtain its contribution we use
the form for boundaries as in (3). Since Q is flat in the topological sense, the
gradient vector in the tangent plane to ∂C × Q◦ has the form of ẊTlm and the
Hessian matrix in the tangent plane is equal to ẌTlm, where the subscript T shows
derivative in the direction of the tangent to ∂C. Also, the normal to ∂C × Q◦ at
a point (t, l,m,ϕ), t ∈ ∂C, is parallel to the normal to ∂C at the point t, thus,
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X⊥ is the derivative of X in the direction of the inside normal to ∂C. By the same
reasoning (flatness of Q), the curvature matrix of ∂C × Q◦ has the form

c =

 c 0 0

0 0 0
0 0 0


 ,

where c is the scalar curvature of ∂C. Therefore,

Con(∂C × Q◦) =
∫
∂C

∫
s
E[Ẋ+

ϕ det(−ẌTlm − Ẋ⊥c)(Ẋ⊥ < 0)|X = x, ẊTlm = 0]
× φTlm(x,0) ds dtT.

At each fixed point on ∂C, denote the coordinates of a point with respect to the
unit tangential and normal vectors by (u1, u2). The change of coordinates from
(u1, u2) to (t1, t2) is done by a rotation matrix. After taking the expectation in the
above equation, we are integrating over all possible rotations; hence, without loss
of generality, we can replace ẌTlm by Ẍ1lm and Ẋ⊥ by Ẋ2.

After these substitutions, by expanding the determinant, the expectation in the
integrand can be written as

E[Ẋ+
ϕ det(−Ẍ1lm − Ẋ2c)(Ẋ2 < 0)|X = x, Ẋ1lm = 0]
= E[Ẋ+

ϕ det(−Ẍ1lm)(Ẋ2 < 0)|X = x, Ẋ1lm = 0]
− cE[Ẋ+

ϕ det(Ẍlm)Ẋ2(Ẋ2 < 0)|X = x, Ẋ1lm = 0].
Hence, we can write

Con(∂C × Q◦) = Con(∂C × Q◦)1 + Con(∂C × Q◦)2,

where

Con(∂C × Q◦)1

=
∫
∂C

∫
Q

E[Ẋ+
ϕ det(−Ẍ1lm)(Ẋ2 < 0)|X = x, Ẋ1lm = 0]φ1lm(x,0) dtT ds

and

Con(∂C × Q◦)2

= −
∫
∂C

∫
Q

cE[Ẋ+
ϕ det(Ẍlm)Ẋ2(Ẋ2 < 0)|X = x, Ẋ1lm = 0]φ1lm(x,0) dtT ds.

For the first part, we have

E[Ẋ+
ϕ det(−Ẍ1lm)(Ẋ2 < 0)|X = x, Ẋ1lm = 0]φ1lm(x,0)

= −
(√

2x(l − m) sin(ϕ)2σ 3
2

256π5/2ml
−

√
2(l2 − m2)(x3 − 5x)σ2

1024π5/2m2l2

)
e−x2/2

−
(√

2(l − m)2(x3 − 5x)

1024π5/2m2l2
cos(ϕ) − (l − m)(x2 − 1)

512l3/2π2m3/2
sin(ϕ)

)
σ2e

−x2/2,
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where σ 2
2 = 1/((l+m−(l−m) cos(ϕ)) is the conditional variance of Ẋ2 given Ẋ1.

Integrating over ϕ and m, we have

Con(∂C × Q◦)1 = |∂C|
∫ √

1−r2

0
f1(t) dt,

where

f1(t) = e−x2/2

32π5/2σ1

(
√

1 − t2 − r)

(1 − t2)2t

[(
(x3 − 5x)t4 − 8xt2 + 8x

)
E(t)

+ (−4 xt4 + 12xt2 − 8x)K(t)
]
.

Using the Gauss–Bonnet theorem
∫
∂C c dtT = 2πχ(C), for the second part we

have

Con(∂C × Q◦)2 = −χ(C)

64
(x2 − 1)e−x2/2

∫ σ 2
2

σ 2
1

∫ l

σ 2
1

∫ 2π

0

(l − m)σ2
2

π2lm
dϕ dmdl

= χ(C)

16π

(
2 log r − r + 1

r

)
(x2 − 1)e−x2/2.

A.3. Contribution of C◦ × ∂Q to the expected EC. To obtain Con(C◦ × ∂Q),
we use the partition (5) of ∂Q. Since the rotation random field X is the same on
B3 and B4, these two sets have no contribution to the EC of the excursion set. So we
will obtain the contribution of the other parts of ∂Q, starting with Con(C◦ × B1).

A.3.1. Con(C◦ × B1). Since the set C◦ × B1 is flat, the curvature matrix is 0.
The inward normal to this set is in the direction of m. Hence, we have

Con(C◦ × B1)

=
∫
C

∫ 2π

0

∫ σ 2
2

σ 2
1

E[Ẋ+
ϕ det(−Ẍ12l)(Ẋm < 0)|X = x, Ẋ12l = 0]

× φ12l(x,0) dl dϕ dt.

Evaluating the expectation in the integrand, we get

E[Ẋ+
ϕ det(−Ẍ12 l)(Ẋm < 0)|X = x, Ẋ12l = 0]φ12l(x,0)

= −(6 − 2x2 + 6
√

πx − √
πx3)(l − σ 2

1 )e−x2/2

256π3 σ 2
1 l2

.

Integrating with respect to l, ϕ and t and substituting m = σ 2
1 , we obtain

Con(C◦ × B1)

= |C|
128π2

[−2 log r − 1

σ 2
1

+ r2

σ 2
1

](
x3√π + 2x2 − 6x

√
π − 6

)
e−x2/2.
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A.3.2. Con(C◦ × B2). The set C◦ × B2 is also flat. So the curvature matrix
is 0, but the inward normal to this set is in the opposite direction of l. Therefore,

Con(C◦ × B2)

=
∫
C

∫ 2π

0

∫ σ 2
2

σ 2
1

E[Ẋ+
ϕ det(−Ẍ12m)(Ẋl > 0)|X = x, Ẋ12m = 0]

× φ12m(x,0) dmdϕ dt.

By the same procedure as in the previous section, we get

Con(C◦ × B2)

= − |C|
128π2

[−2 log r + 1

σ 2
2

− 1

σ 2
1

](
x3√π − 2x2 − 6x

√
π + 6

)
e−x2/2.

A.3.3. Con(C◦ ×L). The set C◦ ×L has a different nature from C◦ ×B1 and
C◦ ×B2. Although the set is flat so that the curvature matrix is 0, there is no unique
normal to this set. To make sure the derivative in the direction of the inside normal
is negative, we have to consider all the directions from the m-axis to the l-axis. To
do this, it is enough to make sure that the derivative in the direction of l is positive
and the derivative in the direction of m is negative. Therefore, the contribution of
C◦ × L will be

Con(C◦ × L)

=
∫
C

∫ 2π

0
E[Ẋ+

ϕ det(−Ẍ12)(Ẋl > 0)(Ẋm < 0)|X = x, Ẋ12 = 0]
× φ12(x,0) dϕ dt.

Evaluation of the expectation in the integrand gives us

E[Ẋ+
ϕ det(−Ẍ12)(Ẋl > 0)(Ẋm < 0)|X = x, Ẋ12 = 0]φ12(x,0)

= (πx2 − 2π − 4)(σ 2
2 − σ 2

1 )e−x2/2

128σ 2
1 σ 2

2 π3
.

Integration with respect to ϕ and t gives the result

Con(C◦ × L) = (−2π + πx2 − 4)(σ 2
2 − σ 2

1 )e−x2/2

64π2σ 2
1 σ 2

2

.

A.4. Contribution of ∂C × ∂Q to the expected EC. We now obtain the
contribution of ∂C × ∂Q, again partitioning ∂Q as in (5). The sets B3 and B4

again have no contribution. For the other parts, B1,B2 and L, the same argument
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as in Sections A.2 and A.3 applies to get

Con(∂C × B1) = |∂C|
∫ √

1−r2

0
f2(t) dt + χ(C)

16
√

π

[
r + 1

r
− 2

]
xe−x2/2,

Con(∂C × B2) = |∂C|
∫ √

1−r2

0
f3(t) dt + χ(C)

16
√

π

[
r + 1

r
− 2

]
xe−x2/2,

Con(∂C × L) = |∂C|f4 − χ(C)
(σ 2

2 − σ 2
1 )e−x2/2

16σ1σ2
,

where

f2(t) = e−x2/2

32π5/2σ1

1

t (1 − t2)3/2

[(√
π(x2 − 3)t4 − 2(

√
π − x)t2 + 4

√
π
)
E(t)

+ (
2xt4 + (4

√
π − 2x)t2 − 4

√
π
)
K(t)

]
,

f3(t) = e−x2/2

32π5/2σ 2
2

1

t (1 − t2)3

[(
(
√

πx2 − √
π + 2x)t4

+ (−2x − 6
√

π)t2 + 4
√

π
)
E(t)

+ (
(2x − 4

√
π)t4 + (8

√
π − 2x)t2 − 4

√
π
)
K(t)

]
.

A.5. Contribution of C×P to the expected EC. In P , we have l = m, in which
case, as we discussed before, ϕ disappears and the rotation space random field
reduces to the scale space random field. To obtain Con(C ×P ), we can use (4) for
the Gaussian kernel case. For the Gaussian kernel, κ = 1, β = 1/2. By substituting
these values and N = 2 in (4), we have

Con(C × P ) = |C|σ−2
1 /2

{
(2π)−1/2(1 − r2)x2/2 + (1 + r2)x/2

}
φ(x)/(2π)

+ |∂C|2−1/2σ−1
1

{
(2π)−1/2(1 − r)x/2 + (1 + r)/4

}
φ(x)/(2π)1/2

+ χ(C)
{−(2π)−1/2 log rφ(x) + [1 − 
(x)]}.

APPENDIX B

Tube derivations. Here we assume that X is as defined in Section 2 with the
Gaussian kernel given in (1). Similar calculations apply to a general radial kernel.
It will be convenient to put S−1 = A, with entries (aij ). We initiate derivation
of (8) by considering the volume of a tube of geodesic radius φ around the
five-dimensional manifold � = {γ (t, θ, σ, c) : (t, θ, σ, c) ∈ C ×Q∗;Q∗ = [0, π ]×
[σ1, σ2] × [c1, c2], c1 > 1} embedded in the unit sphere Sd−1 in R

d .
The metric tensor of the manifold is the basis for all calculations. The elements

[gij ]5
i,j=1 of the metric tensor g can be expressed through the partial derivatives of
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the covariance function R of the random field as follows: putting u = (t, θ, σ, c),
we have

gij (u) =
d∑

k=1

∂γk(u)

∂ui

∂γk(u)

∂uj

= ∂2R(u1; u2)

∂ui∂uj

∣∣∣∣
u1=u2

.

The result of substantial calculation [cf. Sigal (1998)] is the metric tensor

g =




a11/2 a12/2 0 0 0

a12/2 a22/2 0 0 0

0 0 (c2 − 1)2/(4c2) 0 0

0 0 0 1/σ 2 1/(2σc)

0 0 0 1/(2σc) 1/(2c2)




.

To find the volume of a tube, we split the calculations into pieces corresponding
to the different parts of the tube.

We start by considering the points z inside the tube that are closest (in the sense
of a distance in Euclidean space R

d ) to a point γ in the interior of the manifold �.
We use the notation T�o(φ) for this part of the tube. At each point of the manifold,
the five-dimensional tangent space is spanned by the vectors (γt1, γt2, γθ , γσ , γc).
Let n(0), n(1), . . . , n(d − 6) be the d − 5 orthonormal vectors, normal to the
tangent space of � and lying in the tangent space of Sd−1 for i = 1, . . . , d − 6,
n(0) = γ (t, θ, σ, c). For notational convenience, we will occasionally use u =
(u1, u2, u3, u4, u5) to denote the quintuple (t, θ, σ, c). Then z can be represented
as z = y/‖y‖, where

y = y(u, ξ1, . . . , ξd−6) = γ + ξ1n(1) + · · · + ξd−6n(d − 6),

‖y‖ = (1 +∑d−6
i=1 ξ2

i )1/2,
∑d−6

i=1 ξ2
i ≤ tan2 φ. Also [see, e.g., Lemma 1 of Knowles

and Siegmund (1989)], we have

dV�o(z) = ‖y, y1, . . . , y5, n(1), . . . , n(d − 6)‖ dudξ1 · · · dξd−6

(1 +∑d−6
i=1 ξ2

i )d/2
,

where yi , i = 1, . . . ,5, denotes the partial derivative of y with respect to ui and
‖ · ‖ denotes the absolute value of the determinant. According to Weyl (1939), the
part of the volume V�(φ) arising from this part of the tube is

V�o(φ) = (≤)ωm−1
∑

κeJe(φ)

= ωm−1
(
κ0J0(φ) + κ2J2(φ)

)+ o
(
J2(φ)

)
, φ → 0,

(9)

e even, 0 ≤ e ≤ 5, m = d −6. Here ωm−1 is a surface area of the unit sphere Sm−1,
κe equals certain integrals with respect to the volume element of the manifold �
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and Je(φ) is an incomplete beta function

J0(φ) =
∫ φ

0
(sin ω)m−1(cosω)n dω,

m(m + 2) · · · (m + e − 2)Je(φ) =
∫ φ

0
(sin ω)m+e−1(cosω)n−e dω, n = 5.

In (9) “=” holds if there is no local or global self-overlap of the tube, and “≤”
holds when there is no local self-overlap.

The constant κ0 is the volume of the manifold � and in the case of the Gaussian
kernel is easily found to be

|�| =
∫
C×Q∗

‖g‖1/2 dtdθ dσ dc = π |C|
16

(
1

σ 2
1

− 1

σ 2
2

)(
1

2

(
1

c2
2

− 1

c2
1

)
+ log

c2

c1

)
.

The constant κ2 is given by

κ2 =
∫
C×Q∗

(
−S

2
− n(n − 1)

2

)
‖g‖1/2 dtdθ dσ dc, n = 5,

where S is the scalar curvature of the manifold � [see, e.g., Willmore (1959),
pages 232 and 233], which can be calculated directly from the metric tensor.
This expression for κ2 and discussion of the algorithm appear in Sun (1993). It is
interesting to note that as in the case of isotropic Gaussian kernel our manifold �

has constant scalar curvature (S = 18) and hence κ2 = −19|�|.
Assume now that the point z of the tube is one for which the closest point

is γ ∂ from the part of the boundary ∂� having a four-dimensional tangent
space. In other words, we consider the point z to which the closest point is the
point from the union of images of the sets ∂Cs × (0, π ] × (σ1, σ2) × (c1, c2),
C × (0, π ]×{σ1, σ2}× (c1, c2), C × (0, π ]× (σ1, σ2)×{c1, c2}. Here ∂Cs denotes
a smooth part of the boundary ∂C. We will use the notation T∂�(φ) for this part
of the tube. Since calculations for manifolds with boundary do not appear in Weyl
(1939), we will give more details for the general calculations and then present
some examples specific to our problem. See Knowles and Siegmund (1989) for the
case of a two-dimensional surface and Naiman (1990) for the case of the manifold
that is the image of a convex polyhedron.

Points z ∈ T∂�(φ) can be represented as z = y/‖y‖, where

y = y(u1, u2, u3, u4, η, ξ1, . . . , ξd−6) = γ ∂ + ηN + ξ1n(1) + · · · + ξd−6n(d − 6),

‖y‖ = (1 + η2 + ∑d−6
i=1 ξ2

i )1/2, and the quadruple u = (u1, u2, u3, u4) denotes the
coordinates parameterizing one of the parts of the boundary described above. The
particular choice of the parameterization for each part will be described below.
The normal N is a vector in the tangent space of �, but orthogonal to the boundary
and pointing into the manifold, so that η ≤ 0. The volume element is

dV∂�(z) = ‖y, y1, y2, y3, y4,N,n(1), . . . , n(d − 6)‖ dudη dξ1 · · · dξd−6

(1 + η2 +∑d−6
i=1 ξ2)d/2

,
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where yi = γ ∂
i + ηNi + ∑d−6

k=1 ξkni(k), i = 1, . . . ,4, γ ∂
i = ∂γ ∂/∂ui , ni(k) =

∂n(k)/∂ui , Ni = ∂N/∂ui. By extending the Weingarten map [cf. Millman and
Parker (1977), page 125] to manifolds of dimension greater than 2, ni(k) and Ni

can be expressed as a linear combination of γ ∂ , γ ∂
i , i = 1, . . . ,4, and N , n(k),

k = 1, . . . , d − 6, as

Ni = −
4∑

j=1

G
j
i γ

∂
j + · · · ,

ni(k) = −
4∑

j=1

L
j
i (k)γ ∂

j + · · · ,

where +· · · denotes the part of the expansion orthogonal to the tangent space
spanned by the γ ∂

i , i = 1, . . . ,4. Along the lines of Knowles and Siegmund (1989),
we get

dV∂�(z) = ‖g∂‖1/2

∥∥∥∥∥I − ηG −
d−6∑
k=1

ξkL(k)

∥∥∥∥∥ dudη dξ1 · · · dξd−6

(1 + η2 +∑d−6
k=1 ξ2

k )d/2
,

where G = (G
j
i )

4
j,i=1, L(k) = (L

j
i (k))4

j,i=1 and g∂ is the metric tensor of the
manifold ∂�. The volume of this part of the tube is

V∂�(φ) =
∫
∂�

∫
∑d−6

k=1 ξ 2
k +η2≤tan2 φ,η≤0

∥∥∥∥∥I − ηG −
d−6∑
k=1

ξkL(k)

∥∥∥∥∥
× dη dξ1 · · · dξd−6

(1 + η2 +∑d−6
k=1 ξ2

k )d/2
dA∂�,

where dA∂� is the volume element of the boundary ∂�. We expand the
determinant and integrate to obtain

V∂�(φ) = 1
2ωd−6κ

∂
0 J ∂

0 (φ) + ωd−7J2(φ)κ∂
1 + o

(
J2(φ)

)
, φ → 0,(10)

where κ∂
0 is the volume of the boundary, κ∂

1 is the integrated geodesic mean
curvature of the boundary [cf. Siegmund and Worsley (1995)], and we have
assumed there is no self-overlap.

Elements of the matrix of the Weingarten map, (G
j
i )

4
j,i=1, can be found in the

following way. From the Weingarten equations

∂N

∂ui

= −
4∑

j=1

G
j
i γ

∂
j + · · ·

and the simple fact that

∂

∂ui

〈N,γ ∂
j 〉 = 0 =

〈
∂N

∂ui

, γ ∂
j

〉
+ 〈N,γ ∂

ji〉,
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it follows that for each fixed i vector (G
j
i )

4
j=1 is the solution of a system of linear

equations

〈N,γ ∂
ik〉 =

4∑
j=1

G
j
i g

∂
jk, k = 1,2,3,4.

Below we present examples of calculations of κ∂
0 and κ∂

1 for different parts of the
boundary ∂�.

∂�σ = γ :C × [0, π ] × {σ1, σ2} × (c1, c2) → R
d . Here u = (t1, t2, θ, c) and

γ ∂(u) = γ (t1, t2, θ, σi, c), i = 1,2. First, we find the unit normal to ∂�σ , which
lies in the tangent space of �, that is, is a linear combination of vectors
γt, γθ , γσ , γc and orthogonal to the tangent space generated by γt, γθ , γc. It can be
seen that the vector γσ is orthogonal to all but γc, and “one-step” Gram–Schmidt
orthogonalization gives the unit normal

N = 21/2(σγσ − cγc),

which points into the manifold � at σ = σ1 and outward at σ = σ2.
The metric tensor for ∂�σ is easily derived from the expression for g given

above, and

κ∂
0 =

2∑
i=1

|∂�σi
| = π |C|

8
√

2

(
1

σ 2
1

+ 1

σ 2
2

)(
2 log

c2

c1
+ 1

c2
2

− 1

c2
1

)
.

The integrated boundary curvature κ∂
1 can be found from the following system

(which is relatively simple due to the block-diagonal form of the metric tensor g∂ ):

〈N,γt1t1〉 = G1
1a11/2 + G2

1a12/2,

〈N,γt1t2〉 = G1
1a12/2 + G2

1a22/2,

〈N,γt2t2〉 = G2
2a22/2 + G1

2a12/2,

〈N,γt2t1〉 = G2
2a12/2 + G1

2a11/2,

〈N,γθθ〉 = G3
3(c

2 − 1)2/(4c2),

〈N,γcc〉 = G4
4/(2c2).

Calculation of 〈N,γuiuj
〉 involves evaluation of expressions of the form 〈γuiuj

, γσ 〉,
〈γuiuj

, γc〉. One way to do this is to calculate the corresponding derivatives of the
covariance function. Another way is to use the “cyclic permutation of indices”
technique often used in differential geometry, which allows one to calculate the
values of interest directly from the metric tensor of the manifold �. It is especially
simple to apply here due to the relative simplicity of the metric tensor. Below we
present one example of such calculation, say for 〈γt1t2, γc〉.
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EXAMPLE.

∂gt1c/∂t2 = 0 = 〈γt1t2, γc〉 + 〈γt1, γct2〉,
∂gt2c/∂t1 = 0 = 〈γt1t2, γc〉 + 〈γt2, γct1〉,
∂gt1t2/∂c = σ−2c−3 sin θ cos θ = 〈γt1, γct2〉 + 〈γt2, γct1〉 = 2〈γt1, γct2〉,

which implies 〈γt1t2, γc〉 = −〈γt1, γct2〉 = −0.5σ−2c−3 sin θ cosθ.

Using the results of these calculations and solving the system of linear equations
given above, we arrive at the following expression for the curvature of the
boundary at σi :

4∑
j=1

G
j
j = (−1)i+12

√
2c2/(c2 − 1), i = 1,2,

and

κ∂
1 = |C|π

2

(
1

σ 2
1

− 1

σ 2
2

)
log

c2

c1
.

Now let ∂�c = γ :C ×[0, π ]× (σ1, σ2)×{c1, c2} → R
d . Here u = (t1, t2, θ, σ )

and γ ∂(u) = γ (t1, t2, θ, σ, ci), i = 1,2. For this part of the boundary, the unit
normal N = 2cγc − σγσ ,

κ∂
0 = π |C|

8

(
1

σ 2
1

− 1

σ 2
2

)(
1 − 1

c2
1

+ 1 − 1

c2
2

)

and

κ∂
1 = π |C|

4

(
1

σ 2
1

− 1

σ 2
2

)(
1

c2
2

− 1

c2
1

)
.

REMARK. For the case c1 = 1, where we consider the boundary at c2 only, we
find that κ∂

0 is as given above with c1 = 1, but surprisingly κ∂
1 = (π |C|/4)(1/σ 2

1 −
1/σ 2

2 )(1 + 1/c2
2). This is the source of one half the recommended modification

of (8) when c1 = 1. (The other half comes from addition of the scale space term to
account for the singularity in the manifold at c1 = 1.)

More complicated calculations arise when we consider ∂�∂Cs = γ : ∂Cs ×
[0, π ] × (σ1, σ2) × (c1, c2) → R

d . Initially, assume for simplicity that ∂C is
a smooth closed curve. To calculate the volume of ∂�∂Cs , it is convenient to
parameterize ∂C in terms of its arc length s starting from some fixed point
on ∂C. Let τ (s) = (τ1(s), τ2(s)) be such parameterization. Then u = (s, θ, σ, c)

and γ ∂(u) = γ (τ1(s), τ2(s), θ, σ, c). The metric tensor has the form

g∂ =




τ̇ ′Aτ̇ /2 0 0 0

0 (c2 − 1)2/(4c2) 0 0

0 0 1/σ 2 1/(2σc)

0 0 1/(2σc) 1/(2c2)


 ,
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and

κ∂
0 = |∂�∂Cs |

=
∫ π

0

∫ σ2

σ1

∫ c2

c1

∫ |∂C|
0

c2 − 1

4
√

2c2σ

{(
τ̇1(s)

τ̇2(s)

)′
A
(

τ̇1(s)

τ̇2(s)

)}1/2

ds dθ dσ dc.

Since τ (s) is a unit speed curve, we can write (τ̇1(s), τ̇2(s)) = (cosα(s), sinα(s))

for some differentiable function α(s), where α(0) ∈ [0,2π). Then the expression
for κ∂

0 can be rewritten as

|∂�∂C | =
∫ π

0

∫ σ2

σ1

∫ c2

c1

∫ |∂C|
0

c2 − 1

4
√

2c2σ

(
cos2(α(s) − θ)

σ 2

+ sin2(α(s) − θ)

σ 2c2

)1/2

ds dθ dσ dc

=
∫ σ2

σ1

∫ c2

c1

∫ |∂C|
0

∫ α(s)

α(s)−π

c2 − 1

4
√

2c2σ 2

(
cos2 φ + sin2 φ

c2

)1/2

ds dφ dσ dc

= |∂C|
2
√

2

(
1

σ1
− 1

σ2

)∫ c2

c1

c2 − 1

c2 E
([

c2 − 1

c2

]1/2)
dc.

Here, as before, E(y) is a complete elliptic integral of the second kind. It is easy
to see that this result holds for any ∂C that is a union of piecewise regular curves.

To calculate the geodesic curvature, we assume for now that ∂C is smooth
and, for example, parameterized by its arc length. The tangent space of ∂�∂C

is spanned by τ̇1(s)γt1 + τ̇2(s)γt2, γθ , γσ , γc. It is easy to see that the corre-
sponding unit normal can be expressed as a linear combination of γt1 , γt2 , say
N = C1(s, θ, σ, c)γt1 + C2(s, θ, σ, c)γt2 , the explicit form of which does not in-
terest us now. For the elements of (Gi

i)
4
i=1, we can derive a system of linear

equations analogous to the one considered above. The following observation sim-
plifies the task. By noticing that 〈γθ , γti 〉 = 〈γσ , γti 〉 = 〈γc, γti 〉 = 0, i = 1,2, and
〈γσ , γσ 〉, 〈γσ , γc〉, 〈γc, γc〉, 〈γθ, γθ 〉 do not depend on ti , i = 1,2, and by differen-
tiating, one can see that 〈γθθ , γti 〉 = 〈γσσ , γti 〉 = 〈γcc, γti 〉 = 〈γσc, γti 〉 = 0.

This discussion leads to the conclusion that all but one diagonal entry of the
Weingarten map are 0. The nonzero entry arises from 〈γ ∂

ss,N〉 = G1
1g

∂
11, where

g∂
11 was written explicitly above. So

κ∂
1 =

∫ π

0

∫ c2

c1

∫ σ2

σ1

c2 − 1

4c2σ

∫ |∂C|
0

〈γ ∂
ss,N〉 1

(g∂
11)

1/2
ds dσ dc dθ.

Now, for each fixed (θ, σ, c), the curve that is the image of ∂C can be
parameterized in terms of its arc length t . For example, t = t (s) = 2−1/2 ∫ s

0 [τ̇ (v)′×
Aτ̇ (v)]1/2 dv in the case that ∂C consists of a single smooth curve. Then

γ̃ ∂(u) = γ̃ ∂(t, θ, σ, c) = γ
(
τ1(s(t)), τ2(s(t)), θ, σ, c

)
,



1768 SHAFIE, SIGAL, SIEGMUND AND WORSLEY

and

〈γ ∂
ss,N〉 = 〈γ̃ ∂

tt ,N〉
(

dt

ds

)2

+ 〈γ̃ ∂
t ,N〉

(
d2t

ds2

)
= 〈γ̃ ∂

tt ,N〉
(

dt

ds

)2

.

The change of variables s = s(t) leads to the innermost integral being seen to equal∫
∂�∂C(θ,σ,c)

〈γ̃ ∂
tt ,N〉dt,

where ∂�∂C(θ, σ, c) is the boundary of the surface γ (t, θ, σ, c) considered as
a function of t and 〈γ̃ ∂

tt ,N〉 is the geodesic curvature of this boundary. Since
the entries of the metric tensor of the surface do not depend on t, the Gaussian
curvature of the corresponding surface is 0, and the Gauss–Bonnet theorem shows
that

∫
∂�∂C(θ,σ,c)〈γ̃ ∂

tt ,N〉dt is equal to the Euler characteristic of C multiplied
by 2π . Finally, we get

κ∂
1 = 2πχ(C)

4
π log

σ2

σ1

(
c2 − c1 + 1

c2
− 1

c1

)
.

Following the same scheme as above, one could obtain results for the part of
the tube arising from the ∂2�, that is, the “angles” of the boundary, which in
our case are the images of the following sets: C × [0, π ] × {σ1, σ2} × {c1, c2},
∂Cs ×[0, π ]×{σ1, σ2}×(c1, c2), ∂Cs ×[0, π ]×(σ1, σ2)×{c1, c2}, ∂2C×[0, π ]×
(σ1, σ2) × (c1, c2). Here ∂2C stands for the vertices of ∂C (exterior angles of ∂C

are assumed to be positive).
For the point z of the tube to which the closest point is γ ∂2

from ∂2�(z ∈
T∂2�(φ)), we have z = y/‖y‖, where

y = y(u1, u2, u3, η1, η2, ξ1, . . . , ξd−6)

= γ ∂2 + η1N(1) + η2N(2) + ξ1n(1) + · · · + ξd−6n(d − 6),

‖y‖ = (1 + η2
1 + 2ζη1η2 + η2

2 + ∑d−6
i=1 ξ2

i )1/2, η1, η2 ≤ 0. Here N(1), N(2) are
the unit vectors lying in the tangent space of � and normal to the tangent
spaces of the parts of the boundary ∂� the intersection of which constitutes
the corresponding part of ∂2�, and ζ = 〈N(1),N(2)〉 (assume that |ζ | < 1).

Weingarten equations in this case take the form Ni(k) = −∑3
j=1 G

j
i (k)γ ∂2

j + · · · ,
k = 1,2, ni(k) = −∑3

j=1 L
j
i (k)γ ∂2

j +· · · , k = 1, . . . , d −6, G(k) = (G
j
i (k))3

j,i=1,

L(k) = (L
j
i (k))3

j,i=1.

REMARK. In the representation of z, we implicitly assumed that N(1) and
N(2) are linearly independent, although this is not necessarily the case. For
example, in our problem it can happen that the boundary ∂C has vertices where
the tangent rotates by π . More work is needed to deal with these cases, which we
exclude from our consideration.
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Omitting a few steps in the derivation of the volume of T∂2�(φ), we have

V∂2�(φ) = J2(φ)ωd−7κ
∂2

0 + o
(
J2(φ)

)
, φ → 0.(11)

To evaluate (11), we must find the angle between the corresponding unit
normals N(1), N(2). It is easy to see that N(1)⊥N(2) and arccos(ζ ) = π/2
for the parts of ∂2� that are the images of ∂sC × [0, π) × {σ1, σ2} × (c1, c2),
∂sC ×[0, π ]× (σ1, σ2)×{c1, c2}. For the image of C ×[0, π ]×{σ1, σ2}×{c1, c2},
it is easy to see from the previous calculations that 〈N(1),N(2)〉 = −1/21/2,
arccos(ζ ) = 3π/4 for (σ, c) = (σi, ci), i = 1,2; and 〈N(1),N(2)〉 = 1/21/2,
arccos(ζ ) = π/4 for (σ, c) = (σi, cj ), i, j = 1,2, i �= j . In the case that ∂2� is
the image of ∂2C × [0, π ] × (σ1, σ2) × (c1, c2) for each vertex and fixed θ , σ ,
c, arccos(ζ ) is just the angle of rotation of the tangent to the boundary of the
two-dimensional surface γ (t, θ, σ, c) considered as a function of t. So, for the
part of the boundary which is the image of ∂C × [0, π ] × (σ1, σ2) × (c1, c2), we
can combine the above result with the integral appearing in the derivation of the
expression for κ∂

1 to get

∫
∂�∂C(θ,σ,c)

〈
γ̃ ∂
tt ,N

〉
dt +

V∑
i=1

arccos(ζi) = 2πχ(C),

which again follows from the Gauss–Bonnet theorem. In this equation, V is the
number of vertices, and the integral should be understood as a sum over smooth
parts of the boundary. As a result, the total input from the curvature of the part of
the boundary under consideration and “angles” is equal to ωd−7J2(φ)κ∂

1 , where κ∂
1

was defined earlier.
Now we can combine (9), (10) and (11) to obtain as φ → 0 the expansion

V�(φ) = ωd−7κ0J0(φ) + 0.5ωd−6κ
∂
0 J ∂

0 (φ)

+ ωd−7
(
κ2 + κ∂

1 + κ∂2

0
)
J2(φ) + o

(
J2(φ)

)
.

Putting these expressions together as in Knowles and Siegmund (1989) or Sun
(1993), we obtain

P

{
max

(t,θ,σ,c)∈C×Q∗ X(t, θ, σ, c) ≥ x

}

= φ(x)x4(2π)−5/2κ0 + φ(x)x30.5(2π)−2κ∂
0

+ φ(x)x2(2π)−5/2(4κ0 + κ2 + κ∂
1 + κ∂2

0
)+ o

(
x2φ(x)

)
, x → ∞,

and hence display (8).
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