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SECOND-ORDER CORRECTNESS OF THE BLOCKWISE
BOOTSTRAP FOR STATIONARY OBSERVATIONS

By F. GorzE anD H. R. KUNSCH
University of Bielefeld and ETH Ziirich

We show that the blockwise bootstrap approximation for the distribu-
tion of a studentized statistic computed from dependent data is second-
order correct provided we choose an appropriate variance estimator. We
also show how to adapt the BC, confidence interval of Efron to the
dependent case. For the proofs we extend the results of Gotze and Hipp on
the validity of the formal Edgeworth expansion for a sum to the studen-
tized mean.

1. Introduction. Efron’s (1979) bootstrap is distribution-free, but the
assumption of independence is crucial since it ignores the time order of the
observations. For serially dependent observations, Kiinsch (1989) has pro-
posed a blockwise bootstrap which samples blocks of length [ of consecutive
observations with replacement. He has shown that this procedure estimates
the asymptotic variance and the asymptotic normal distribution consistently
if the statistic considered is a smooth function of vector means. The only
assumptions are suitable mixing and moment conditions for the observations
and an increase of [ = I(n) to infinity, but at a slower speed than n. However,
for such simple statistics there are other methods to estimate the asymptotic
variance which require fewer computations, for example, the blockwise jack-
knife or an estimate of the spectrum at zero for the estimated influence
function [see also Kiinsch (1989)]. Hence the additional effort required for the
bootstrap is only justified if the resulting approximation to the distribution of
the statistic is better than the one relying on asymptotic normality. With i.i.d.
data, Efron’s bootstrap has indeed this property; see, for example, Singh
(1981) and Hall (1988). Here we show that this is also true for the blockwise
bootstrap as announced some time ago in an abstract [Gotze and Kinsch
(1990)]. In the meantime, Lahiri (1996) also has given a proof of a similar
result.

The essential reason for second-order correctness is the asymptotically
correct skewness of the blockwise bootstrap distribution [cf. Kiinsch (1989),
formula (3.19)]. This gain in accuracy is, however, covered by the error in the
bootstrap variance which is in our case of the order @#(I"!) + @,(1/?n"1/?)
and thus always larger than the order #(n~!/2) of the skewness term. So for
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a better than normal approximation we have to make the true and the
bootstrap variance equal, for example, by standardizing the statistic if its
variance is known [Lahiri (1991)] or otherwise by studentizing. In the latter
case, it is crucial how the variances are estimated; see Davison and Hall
(1993). The essential requirement is that the variance estimators for the
original and the bootstrap sample should have the same bias. This should
become clearer in Section 2 where we discuss formal Edgeworth expansions.

Our result is somewhat surprising because dependence makes the estima-
tion of the distribution of a statistic inherently more difficult. Note that we do
not assume a specific type of dependence like an AR model where second-order
correctness can be obtained by applying Efron’s bootstrap for the estimated
innovations; see Bose (1988). Nevertheless our bootstrap approximation is
correct in the n~1/2 term like for i.i.d. situations. The effect of dependence is
felt only in the following term of the expansion, which is at best of @(l/n)
instead of the usual @(n~!). The optimal block size ! depends on the lag
weights w, of the variance estimator in formula (3). Choosing w, = 1 and
w, =2 (1 <k <) gives as optimal order [ = @(n'/*), but for these weights
the variance estimate could be negative. Other weights avoiding this have the
optimal order [ = @#(n'/3); see the discussion at the end of Section 2.

As a direct consequence of our result, the coverage probability of one-sided
bootstrap-¢ intervals is correct up to o(n~1/2). However, these intervals are
not equivariant under monotone transformations of the parameter. In Section
3 we propose an extension of the BC, intervals of Efron (1987) to the
dependent case. These intervals combine transformation equivariance with
second-order coverage probabilities.

The proof will be given in Section 4. The most difficult part is to show the
validity of the Edgeworth expansion for the studentized statistic for depen-
dent observations. Gotze and Hipp (1983) have shown the validity of the
Edgeworth expansion for the arithmetic mean under a set of conditions
covering a broad range of situations. We are going to use the same conditions.
The difficulty in passing from the arithmetic to the studentized mean comes
from the fact that the estimated variance is the sum of [ different arithmetic
means, namely, the sample covariances for lags 0,...,/ — 1, and [/ increases
with n.

2. Notations and heuristics. Suppose that we have observed a station-
ary process (Y, j € Z) with values in R* for j = 1,..., n. Let us denote EY;]
by w, n ' £, Y; by Y, and n'/*(Y, — p) by S,. We consider a statistic

U,=H(Y,)=H(p+n"'2S,)
as an estimator of H( ), where H:R* — R is a given function. This frame-
work is not as narrow as it may seem at first glance. We can replace the

original observations Y; by

W Y2 (Y Y )
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with a fixed m and ¢ and apply everything to the transformed observations
Y/. So, for instance, the following version of the sample autocovariances,

n n n
”)\lm = n71 Z Yij]er - n72 Z ij Z ij+m’
Jj=1 Jj=1 j=1
fits into our framework. By taking nonlinear functions of %,, we arrive at
autocorrelations, partial autocorrelations and Yule—-Walker estimators in
autoregressive processes.
If H is differentiable and the gradient DH does not vanish at u, then
n'/2(U, — H(w)) is asymptotically equivalent to

DH(p)"S, =n "2 ¥, Z,£ T, where Z, £ DH( )" (Y, - ).
i=1

Moreover, under standard assumptions about moments of (Z;) and the decay
of mixing coefficients, 7, is asymptotically./(0, o;?)-distributed with
(2) o? £ i E[Z,Z;] = lim o2,
Pl n
where
a2 & Var[T,] = i (1= 1jl/n)E[Z,Z;].

Jj=-n

For studentizing U, we need an estimator of a.2. We estimate the covariances
E[Z,Z;] and then truncate the infinite sum corresponding to (2) with a lag
window

J

-1 n—1
(3)  62=DH(Y,) Lw,n ' Y (Y,-Y,) (Y., - ¥,) DH(T,).
k=0 j=1

The lag weights w, = w,(l) are supposed to be of the form w, =1 and
w;, = 2w(k /1) for 0 < k <! with »:[0,1) — [0, 1] continuous and w(0) = 1. If
Il > and I/n — 0, then G2 is consistent under mild conditions on the

process (Y)). The optimal rate for / will be given at the end of this section.
The studentized statistic is

Un,stud = n1/2(Un - H( /’L))a-r;l’

which is asymptotically .#(0, 1)-distributed.

Our aim is to produce a better than normal approximation of the distribu-
tion of U, ;4 With the help of the blockwise bootstrap of Kiinsch (1989). It
depends on a block length which we choose equal to the width [ of the lag
window in (3). The reason for this will be explained shortly. We then
resample with replacement from all [-tuples of consecutive observations in
the original sample. Assuming for simplicity that n = bl with b € N, we let
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the starting blocks Ny, ..., N, be ii.d. uniform on{0,1,..., n — I} and take as
the bootstrap sample (Y;*,...,Y*),

(T*l)l+i=YN7+i (1S]Sb,1SiSZ).
The bootstrap statistic is then
Ur - H(T7).

Denoting the conditional expectation of any function of the Y;*s for given
Y,,...,Y, by [E*, a simple calculation similar to Lemma 3.1 of Kiinsch (1989)
shows that

n—1 !
w2 B[V =Y 4V = (- 1+ )T R B Y
j=0 i=1

=(n—1+1) " Y min(j/l,1,(n+1-j)/1)Y; =7, + 6p(1"/?nY).
Jj=1

Hence n/2(Y* — Y,) has a (conditional) bias of #(1*/2n~1/2), which is larger
than the first term in the Edgeworth expansion of n'/ 2(1_’n — w). So for
second-order correctness we must center U* at H( ") instead of H(Y)).

Let us introduce the quantities

l
AUV (Y - m),  SEEaVA(TE - ) = b2 L Ay
i=1 j=1

By a Taylor expansion of H at u¥ we see that the linear part of n'/2(U* —
H( k) is

b
T £ DH(u)"Si =52 ¥ By,
j=1

where B; & DH(})"A;. By the independence of N, ..., N, it follows that
n—1
0% & Var*[T;}] = Var*[By| = (n -1+ 1) ¥ B2
Jj=0

A straightforward computation shows that up to boundary effects, o-,f*‘2 is

equal to 6,2 of (8) with w, = 2(1 — k/1). This is the reason why we choose the
window width in (3) and the block length of the bootstrap to be equal.
However, our results could be obtained also without this special choice.
Asymptotic normality of the linear part 7,* can be proved using Lindeberg’s
condition. So essentially first-order correctness of the bootstrap follows from
the convergence of o*? to 0.2; see Kiinsch (1989). Because ¢** — g2 is
always at least of the order @p(n~'/?) (except when the Z;s are uncorrelated),

removing the error due to the wrong variance is of interest.
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The obvious estimate of o** is

b l
(4) 62226 ¥ B}, where B, 2172 Y DH(Y) (Y., - 7).

j+i — In
j=1 i=1
Then the studentized bootstrap statistic is

l]rj< stud nl/Z(U* H( /‘L;kz))/A*
Note that in using B instead of B; we have mimicked the uncertainty of
estimating u by Y 1n (3). However, in other aspects ¢* does not corre-
spond exactly to ;2. Namely, we can write

(5) 6:*=n"'DH(Yr) ¥ (v*-Yr)(Yr - Yr)DH(T)),
Li/l1=1j/1]
where [ x] denotes the integer part of x. So for 6** we take only pairs in the
same blocks, whereas for 6> we take all pairs at lag distance < [ with a lag
weight w,. The reason for this difference is that for H linear, E*[ & *2] =
0*2(1 — b~'), whereas the analogue of (5) with the original observations
would have a bias of #(I™1). Such a large bias would destroy second-order
correctness; see the discussion at the end of this section or Davison and Hall
(1993).
We now derive formal Edgeworth expansions for U, .4 and U’ 4. First
we approximate U, .4 and U, by quadratic statistics. A Taylor expan-
sion of the numerator and denominator of U, 4 gives

n'/?(U, —H(p)) =T, +n V238ID*H(n)S, + n~ &, 4

and
62 =02 +n V2V, + STd) + (12 — 62) + n"V &, 5,
where
1
Tn2 = Z w,t[Z,Z,],
k=0
Vn £ Z Wy, n71/2 Z( j J+k [E[ZOZk])a
d22D*H(p) ¥ E[(Yy— w) (Y, —u)|DH(p).
k= —®
Hence
Un,stud = Ywno-n_1 + n_1/2(P(Sn) - %TnVna-n_?’)
(6) — 5T (72 —02)o,  +n "t g, 4
£E, - 3T,(r2—02)o, > +n 1 & 5 say,
where

P(S,) £ 3SiD*H(n)8,0, ' — 37,8, da, >.
Because S, = @p(1) and V, = @,(1'/?), the remainder terms are &, ; = @5(1),
&,9=0p() and ¢, 3 = @p(1).
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2 reflects the bias of &2

The difference 7.2 — o; -2 as an estimator of g,> when
H is linear. Its order depends on the smoothness at zero of the function w
generating the weights w, and on the decay of the covariances E[Z,Z,].
Under the assumptions of Section 3 the covariances decay exponentially.
Thus if w(x) — 1~ —cx’/ as x —» 0 with ¢ > 0, then 72 — g2 is O( 7). If
o = 1 and log(n) = o(1), then 72 — .2 is @(n"'). The implications of this for
the error in the bootstrap approximation will be considered at the end of this
section.

Similarly we have
Un*,stud = Tvn*o-n*_1 + n*l/Q(P*(S:) - %ll/QTn* Vn*o-n*_s) + b71 gn*,?)

Ef +b7'¢F; say,

1>

where
P*(S*) A %S*TD2H( ,U«*)S*O’*fl _ %T*S*Td*o_**S
d* £ 2D°H( 12%)E*| Ay, A%, | DH( 1),

[I>

b
Vi 2b 2 Y (BY - o).
=17
The remainder term &, is &7 (1).

For the formal Edgeworth expansion of U, .4 we introduce

n n—1L 1
Kk, 2 nV2E[T?], a,2ET,V,]=ntY Y wE[Z,Z,Z;.,].
i=1j=1%k=0

Furthermore let 3, denote the covariance matrix of the (2 + 1)-dimensional
vector (T, /o, ST)! and let c, denote the coefficients of the polynomial P(S,)
with respect to the variables S, and T,. The formal Edgeworth expansion
V¥, (a) of U, ,q is the same as the one for E, defined in (6). It is defined by its
characteristic function

B, (¢) = (1+n7 %0 3((§x, — 3,)(it)” = Sa,it))exp[ —22/2]
(7

.....

Similarly the formal Edgeworth expansion of U, (conditional on the
observations) is defined by its characteristic function

() = (14 n" V2% 0~ ( = 3(it)" — jit))exp| —£2/2]

Here

K: N nl/z[E*[Tn*S] _ ll/Z[E*[Tn*Vn*] = Z1/2[E*[BJ?\’71]



1920 F. GOTZE AND H. R. KUNSCH

and ¥ and ¢! are defined in analogy to 3, and c,. Hence the two formal
Edgeworth expansions are close if all coefficients are close, that is, the
moments up to order 3 should be close. From Kiinsch (1989) and the foregoing
discussion it follows that

Wy =p+dp(n"1?),
3, =3, +0(nt),
SE=3_ 4+l +ap(b1?).

Moreover it is easily seen that

a, =k, +0(n ') =k, +0(n"), K, 2 Y [E[ZOZiZj].

n

Finally

n—1
k¥ =1Y2(n-1+1)"" Y B2
j=0

Hence because B, is a standardized sum of length / we have
E[x}] =k, +@(17h).
In Section 4 we will show that
ki = ELK] = 6p(17b7Y/2) = Ep(In /%)

Taking all this together we obtain the order of the difference between the two
Edgeworth expansions:

(8) supl¥,(a) — W (a)l = #(1 'n /) + Gp(In ).

The error between the Edgeworth expansions and the distribution functions
will be shown to be

9) sup|P{U, ua < a} — ¥, (a)l=c(In"'"%) +o(7 - 5,7)
and
(10) SUp P (U g < 0} — W (a)] = Gp(In 1)

for any £ > 0 provided all moments exist. Together (8)—(10) imply the desired
result that the studentized bootstrap is second-order correct.

We close this section with a brief discussion of the choice of / and w. First
we note that when 72 — g.2 = @(I™'), some of the error terms in (8)—(10) are
of larger order than #(n~!/2) for any choice of [, that is, second-order
correctness does not hold. In particular we must not use the triangular
weights w(x) = 1 — x even though they are suggested by the form of the

bootstrap variance. As we have seen, the order of 7.2 — ¢;? is minimal for the

rectangular weights o = 1. In this case the optimal order of [/ is seen to be

@(nY*), which leads to an error in the bootstrap approximation of
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@p(n~3/%"¢), The only disadvantage of the rectangular weights is that 62 is
not guaranteed to be positive. Positivity can be achieved with weights w(x) —
1 ~ cx? with ¢ > 0. Then the optimal order of ! becomes #(n'/3) with an
error of @p(n"2/3*%) in the bootstrap approximation.

3. Confidence intervals. We consider the problem of constructing a
one-sided confidence interval (—o, U,) for H( n) with level a. One possibility
is to take
(11) U,=U, +n V%,Gi" (),

where G(a) = P¥{U; 4 < a}. Our results imply that this interval has ac-
tual coverage probability a + o(n~1/2), but it is not equivariant under mono-
tone transformations of the parameter. The following generalization of Efron’s
(1987) BC, interval to the dependent case has both properties. We use the
bootstrap distribution G} ((a) = P*{U;* < a} without any standardization or
studentization, but we adjust the level to 8 = B(a):

(12) UnéG:,_Ol(B)7 B(a) é(I)(Zlfoz—’—a’nlefaz—i_bnzlfoz—i_cn—i_dn)‘
Here z, 2 ® '(a) and, with the quantities defined in Section 2,

a, £ n % /(60}7),

b, &6, /0" — 1,

c, & 2q)_l(G;f,o(I_I( P*;kz)))’

d, & /(U - H( )/

The expressions a, and ¢, are invariant under monotone transformations,
but b, and d, are not. However, since terms of 0,(n~'/?) do not matter, we
can replace U, — H(u}) in d, by DH(u#)"(Y, — p¥). Similarly, we can
modify b, by replacing DH(Y,) in definition (3) of 6> by DH( u}). With these

modifications transformation equivariance holds, and the coverage probabil-
ity follows from Theorem 3.1.

THEOREM 3.1. Under the conditions of Theorem 4.1, P{U, < H(w)} = a +
o(n~1/2),

ProoF. Set U 2 U, — n= %%, (a). Then by Theorem 4.1, P{U <
H(p)} = a + o(n"1/2). Thus it is sufficient to show that
G o(T,) = PH{n' %0} Y (UF —H( k) <d, — ¥, (a) = b,¥, ()}
=B+ op(n"1/?).

By Lahiri’s (1991) result on second-order correctness for the standardized
statistic we may replace the bootstrap probability by the Edgeworth expan-
sion B, of n'/%0; (U, — H(w)). Thus

G:f,o(ﬁri) = n(dn - q’n_l(“) - bnq;n—l(a)) + oP(n‘l/Z),

I
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Now we have to exploit the specific form of ¥, and E,. From (7) it follows
that there are coefficients y,, y, such that

V,(z) = P(z) + n71/2€0(z)(71 + 7222)a
whence
Vol (a) =z, —n % (y, + 7223) + o(n~1%).
Similarly there are coefficients y;, vy, such that
E.(2) =®(2) + n_1/2¢(2)(y3 + 3’422)
= CID(Z + 072 (yy + 'y422)) + o(n~1/?).
Hence
G:,o(l_]r;) = CI)(21—a + n71/2(71 + s+ (v 74)212—a) +b,21 ot dn)
+ op(n~1/2).

Because ¢, = 20 1(E ,(0) + op(n™ /%) = 2n" 2y, + 0p(n"1/2), the claim of
the theorem is now equivalent to v, = y; and y, + vy, = a,,. This follows from
a long but straightforward computation, which we omit. O

Let us briefly comment on the differences between our formulae and those
in Efron (1987). Our ¢, is twice the bias correction z, of Efron. For the
statistic U, = H (Y,) the empirical influence function is simply DH (Y'n)(YJ- -
Y,) ~ B;, so our a, is the analogue of Efron’s acceleration constant a. Of
course, since our formula takes dependence into account, the two expressions
are different. The two terms b, z,_, and d, do not occur in the independent
case. They are needed to correct for differences between the real and the
bootstrap world. Finally the computation of the adjusted level B(a) is not
exactly the same, but Efron’s formula (3.9) is asymptotically equivalent to
zla]l =2z, + 2z, + az?, which agrees with (12).

4. Rigorous results and proofs.

4.1. Edgeworth expansion for the studentized statistic. We shall assume
that the sequence of random vectors R; £ (Yj, ZJ-) € R* X R satisfies the
following conditions used in Gotze and Hipp (1983), which subsequently will
be denoted by GH.

(AD EY;=0,j=1,2,....

(A2) B, & [EIIYJ-IISJré < o« for some integer s > 8, and 6 > 0 arbitrary small.

(A3) There exists a sequence Z,, k € Z, of sub-o fields of & and a
constant d > 0 such that for j, m = 1,2,..., with m > d !, the r.v. Y; can be

approximated by a ; = o(Z,:|p — jl < m)-measurable random vec-
tor Y, ,, with

—m,j+m

ENY; - Y, . < d " exp[ —dm].
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(A4) There exists a d > 0 such that for all m, j=1,2,..., A€9
B €9,

Jjt+m, o

—o, j

[P{A N B} — P{A}P{B}| < d ' exp[ —dm]
(Rosenblatt mixing).

(A5) There exists a d > 0 such that for all m, j=1,2,...,d ' <m <j
and |¢| > d,
[E|[E(exp[it(zj, + - +Z

m j+m

)]|9121 a&j)l < exp[ —d]
and
liminf Var(Z, + -+ +Z,)/n > 0.

(A6) There exists a d > 0 such that for all m, j, p=1,2,... and A
=@J‘ﬂ?,J‘er’

EIP{AlZ,:1 # j} — P{Al2,:0 <|l — jl <m + p}l < d" ' exp[ —dm].

Moreover for the function H which defines our statistic U, we make the
following assumption.

(A7) H:R* - R is three times differentiable, DH( ) # 0 and there are
constants C, A > 0 such that

ID*H(x)ll < C(1+ IIxIIA) for every x € R*.

Condition (A1) means no restriction since we can always put u = 0.
Moreover, since Z; is a linear function of Y;, (A1)~(A3) hold also for Z; (after
adjusting the constants if necessary). Our main result is Theorem 4.1:

THEOREM 4.1. Under the conditions (A1)-( A7) the Edgeworth approxima-
tion for U, .4 defined in (7) holds, that is, for s > 8,1 < n'/? and log(n) =
o(1) we have

sup|P{U, .ua < a} — ¥,(a)l = @(In"17%/*)

, stu
provided w = 1. If w(x) — 1 ~ —cx? with ¢ > 0, the error contains an addi-
tional @(1™%) term.

REMARK 4.1. A direct application of the multivariate result in GH for a
stochastic expansion in terms of the vector (S,,V,) is not very desirable,
although it does yield expansions up to arbitrary degree. However, we would
have to check the conditional Cramér condition (A5) for (S,, V,), which can be
very difficult even for simple time series models, in particular when the
statistic U, is constructed from transformed observations as in (1). For
examples where (A5) is verified, see Bose (1988) and Gotze and Hipp (1994).
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REMARK 4.2. This result also can be generalized for the case of random
fields Z,;, ij € Z2. In order not to exclude interesting examples, the mixing
condltlon (A4) has to be relaxed as follows: For finite subsets I,, I, of 72
whose Euclidean distance is greater than or equal to m and for A € o(I)),
B e o(1,),

IP{A N B} — P{A}P{B}| < c|I,||I,|>e~™,

The proofs still carry over with this weaker condition see Jensen (1993).
Thus we have an analogous result for statistics U, = H (n_2 X 1Z).

PrROOF OF THEOREM 4.1. In order to limit the moment conditions, we have
to use truncations as in the proofs of GH. Define T:R**! — R**! by
T(x) 2 xnPy(llxlin=?) /llxll,

where y € C*(0,x) satisﬁes x(r) £ r for r < 1, y is increasing and x(r) = 2
for r > 2. The value of 3> B> 0 will be determined later. Define R} £
(Z],Y]") £ T(R)). Let UnT «ua denote the statistic U, ., applied to R, j =
1,...,n. Note that

0=ER; =ER1yr <ney T ERLp 2 ney = J1 + I,
say, where ||J,|l = @(n~ (¢~ D#) by Chebyshev’s inequality. Hence we obtain
[ER!|l = &(n=t~DP),
(13) [ES]|| = @(n'/2~C~VEY = @(n"1"°),
IEV = @(In'/?2~ 2By = @(n~177),
choosing B such that
(14) (s—2)p>11/6 + &, sB>2+e.
Then we have P{|R,ll > n? for some 1 <j < n} =#(n'"#*) = o(n""). These
estimates together with the arguments in Lemma 3.30 of GH finally lead to
lk,(a’S,) — «,(a"S})| = @(n'~P/2-C-PE)

for the cumulants of order p = 2,3,..., s. By expansion of moments in terms
of cumulants we get [similar to page 224 and to Lemma 3.18 of GH or
Bulinskii and Zhurbenko (1976)]

(15) sup E[IS,[I57° < oo, sup ElIS}I? < ¢(p)

n

for every p > 2. Furthermore,
(16) EIV,I’/? = @(1°/*) and E|V|? =@(17/?)

for any p. The bounds in (16) can be shown as follows. Decompose V, =

/i Wil/n)'/?, where W, £ ¥*(Z,Z,,, — EZ,Z,, ,)w,]”'/? and the summa-
tlon extends over all v, £ such that jl < v<(j+ 1), 0 <k <. The sum
over j may be decomposed into three sums (with indices j = 0,1,2mod 3)

which consist of almost independent summands. This implies by standard
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estimates E|V,|? = @(E|W,|?). Finally we may replace |x|? by a function ¢ of
class C” with [¢P(x)| < c(1 + |x|?"?), p < q, and obtain by induction on g,
[Ep(W,1~1/2)| = #(1) uniformly in this class. Here we use Taylor expansion,
EWZ = @(1) and Tikhomirov’s (1980) gap expansion arguments.

Thus we obtain for the Edgeworth expansion ¥, (a) for U, ., defined
similarly as ¥, (a) by standard technical arguments [see Bhattacharya and
Rao (1986)] sup,|¥,(a) — ¥/(a)l = @(n"') and, therefore,

(1>

A

n SuplP{U d < a} - q,n(a)|

n,stu

(17)

IA

SuplP{U; ua < a} = ¥(a) | +&(n ).

a

Next we argue that the Edgeworth expansions for U, 4 and for E; £ E +
Tio Y12 — 0?)a, ? [see (6)] agree up to @(In"1"*), that is, we can neglect
the remainder term n~' ¢, ; in the Taylor expansion (6). By standard
arguments [see, e.g.,, Chibisov (1972)] this is true if IP{|§,1 3l > In®} =
@(In"1%¢). This follows from the structure of the remainder terms in the
Taylor expansions and Chebychev’s inequality, since S| and V' have mo-
ments of all orders with bounds given by (15) and (16). Finally, since the
Edgeworth expansion of E; and of E; , say ¥, _, differ by #(z? — 0,2), we
obtain

n

(18) A, < swplP(E] , <a} = W] (o)l + &(52 — ?) + & (In" "),

In order to simplify the notation we shall replace, in the following, E; . by E
and ‘I’,I’ . by Wi since both statistics behave exactly similarly in terms of
estimating their c.f. By the Berry—Esseen lemma we can estimate the error in
the Edgeworth expansion by characteristic functions. Let ¢/ (¢) £ EexplitE].
Then (16) together with (18) leads to

asc " () = i(e)|itl ™ dt + @(In e
(19) ('/L‘|<n£ '/,;8<t|<n12/s)|g0( ) ( )| ( )

=L, +1I,+c(Iln"'"*), say.
Estimation of I,. By Lemma 3.33 of GH we have
(20) [Eexp[itT]/a,] — Ul () < en 11 + B,)(1 + It )exp[ —ct?]
for some absolute constant ¢ > 0, where

K3

60}

n

Al ——t2[|1 + n~V2(it)?

A
,lin = €xp
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Now expanding E exp[itE] in terms of tn~'/2(P(S}) — TV,” /2) we obtain
Eexp|itE] |

= Eexp|itT) /a,| + itn '/ *Eexp|itT, /o, | (P(S}) — 3T/ V,/) o, ?
21
(21) + @’(tzn—l)([EP(s;)2 + E(T;V,))
£ Eexp|itT) /o,| + J1, +J,, + R,, say.

By (15) we obtain sup, EP(S;)? < ¢ < «, and expanding E7,>V,/? into indi-
vidual summands we obtain, by conditions (A3) and (A4) similarly to Bulin-
skii and Zhurbenko (1976), by counting multiplicities,

(22) ET,2V,2 = @(1).

Furthermore, let T, = ZJeIZJTn_l/Z/Un, T, =T)/o,—T; and H},6 £
s0,w(ZlZl,  —EZ,Z,, )Z]. We have
Jug= it T EH] el eslieT) ]
pyv.J

where ©* denotes the summationover 1l <j<n,l<p<n-landl<v<l|
and where I denotes the set of indices in {1, n) which have distance less than
m from {j, p, p + v} with m £ K log n, for some K to be chosen later. Using
an expansion technique introduced by Tikhomirov (1980) we obtain, by
expanding exp[it7} ] up to second order,

2

it)?
Iy, Hi , |1 +iaT) + %sz)exp[itTJ’I]

—itn 32 Y 'F
p,v,J
4. -3/2 * 73
+o(ttn 32 YR HS, T |)
p,v,J
A
Sdg +dy +ds + R,

In the term RGt we have to estimate /n?m?® summands separately. Thus

Rs, =0 (Im3t*n~1). For the other terms we shall employ the approximate
1ndependence of, for example, H, , ; and expl itT,} 7] using conditions (A3)
and (A4) in order to factor J; , as a product of expectatlons plus an error of
&(n® expl —dm)).

The sum J,, is split according to the case where [j —pl<2m or
|lj —(p + v)| < 2m and the case where both distances are larger than 2m.
In the first case, we have #(m?nl) summands which yield a contribu-
tion of @(Im?nt2n~2). In the second case, we may use the approximate inde-
pendence of WT = ZTZ' ~-EZ,Z and Z/Z],  explitT, ;] as well as of

ptv JTIt

|LASYVAN (resp WTVZ;HW) for |M| < m and the other factors. Thus oJ,
@’(lmt - 1) In J; , the same splitting yields a bound of @#(Im?n|t|’n ’3/2)
for the first part and in the second part negligible contributions from terms of

type W, ,Z/Z], , Z], , . In this part, sums (over j, p) of factorizing expecta-

v A T+ et
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tions of the type [EWT VZ;; +u,EZ JTZ I+, contribute to the expansion. Collecting

these terms and the error bounds we get

gy, = —3n V2ET Vo (it + (it)°)E explitT, |

29) + @’(tn3/2 X Gl E|(EexpitT ] — [Eexp[itTnT’I])|)
Do, By, Ry
t4
+ @ —msl),
n
where G! 2H!, 6 (Q+t*n"'Z],, Z], ) and the summation extends

Dy V,J, s Mg Jtvi¥p+vy
over vl <, [uql, | mol < m Finally the second line in (23), say J; ;, can be

handled easﬂy by estlmatlng explitT,] — 1 using (15) and (16). This leads to
Ji . =0n 1"? + Im*t*n"). Furthermore, in order to estimate J; , we
obtain by Lemma 3.33 of GH for the multlvarlate expansion of F exp[ia’S t T /o,
in terms of the multivariate c.f. expansion V¥, (a) of length 2 with ﬁrst
component of a being equal to ¢,

EP(S])exp|iT, /] = LD, )

n, mult

| De(Eexplia’s]/a,] = ¥, (@)

(24)
< c(l + sup [E||RJT||4)(1 + |t|6+lal)e—ct2n—1/2_g’
J

where ¢ > 0 denotes an absolute constant and the partial derivatives are
taken at the point (¢,0,0,...,0). The coefficients ¢, correspond to the mono-
mial coefficients of the polynomial P(8S}). Collecting the expansion results
(20-(24) and letting of £ L, ¥, w,EZ{Z], ,Z] ,, ,, we get by definition of
the expansion ¥(#),

|l (8) = Ti(0)]
s|[Eexp itTnT/Un] - ‘i’rf,hn(t”

(25) +n EP(S])exp|itT, /a,| — ZcD e (@)

+3(1tl + |t|3)n’1/2|a§||[Eexp[itTnT/crn] — exp| —3¢7]|
+@(t?mn~1') + @(t3n1).

Hence we obtain by integration over |t| < n?®, I, = @(In~1%2¢),

Estimation of I,. Let N denote a number such that n > N > m, where
m £ K log n and (K is chosen sufficiently large below) such that for n® < |¢|
<nt e

(26) N £ [(:—2 +1)m2}.
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The reasons for this choice will become apparent later in the proof. Now we
replace the random vector R; £ (ZJ-, Yj) by some Z; -measurable ran-
dom vectors R} = (Z]7,Y;'") with

EIR; — Rl < d ™" exp[ —dm]

using condition (A3). Hence also
EIT(R;) — T(R]")I < d~* exp[ —dm].
Denote by E' the statistic E, for truncated and 2,

. . . J*{n,j+m
vectors T(R;’ ). We obtain by the truncation of random variables

IE exp[itE,f] - [Eexp[itE;T]l
< n? sup EIT(R;) - T(RJ”)II =a(n?%)
J

-m,j+m

-measurable

(27)

for some A > 0 provided K in the definition of m is chosen sufficiently large.

Thus we may assume w.lo.g. that all r.v. are truncated by n? and are
/i m, j+m-measurable. In order to simplify the notation, we shall from now on

drop the  notation and write R, = (Z,Y),8,,T,,V, again. We decompose

(Sn’Vn) = (§N’VN) + (gan’anN)ﬁ
where

N l
(Sw.Vw) 2 X n V% 2,.Y;, X w22, - EZ,Z;.,)
Jj=1 v=0
and (S, _,,V,_,) denotes the complementary part of the sums.
Let Q(S,,V,) £ P(S,) — +T,V,. In the next step we modify an argument
used in Lemma 3.43 of GH. We expand

-
Q(Sn7 Vn) = Q(San7 anN) - %TnVN + Z SYIVQj(San’ anN)’
j=1
where @; denotes an appropriate vector of polynomials and the dot indicates
a multilinear form. Thus we have, by expansion of exponential terms depend-
ing on Vy and Sy in powers of Z,Z;, , (resp. Z; and Y)),

[Eexp[itE, ]| <|E exp][ itTn]eXp[itn_l/QQ(gn_N,Vn_N)]

(28) X Z*CQ,BZQYBQQB(gn—N’Vn—N)
a, B

1 = —
+ E[HQ(S,,,VH) - Q(San’anN)lp(|t|n71/2)p,

where the sum Y * extends over all tuples

a2 (ay,...,ay,;,0,...,0), B= (B Bsr---5By,0,...,0)

with |a| + [ Bl < r(p — 1), r denotes the degree of P and @, , denote polyno-
mials of the vector (S, _y,V,_x)
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Let us estimate first the last remainder term, say I in (28). By (15), (16)
and (26) we have in extension of (16) by properties of truncated moments
EIVyl? = @(l?/>(N/n)*/?) and E|Sy|? = @#(N/n)*/?) for p > s. Thus

I=0o(172(1tIN'2/n)")
(29) = ((mn=1217/%)") for |t| < Vn
= o((mltln=111/%)") forVn <|t| <n'=el"V/2,
Thus I = o(n™ 1) for |t| < n'~°171/2 provided that
(30) p=>=s and se> 2.

In order to evaluate the expansion terms in (28) we may proceed as in the
proof of Lemma 3.43 of GH (pages 233-235). Surrounding the at most
r(p — 1 indices j, where a; >0 or ;> 0, and the block <N+ 1 , )
by an “independence nelghborhood” 1 of size 3m, define {j?,..., _]r( p 1)} £
{jia; >0 or B;>0} and I=({je(l,. —m}|J—JV| v =

.,r(p - D} Divide I into blocks Al,Bl,.. A,, B, as follows. Deﬁne
Jis-eordgy J1 = infI and j,,, =inflj > j, + 7m:j € I}. Let g denote the
smallest integer for which the inf is undefined. Write

A, 2 [T{exp|itn=1/2Z)|:j e 1,1 - j,| < m},
(31) B, = n{exp[itn_l/ZZj]:j el,j,+m+1<j<j,,., —m-— 1},

R 2 2Z~ Y“]_[exp[thn 1/z]exp[th( VIR 74 N)],
JEI

where v=1,...,q — 1. Then

q
exp|it(T, + n~1/2Q(S, .V, y))| = [14,B,R,
1
where |A, |< 1, Bl <1, |Rl<nP? b and A, is D; _om, j,+2m-Measurable,

B,is9; .4 _ l-measurable and R is measurable Wlth respect to {(9,:3j¢1
Wlth |l —]| < m}. We have

q
‘[ER]_[AVBV —ERTIE(A,l2;:1j - j,| < 3m)B,
1 1

s—1
ERTTA,B,(A, - E(A)2;:1j - jl < 3m))

(32) < ;

q
x IT E(Al2;:1j—j,l<3m)B,|.

n=s+1

Here we may replace A, by [E(Aslgj: J # J,) since the product of all remaining
factors in (32) is measurable with respect to 2;: j # j, (i.e., is constant with
respect to this conditioning by our construction). Thus invoking condition (A6)
we obtain that (32) can be bounded from above by n2d ! exp[ —dm] = o(n™4)
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for arbitrary large A > 0 provided K in the definition of m is chosen large
enough. Recall that the functions E(A,|2;:0 <|j —j,I<3m), v=1,...,q,
are weakly dependent since j,,; —j, = 7m, v=1,...,q — 1. Using condition
(A4) and the bounds for R, A, and B, we obtain

q
[ER[]_[BV[E(AVI.@J-:O <lj—Jjl=< 3m)”
1
q
(33) <nPP-DETT|E(A,lZ;:0 <1j—j,| < 3m)|
1

q
< nB]_[[E|[E(AV|9j:O <lj—-jl< 3m)| + 4nBqd 1 exp[ —dm].
1

Condition (A5) implies that for |¢| > d, [EI[E(AVIQj:j # j,) < expl —d]. So by
Lemma 3.2 of GH and assumption (A6),
ElE(A,l2;:17 —J,1 < 3m)l

< [E|[E(A,,|9j: lj—J. |+ 0)| + @(n®d ' exp[ —dm])

< max(exp[ —dt*n '], exp[ —d]) + @(n®d ' exp[ —dm]).
We finally obtain with ¢ > ¢N/m for some ¢ > 0 using (26):
[Eexp[ itE, ]| < n*(max(exp[ —dt*n~'], exp| —d]))N/m +@(n"?)

=ntexp[ —d'm] =&(n"?)

for some K sufficiently large and d’ > 0, thus completing the proof. O

(34)

4.2. Edgeworth expansions for the studentized bootstrap. Assume that
(Zj, Yj) e R¥*1 j=1,..., n, denotes a sequence of dependent r.v.s satisfying
condition (A1)—~(A4). Let A}, B;,, N, --- N, and U’ ;4 be as defined in Section
2. Then we have the following theorem.

THEOREM 4.2. Let V,(a) denote the Edgeworth expansion defined in (7)
and assume that (log n)% <1 < n'/? with K large enough and that conditions
(A1)-(A4) hold with s replaced by qs, q > 3 and s > 8. Then

SUPIP(U s < 0} — Wy(@)] = Ep(n " +41) + £(1 n /2)
for e £ 2/sandl < nl/3,

Proor. We show (10) by using the same arguments as in Theorem 1 with
R;, j=1,...,n, replaced by CNj = (BNJ_, A7I:,J_)T, j=1,...,b. So we have to
check that the conditions (A1)-(A6) hold conditionally on Y;,...,Y,, uni-
formly for all Y,,...,Y, in a set whose probability tends to 1 for n going to
infinity. Condition (A1) holds by the definition of A; and B;. In order to check
the moment condition (A2), consider

fo 2 E(ICxI7) = (r =1+ 1) T (ICI° + -+ +1IC,_II%).
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Assume that E||(Z

J

,Yj)llqs <owandlet f,=1"1%_, fo,+ EllC,lI°, where

b-1
fs,v 2 b_l Z (“C;Ll.;.y”s - [E”ClHS)

n=0

By Theorem 2.11 in GH we have, for any x > 0,
l (g—2)/2
I
l

(g—2)/2
P{Ifs—[Efs|>x}=@’(l(;) )=o(1)

P(f,, ~Ef..|> %) =&

and therefore

for g > 3. The conditions (A3), (A4) and (A6) obviously hold true by indepen-
dence when we choose 9; = U(]Vj), Jj=1,2,...,b. Hence it remains to check
condition (A5) in this case. So we have to show that for some 0 < { < 1/2,

(35) [P’{ sup |E* exp[itBNIH <1- {} =1-o(n1).
d<|t|<bl/?

By definition we have with N £n — [ + 1,

|[E* exp[itBN1]|

(36) <|N! sz: (exp[itB;] — Eexp[itB;])

Jj=1

+ sup|[Eexp[itBj]|
J

21, +1,, say.

By assumption (A4) and Lemma 3.33 of GH with o = 0 and n replaced by
we have for |t| < 1%, I, < c, exp| —c,¢?] for some absolute constants c,, ¢, > 0.
For large ¢t we get from the proof of Lemma 3.43 of GH with n replaced by [
and a =0, I, < exp[ —c,/?] for some absolute constants ¢, > 0 and & > 0
and every t with [° < |t| < b2, provided that [ > m £ (log n)X, K suffi-
ciently large but independent of n. Hence we obtain

(37) I, <1-2¢

for every d < |¢t| < b1/2 and some 0 < ¢ < 1/2.

In order to estimate I, = I(¢) let & £ exp| itBj] - [Eexp[itBj] denote a
complex bounded random variable with mean zero. By condition (A3) we can
approximate §; by a mean zero random variable §jT which is Z;
measurable such that

—-m,j+l+m

38 El& — &'l < |¢l1'/?d ™" exp[ —dm].
j S
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We then write

d

N
N Y §
j=1

(39) LY x Ly x
sp{ N j;gf > 5} +u3>{ N- J;(&j—&,) > E}
£1,+1,, say.

By (38) we have
N
sup I, <N ' Y El§ — &'l/x = @(n'/? exp[ —dm]) = o(n™ ")
ltl<b1/2 Jj=1

for m = (log n)¥ and K sufficiently large. For I, we repeat the argument
used to check (A2). If

21 N/@D
20 L2IN' X &, > x/2,
v=1 p=0
then there exists a v with
N/@D

mvé2lN71 Z g;pl+v>x/2‘
p=0

By assumption (A4) we may assume that & pi+v» P =0,1,..., are indepen-
dent up to an error of @(N expl —dm]). Thus (39) implies

P{I,(¢) > x} < (21)P{m, > x/2} + @(N exp[ —dm]).
By standard exponential inequalities for bounded independent r.v. (in m,) we
get
(40) P{I,(t) > x} < @(l)exp[—cx®N/l] + &(N exp[ —dm])

for some absolute constant ¢ > 0. We now have to prove (35) using (40). To
this end, split the intervals {¢t:d < |¢t| < b1/?} into n® intervals of equal
length. Let A, denote the set of midpoints of these intervals. Then we have
by standard arguments

[P’{ sup Il(t)>§}

d<|t|l<bl/?
< [P’{ sup I,(t) > Z/Z} + IP{ sup  [Ii(t) — I(s)l > {/2}
teA, lt—s|l<n—Cpl/2
=1, +1I;, say.
By (40) we have I, = #(In® exp[—c'N/L]) + o(n~!) for some absolute con-
stant ¢’ > 0 choosing x = {/2. In order to estimate I, note that we have for
E sup [£7(t) — &'(s)l <ce

t—sl<e
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by (15) and, therefore,
I, <@(n °bY?),

which finally yields the desired condition (35) by choosing C > 0 sufficiently
large. In order to complete the proof, we have to show (8). However, this is
straightforward because the behavior of the bootstrap moments follows from
the argument to show (A2) used at the beginning of this proof. O
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