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ON THE INVARIANCE OF NONINFORMATIVE PRIORS

BY GAURI SANKAR DATTA1 AND MALAY GHOSH 2

University of Georgia and University of Florida

Jeffreys’ prior, one of the widely used noninformative priors, remains
invariant under reparameterization, but does not perform satisfactorily in
the presence of nuisance parameters. To overcome this deficiency, recently
various noninformative priors have been proposed in the literature.

Ž .This article explores the invariance or lack thereof of some of these
noninformative priors including the reference prior of Berger and
Bernardo, the reverse reference prior of J. K. Ghosh and the probability-
matching prior of Peers and Stein under reparameterization. Berger and
Bernardo’s m-group ordered reference prior is shown to remain invariant
under a special type of reparameterization. The reverse reference prior of
J. K. Ghosh is shown not to remain invariant under reparameterization.
However, the probability-matching prior is shown to remain invariant
under any reparameterization. Also for spherically symmetric distribu-
tions, certain noninformative priors are derived using the principle of
group invariance.

1. Introduction. Bayesian analysis with noninformative priors is very
common when little or no prior information is available. One of the most

Ž .widely used noninformative priors, introduced by Laplace 1812 , is a uniform
Ž .possibly improper distribution over the parameter space. However, a uni-
form prior lacks invariance under reparameterization since a uniform distri-
bution for one parameterization will not yield, on transformation, another
uniform distribution unless the transformation is linear. For example, a
uniform prior for the standard deviation s will not transform into a uniform
prior for the variance s 2. This lack of invariance of the uniform prior often
translates into significant variation in the resulting posteriors. To overcome

Ž .this difficulty, Jeffreys 1961 proposed his prior which, up to a proportional-
ity constant, is given by the square root of the determinant of Fisher’s
information matrix. Jeffreys’ prior remains invariant under any one-to-one
reparameterization. Despite its success in one-parameter problems, Jeffreys’
prior often runs into serious difficulties in multiparameter problems when

Ž .only a subset or one or more suitable parametric function s of the parameter
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Ž .vector u p = 1 are of inferential interest and the remaining are nuisance
parameters. For example, in the Neyman]Scott problem, Jeffreys’ prior

Ž .produces an inconsistent Bayes estimator under squared error loss of the
w Ž .xerror variance Berger and Bernardo 1992a , in the multinomial problem it

wlacks marginalization over ‘‘nuisance’’ cell probabilities Berger and Bernardo
Ž .x1992b and in estimating the sum of squares of a large number of indepen-
dent normal means with a common variance, it leads to an unsatisfactory

w Ž . Ž .xposterior, often referred to as Stein’s paradox Stein 1959 ; Bernardo 1979 .
To overcome these deficiencies of Jeffreys’ prior, Berger and Bernardo

Ž . Ž .1989 expounded the reference prior approach of Bernardo 1979 for deriv-
ing noninformative priors in multiparameter situations by dividing u into
parameters of interest and nuisance parameters. This approach not only
eliminates the need for an hoc modifications of Jeffreys’ prior as suggested by
Jeffreys himself in multiparameter problems, it also results in Jeffreys’ prior

Žwhen the whole parameter vector is of interest both in the one- and multipa-
.rameter situations . The idea was further extended and generalized in a

Ž .series of articles by Berger and Bernardo 1992a]c , who suggested splitting
Ž .the parameter vector into multiple groups not necessarily two according to

their order of inferential importance and prescribed a general algorithm for
the construction of reference priors.

Ž . Ž . Ž .Welch and Peers 1963 , Peers 1965 and Stein 1985 sought to derive
Ž .noninformative priors when a real-valued parametric function t u is of

interest by requiring the frequentist coverage probability of the posterior
Ž .credible region of t u for a sample of size n to match with the nominal level

Ž y1 . Ž . Ž .with a remainder of O n . As shown by Peers 1965 and Stein 1985 , such
w Ž . xa prior is obtained by solving a differential equation see 3.2 in Section 3 .

Henceforth, this differential equation will be referred to as the matching
equation, and a prior satisfying such an equation will be referred to as a

Ž .matching prior. Tibshirani 1989 carried this idea further in deriving nonin-
Ž .formative priors for t u by using ‘‘orthogonal parameterization’’ in the sense

Ž .of Cox and Reid 1987 . However, in general, orthogonal parameterization is
Ž .not needed, as shown by examples in Datta and Ghosh 1995a .

Some recent contributions for the construction of noninformative priors
Ž . Ž .other than those of Berger and Bernardo 1992a, b are due to Berger 1992 ,

Ž . Ž .Ghosh and Mukerjee 1992 , Clarke and Wasserman 1992 , Clarke and Sun
Ž . Ž . Ž .1993 and Mukerjee and Dey 1993 . Mukerjee and Dey 1993 proposed a
prior by matching the frequentist coverage probability of the posterior credi-

Ž .ble interval of c the parameter of interest with the nominal level up to1
Ž y1 .o n when the orthogonal nuisance parameter c also contains a single2

component. This requirement often completely specifies the matching prior by
wdetermining the arbitrary component depending on c alone see Tibshirani2

Ž .x1989 . Also a notion of reverse reference prior, attributed to J. K. Ghosh,
Ž . Ž .came up in Berger’s 1992 discussion of Ghosh and Mukerjee 1992 . Reverse

reference priors are obtained by simply interchanging the roles of the param-
eters of interest and of the nuisance parameters in the algorithm of Berger

Ž .and Bernardo 1989, 1992a, b . Such priors satisfy the matching criterion
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under orthogonal parameterization, but need not necessarily be probability-
w Ž .xmatching priors otherwise cf. Datta and Ghosh 1995a .

It is well known that Jeffreys’ prior remains invariant under one-to-one
reparameterization. In this article, we will explore the invariance of various
other noninformative priors under reparameterization. In particular, in Sec-
tion 2.2, we establish that the m-group reference prior of Berger and Bernardo
Ž .1992a, b remains invariant under certain one-to-one transformations. This

Ž .fact is stated without proof in Berger and Bernardo 1992a when there are
only two groups of parameter vectors, but is not established analytically in
the general case. Also, in Section 2.3, we have shown by an example that
reverse reference priors do not necessarily remain invariant under similar
one-to-one transformations.

In Section 3, it is shown that probability-matching priors remain invariant
Ž .under one-to-one transformations. By ‘‘invariance’’ it is meant that if p u ,u

Ž .the pdf of u , is a probability-matching prior for the parameter of interest t u ,
Ž .and c is a one-to-one transformation of u , then the transformed prior p cc

Ž .obtained from p u by change of variables will also be a probability-match-u

Ž . Ž .ing prior for t c s t u under the c parameterization. Next in Section 4, it
Ž .is shown that the information tradeoff prior of Clarke and Wasserman 1992

remains invariant with respect to the choice of nuisance parameters and any
Ž .one-to-one transformation of the parameter possibly vector-valued of inter-

est. However, we have shown by examples that priors of Ghosh and Mukerjee
Ž . Ž .1992 and of Clarke and Sun 1993 do not typically remain invariant under
reparameterization.

In Section 5, based on the principle of group invariance, we provide a new
motivation for generating a class of noninformative priors in some problems
pertaining to spherically symmetric distributions. Similar group invariance
ideas are used to generate noninformative priors in two other examples
involving the general location-scale family and the exponential regression

Ž .model of Cox and Reid 1987 . As we shall see, often in these examples, the
resulting priors agree with some of the priors mentioned earlier.

2. Invariance of reference priors.

2.1. Notations and the algorithm. We will follow the notations of Berger
Ž .and Bernardo 1992a, b and introduce some additional notations needed for

Ž < .development of our results. Suppose p x u is the pdf of a random variable X
Ž . preal- or vector-valued , where u g Q ; R is the unknown parameter. We
also assume that the Fisher information matrix for u , denoted by I , isu

positive definite. We use the subscript u to indicate that I is the informationu

matrix corresponding to the parameterization u .
We also assume that the u are separated into m groups of sizes n , . . . , ni 1 m

and that these groups are given by

u s u , . . . , u ,Ž .Ž1. 1 n1

u s u , . . . , u , . . . , u s u , . . . , u ,Ž . Ž .Ž2. N q1 N Žm. N q1 p1 2 my1
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where N s Ý j n for j s 1, . . . , m. Also we define, for j s 1, . . . , m,j is1 i

u s u , . . . , u , u s u , . . . , uŽ . Ž .w j x Ž1. Ž j. w ; j x Ž jq1. Žm.

with u s u and u s f, an empty set. For n = n matrix I , we writew m x w ; m x i j u i j
the information matrix in partitioned form as

I s I .Ž .Ž .u u i j is1, . . . , m , js1, . . . , m

Also we write for j s 1, . . . , m y 1,

I s I ,Ž .Ž . is1, . . . , j , ks1, . . . , ju w j j x u ik

I s I ,Ž .Ž . is1, . . . , j , ksjq1, . . . , mu w j < ; j x u ik

I s I ,Ž .Ž . is jq1, . . . , m , ks1, . . . , ju w ; j < j x u ik

I s I ,Ž .Ž . is jq1, . . . , m , ksjq1, . . . , mu w ; j j x u ik

A s I , . . . , I .Ž .i < ; j u i , jq1 u im

For n = n matrix A , write S s Iy1 in partitioned form S si j i j u

ŽŽ ..A . Define S to be the N = N upper left corner of S,i j is1, . . . , m , js1, . . . , m j j j
with S ' S and H ' Sy1. Then the matrices h , defined to be the lowerm j j u j
right n = n corner of H , for j s 1, . . . , m, are the central quantities inj j j

� 4deriving the reference prior for the group ordering u , . . . , u following theŽ1. Žm.
Ž .algorithm of Berger and Bernardo 1992a, b . In fact, the algorithm involves

< < < <only h , where h s determinant of h . The above definition of hu j u j u j u j
depends heavily on the inversion of the matrices I and S . The followingu j

< < < < < <lemma shows that one can express h as the ratio of I to I .u j u w ; jy1, jy1x u w ; j j x

LEMMA 2.1. With the notations introduced earlier,

Iu w ; jy1, jy1x
< <2.1 h s for j s 1, . . . , m ,Ž . u j Iu w ; j j x

< <where we interpret I s 1.u w ; m m x

Ž .PROOF. Since H s I , h s I s I . Thus 2.1 follows form u u m u m m u w ; my1, my1x
j s m. For j s 1, . . . , m y 1, we can write, using the inversion formula for

w Ž . xpartitioned matrices Rao 1973 , Exercise 2.7, page 33 , that

H s Sy1 s I y I Iy1 Ij j u w j j x u w j < ; j x u w ; j j x u w ; j < j x

and, consequently,

h s I y A Iy1 AT .u j u j j j < ; j u w ; j j x j < ; j

wŽ . xNow using the result from Rao 1973 , Exercise 2.5, page 32 and the
< < < < < <definition of A and I , we get h s I r I and thej < ; j u w ; j j x u j u w ; jy1, jy1x u w ; j j x

lemma follows. I
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Lemma 2.1 is extremely useful in proving Theorem 2.1, which establishes
� 4the invariance of the reference prior for u , . . . , u under reparameteriza-Ž1. Žm.

tion in the regular case.
Ž .We now outline the algorithm of Berger and Bernardo 1992a, b , which is

used to derive the ordered group reference prior in the regular case. Let
Q l ; Q, l s 1, 2, . . . , denote the compacts to be chosen for u . Define for
j s 0, 1, . . . , m y 1,

Q l u s u : u , u , u g Q l for some u .Ž . Ž .� 4w j x Ž jq1. w j x Ž jq1. w ; Ž jq1.x w ; Ž jq1.x

Ž .Let 1 y g V denote the indicator function that equals 1 if y g V and 0
Ž .otherwise. Following Berger and Bernardo 1992a, b , we define

l < l <p u u s p u uŽ . Ž .u m w ; Žmy1.x w my1x u m Žm. w my1x

< <1r2 lh 1 u g Q uŽ .Ž .u m Žm. w my1xs .1r2< <lH h duu g Q Žu . u m Žm.Žm . w my1x

2.2Ž .

For j s m y 1, . . . , 1, define successively

l <p u uŽ .u j w ; Ž jy1.x w jy1x

l l l< < < <p u u exp 1r2 E log h u 1 u g Q uŽ .Ž . Ž .½ 5 Ž .u , jq1 w ; j x w j x u j u j w j x Ž j. w jy1x
s ,

l < < <lH exp 1r2 E log h u duŽ .½ 5u g Q Žu . u j u j w j x Ž j.Ž j. w jy1x

2.3Ž .

l Ž . Ž < .where E ? denotes the expectation w.r.t. the pdf p u u .u j u , jq1 w ; j x w j x
Then the reference prior for u is given by

p l uŽ .u1
2.4 p u s lim ,Ž . Ž .u lp u *lª` Ž .u1

l Ž .where u * g Q so that p u * ) 0 for all l.u1

2.2. Main result on invariance. We now establish the invariance of the
� 4reference prior for u , . . . , u under reparameterization in the regularŽ1. Žm.

Ž .case. We consider the transformation c s k u of the form

2.5 c s k u , . . . , c s k u , . . . , c s k u ,Ž . Ž . Ž . Ž .Ž1. 1 Ž1. Ž j. j w j x Žm. m w m x

Ž . Ž .where c is the n -component. Define c s c , . . . , c and k u sŽ j. j w j x Ž1. Ž j. w j x w j x
Ž Ž . Ž .. Ž .k u , . . . , k u . We assume that c s k u is a one-to-one function1 Ž1. j w j x w j x w j x w j x
of u for j s 1, . . . , m. This is equivalent to assuming that for fixed u ,w j x w jy1x
c is a one-to-one function of u for j s 1, . . . , m. Define for i s 1, . . . , m,Ž j. Ž j.
j s 1, . . . , m, the n = n matrix M s ­c r­u . Then the Jacobian of trans-j i i j Ž j. Ž i.
formation matrix from u to c is given by

­c
M s s M .Ž .Ž .i j i , js1, . . . , m­u
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OBSERVATION 1. Since M s 0 for j - i, M is an upper triangular matrix.i j

5 5Denoting the absolute value of the determinant of M by M , the Jacobian
5 5 m 5 5 5 5of transformation from u to c is M s Ł M . We assume M ) 0 sojs1 j j

5 5that the Jacobian is nonsingular. This is equivalent to M ) 0, so that thej j
Jacobian of transformation from u to c for fixed u is also nonsingu-Ž j. Ž j. w jy1x
lar for j s 1, . . . , m.

ŽOBSERVATION 2. We observe that M depends only on u or equiva-j j w j x
. Žlently on c and does not depend on u or equivalently on c , wherew j x w ; j x w ; j x

.c is defined as before .w ; j x

Let I denote the information matrix for a new parameterization c . Byc

routine calculations it can be checked that
Ty1 y12.6 I s M I M .Ž . Ž .c u

Defining I and M as in Section 2.1, it can be easily checked fromc w ; j j x w ; j j x
Ž .2.6 and Observation 1 that

Ty1 y12.7 I s M I M .Ž . Ž .c w ; j j x w ; j j x u w ; j j x w ; j j x

Defining the n = n matrix h as before for c , it can be easily checked fromj j c j
Ž .2.7 , by using Lemma 2.1 and the upper triangularity of M that, forw ; j j x
j s 1, . . . , m,

< < < <y2 < <2.8 h s M h .Ž . c j j j u j

Let Q, the parameter space of u , be mapped under the transformation
Ž .c s k u onto the parameter space of c , which is given by

C s c : c s k u , u g Q s k Q .� 4Ž . Ž .
Let C l denote the compacts for c induced by the transformation, that is,

C l s c : c s k u , u g Q l s k Q l .� 4Ž . Ž .
Define

C l c s c : c , c , c g C l for some c .Ž . Ž .� 4w j x Ž jq1. w j x Ž jq1. w ; Ž jq1.x w ; Ž jq1.x
l Ž . lSuppose p c denotes the proper prior of c , defined on C and derived byc 1

following the algorithm of Section 2.1 using I , the information matrix of c .c

We establish in Theorem 2.1 below the invariance of reference prior under
Ž . Ž .the transformation in 2.5 . By ‘‘invariance’’ we mean that p c can also bec

Ž . Ž .obtained from p u by using 2.5 and the usual Jacobian method. The keyu

step to this result is achieved by the following theorem.

� 4THEOREM 2.1. Consider the ordered group u , . . . , u and the transfor-Ž1. Žm.
Ž . Ž . lŽ . l Ž .mation c s k u given by 2.5 . Then p c can be obtained from p u byc u 11

transformation, that is,
l l y1 5 5y12.9 p c s p k c M ,Ž . Ž . Ž .Ž .c 1 u 1

y1Ž . Ž .where k c denotes the inverse transformation of c s k u .
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Ž . Ž .REMARK 2.1. From 2.4 and 2.9 , the relation between the reference prior
of c and the reference prior of u can be obtained as

l l y1 5 5y1p c p k c MŽ . Ž .Ž .c 1 u 1
p c s lim s limŽ .c l y1l y1p c * 5 5lª` lª`Ž . p k c * M#Ž .Ž .c 1 u 1

2.10Ž .
y1 5 5y1p k c MŽ .Ž .us ,y15 5M#

l Ž y1Ž ..where c * g C is such that p k c * ) 0 for all l, and M# s M evaluatedu1
at c *.

PROOF OF THEOREM 2.1. We prove the theorem when there are m s 2
groups and the general m can be handled similarly by using complex

Ž .notations, tedious bookkeeping, Lemma 2.1 and 2.8 .
Ž . Ž .For m s 2 from 2.2 and 2.3 ,

l l l< < 5p u u exp 1r2 E log h u 1 u g Q uŽ .� 4Ž . Ž .u 2 w ;1x w1x u 1 u 1 w1x Ž1. w0xlp u sŽ .u1 l < 5lH exp 1r2 E log h u du� 4u g Q Žu . u 1 u 1 w1x Ž1.Ž1. w0x

< <1r2 lh 1 u g Q uŽ .Ž .u 2 Ž2. w1xs 1r2< <lH h duu g Q Žu . u 2 Ž2.Ž2. w1x

2.11Ž .

l l< 5exp 1r2 E log h u 1 u g Q uŽ .� 4 Ž .u1 u 1 w1x Ž1. w0x
= .

l < 5lH exp 1r2 E log h u du� 4u g Q Žu . u 1 u 1 w1x Ž1.Ž1. w0x

Now we note that:

Ž . Ž lŽ .. Ž lŽ .. Ž l . Ž l . Ži 1 u g Q u 1 u g Q u s 1 u g Q s 1 c g C s 1 c gŽ2. w1x Ž1. w0x Ž2.
lŽ .. Ž lŽ .. Ž .C c 1 c g C c , where c s k u .w1 x Ž1. w0x
Ž . < <1r2 < <1r2 5 5 Ž .ii h s h M by 2.8 and for fixed u , u ª c is a one-u 2 c 2 22 w1x Ž2. Ž2.

5 5y1to-one transformation with Jacobian M . Then22

< <1r2 < <1r2h du s h dc ,H Hu 2 Ž2. c 2 Ž2.
l lŽ . Ž .u gQ u c gC cŽ2. w1x Ž2. w1x

Ž . Ž .where c s k u s k u .w1 x w1x w1x Ž1. Ž1.
Ž .iii Since M is a function of only u ,11 w1x

l l< 5 5 5 < 5E log h u s E 2 log M q log h uu1 u 1 w1x u 1 11 c 1 w1x

l5 5 < 5s 2 log M q E log h u .11 u 1 c 1 w1x

2.12Ž .
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Now

< < < <1r2
lH log h h duŽ .u g Q Žu . c 1 u 2 Ž2.Ž2. w1xl < 5E log h u su1 c 1 w1x 1r2< <lH h duu g Q Žu . u 2 Ž2.Ž2. w1x

< < < <1r2
lH log h h dcŽ .c g C Žc . c 1 c 2 Ž2.Ž2. w1xs as in iiŽ .1r2< <lH h dcc g C Žc . c 2 Ž2.Ž2. w1x

2.13Ž .

l < 5s E log h c .c 1 c 1 w1x

Ž . Ž .By 2.12 and 2.13 ,
l l< 5 5 5 < 5exp 1r2 E log h u s M exp 1r2 E log h c .� 4 � 4u1 u 1 w1x 11 c 1 c 1 w1x

Ž .iv Therefore,

l < < <exp 1r2 E log h u duŽ .� 4H u1 u 1 w1x Ž1.
lŽ .u gQ uŽ1. w0x

l5 5 < < <s M exp 1r2 E log h c s k u duŽ .Ž .½ 5H 11 c 1 c 1 w1x w1x w1x Ž1.
lŽ .u gQ uŽ1. w0x

l < < <s exp 1r2 E log h c dc .Ž .½ 5H c 1 c 1 w1x Ž1.
lŽ .c gC cŽ1. w0x

Ž . Ž .The first equality follows by iii and since c s c s k u , and theŽ1. w1x w1x w1x
Ž .second equality follows since the transformation c s c s k u is one-Ž1. w1x w1x w1x

5 5y1 Ž . Ž . Ž .to-one with Jacobian M . Then by 2.11 and i ] iv ,11

l y1 5 5 5 5 lp k c s M M p cŽ . Ž .Ž .u1 11 22 c 1

5 5 ls M p cŽ .c 1

l 5 5y1 l y1mp c s M p k c .Ž . Ž .Ž .c 1 u 1

Ž .Hence 2.9 is established and the proof is complete. I

REMARK 2.2. For m s 2, if we call u as the parameter of interest andŽ1.
u as the nuisance parameter, then Theorem 2.1 implies that the referenceŽ2.
prior remains invariant with regard to the choice of nuisance parameters.

REMARK 2.3. It is true that different reference priors may result under
w Ž . xdifferent choices of compact sets cf. Berger and Bernardo 1989 , page 205 .

However, the invariance property of reference priors in the setup of Theorem
2.1 continues to hold in the sense that once a reference prior is found with a
particular choice of compact sets, a reference prior under reparameterization
is obtainable using the usual Jacobian formula.

2.3. Noninvariance of reverse reference priors. In this section we consider
an example to show that the reverse reference prior does not remain invari-
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ant even under one-to-one transformation of the parameter of interest. We
consider the estimation of the product of two normal means of Berger and

Ž .Bernardo 1989 . Let X and X be two independent normal random vari-1 2
Ž . Ž .ables with unit variances and means m ) 0 and m ) 0 , respectively. The1 2

Ž .parameter of interest is u s m m . Berger and Bernardo 1989 considered1 1 2
the parameterization u s m m and u s m rm , and they derived the'1 1 2 2 2 1
information matrix

2 y2 y4u q u u 1 y uŽ .2 2 2 2

4u 212.14 I s .Ž . u y4u 1 y uŽ .2 2 y4u 1 q uŽ .1 22

Ž .The reverse reference prior p u , u isRR 1 2

y1r2y1r2 42.15 p u , u A u 1 q u .Ž . Ž . Ž .RR 1 2 1 2

The above prior may be obtained by following the usual algorithm of Berger
Ž . � 4and Bernardo 1989 for the ordered group u , u and using rectangular2 1

Ž . Ž .compacts either for u , u or for m , m . For the orthogonal parameteriza-1 2 1 2
2 2 Ž .tion c s 2m m and c s m y m considered by Tibshirani 1989 and also1 1 2 2 2 1

Ž .by Datta and Ghosh 1995a , the information matrix is

y1r22 22.16 I s 1r4 c q c I .Ž . Ž .c 1 2 2

Ž .The reverse reference prior for c , c parameterization, derived by Datta1 2
Ž .and Ghosh 1995a , is

y1r42 22.17 p c , c s c q c .Ž . Ž . Ž .RR 1 2 1 2

Note that the transformation between c and u is given by c s 2u and1 1
Ž 2 y2 . T Ž . Ž .c s u u y u , and the transformed prior of u , p u from p c is2 1 2 2 RR RR

given by

1r2 1r22 y2 48u u q u 1 q uŽ .1 2 2 2T 1r22.18 p u , u s s 4u .Ž . Ž .RR 1 2 1 2ž /u 4u u2 1 2

Ž . Ž .It follows easily from 2.15 and 2.18 that the reverse reference prior does
not remain invariant. However, the invariance of the usual reference prior
follows from Theorem 2.1.

3. Invariance of probability-matching priors. Suppose X , . . . , X1 n
Ž < .are iid d-component random vectors with density p x u , where u s

Ž . Ž .u , . . . , u . We denote X , . . . , X s Z. Inferences are sought concerning a1 p 1 n
Ž .real-valued parametric function t u which is twice continuously differen-
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Ž .tiable. Suppose we seek a prior p u so that

ˆ'n t u y t uŽ . Ž .� 4
P F uu 'b

ˆ'n t u y t uŽ . Ž .� 4 y1s P F u Z q O nŽ .p p'b

3.1Ž .

ˆfor all u, where u is the posterior mode or maximum likelihood estimator of u
ˆ' Ž Ž . Ž ..and b denotes the asymptotic posterior variance of n t u y t u up to

Ž y1 . Ž .O n . In the above, P ? refers to the probability distribution of Z underp u

Ž < .P ? Z is the posterior probability distribution of u under p . Priors satisfyingp

Ž .3.1 are referred to as probability-matching priors. It is shown in Datta and
Ž . Ž .Ghosh 1995b that 3.1 holds if and only if

p T y1­ r I u = uŽ . Ž .a u t
3.2 p u s 0,Ž . Ž .Ý T y1½ 5­u '= u I u = uŽ . Ž . Ž .aas1 t u t

where
T

­ ­
= u s t u , . . . , t uŽ . Ž . Ž .t ž /­u ­u1 p

Ž .and r is the a th unit column p-vector. Equation 3.2 will be referred to asa

Ž .the probability-matching equation and is similar to Stein’s 1985 equation
Ž .3.8 . Probability-matching priors are extensively discussed in the literature

Ž . Ž .in various contexts by Peers 1965 , Stein 1985 , Berger and Bernardo
Ž . Ž . Ž .1989 , Tibshirani 1989 , Ghosh and Mukerjee 1992 and Datta and Ghosh
Ž .1995b , just to name a few.

Ž . Ž .We denote any prior satisfying differential equation 3.2 by p u . Con-u

Ž .T Ž Ž . Ž ..Tsider a one-to-one transformation c s c , . . . , c s k u , . . . , k u with1 p 1 p
Ž .nonsingular Jacobian of transformation matrix given by J u ª c s

ŽŽ .. Ž .­c r­u s M say . Suppose under this transformation the para-j i i, js1, . . . , p
Ž . Ž .metric function t u is changed to t c and the information matrix for c is

Ž . Ž .I c . We also denote the Jacobian of inverse transformation i.e., c ª uc

Ž . ŽŽ .. Ž .matrix by J c ª u s ­u r­c s N say .j i i, js1, . . . , p
Ž . Ž . Ž .Let p u , a prior density for u , satisfy 3.2 when t u is the parameter ofu

Ž .interest. By change of variables, p c , the density for c is given byc

y1 5 5y1p c s p k c MŽ . Ž .Ž .c u
3.3Ž .

y1 5 5s p k c N .Ž .Ž .u

Ž .In the following theorem we show that prior density p c is a probability-c

Ž .matching prior for c when t c is the parameter of interest.

Ž . Ž .THEOREM 3.1. A prior density p u will be probability-matching for t uu

Ž . Ž .if and only if the prior density p c given in 3.3 is probability-matching forc

Ž .t c .
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Ž . Ž . Ž .PROOF. We will show that p u satisfies 3.2 if and only if p c satisfiesu c

p T y1­ r I c = cŽ . Ž .b c t
3.4 p c s 0.Ž . Ž .Ý cT y1½ 5­c = c I c = cŽ . Ž . Ž .b 'bs1 t c t

Ž . Ž . y1 Ž .It is easy to check that = c s N = u and M s N . Then by 2.6 ,t t

Iy1 c = c s M TIy1 u = u ,Ž . Ž . Ž . Ž .c t u t

=T c Iy1 c = c s =T u Iy1 u = u .Ž . Ž . Ž . Ž . Ž . Ž .t c t t u t

3.5Ž .

y 1Ž . Ž . Ž Ž . Ž ..T T y 1Ž . Ž .Define I u = u s u u , . . . , u u . Then r I c = c su t 1 p b c t
p Ž .Ž . Ž .Ý u u ­c r­u . Consequently, by 3.3 ,js1 j b j

p T y1­ r I c = cŽ . Ž .b c t
p cŽ .Ý cT y1­c ž /= c I c = cŽ . Ž . Ž .b 'bs1 t c t

p p ­ u u p u ­cŽ . Ž .j u b
5 5s NÝ Ý T y1ž /­c ­u'= u I u = uŽ . Ž . Ž .b jbs1 js1 t u t3.6Ž .

p p u u p u ­ ­cŽ . Ž .j u b
5 5q NÝ Ý T y1 ž /­c ­u'= u I u = uŽ . Ž . Ž . b jbs1 js1 t u t

p p u u p u ­c ­Ž . Ž .j u b
5 5q N .Ý Ý T y1 ­u ­c'= u I u = uŽ . Ž . Ž . j bbs1 js1 t u t

Ž .Now, after some simplification, first term on the rhs of 3.6 equals

p T y1­ r I u = uŽ . Ž .j u t
5 53.7 N p uŽ . Ž .Ý uT y1­u ž /'= u I u = uŽ . Ž . Ž .jjs1 t u t

Ž .and third term on the rhs of 3.6 equals
p u u p u ­Ž . Ž .j u

5 53.8 N .Ž . Ý T y1 ­u'= u I u = uŽ . Ž . Ž . jjs1 t u t

< < 5 5 < < y1First assume that N ) 0. Then N s N . Since M s N ,

­ ­y25 5 < < < <N s y M M
­u ­uj j

p p ­ ­cb2< <s y N cÝ Ý abž /­u ­uj aas1 bs1

3.9Ž .

wŽ . xby using Lemma A.4.5 of Anderson 1984 , page 598 , where

­ua
< <c s cofactor of a , b th element of M s M .Ž .ab ­cb
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Ž .Using c in 3.9 , we getab

p p 2­ ­ c ­ub a
< < < <3.10 N s y N .Ž . Ý Ý

­u ­u ­u ­cj j a bas1 bs1

Ž . Ž . Ž .From 3.8 ] 3.10 , third term on the rhs of 3.6 equals

p p p 2u u p u ­ c ­uŽ . Ž .j u b a
< <3.11 y N .Ž . Ý Ý ÝT y1 ­u ­u ­c'= u I u = uŽ . Ž . Ž . j a bjs1 as1 bs1t u t

p Ž .Ž . p p Ž 2Now for j s 1, . . . , p, using Ý ­r­c ­c r­u s Ý Ý ­ c rbs1 b b j bs1 as1 b

.Ž . Ž .­u ­u ­u r­c , second term on the rhs of 3.6 equalsa j a b

p p p 2u u p u ­ c ­uŽ . Ž .j u b a
< <3.12 N .Ž . Ý Ý ÝT y1 ­u ­u ­c'= u I u = uŽ . Ž . Ž . a j bjs1 bs1 as1t u t

Ž . Ž . Ž . Ž . 2 2By 3.6 , 3.7 , 3.11 , 3.12 and using ­ c r­u ­u s ­ c r­u ­u for all a , bb j a b a j
Ž .and j, the lhs of 3.6 equals

p T y1­ r I u = uŽ . Ž .j u t
< <N p u .Ž .Ý uT y1­u ž /'= u I u = uŽ . Ž . Ž .jjs1 t u t

Ž .Hence, the lhs of 3.4 will be zero if and only if

p T y1­ r I u = uŽ . Ž .j u t
p u s 0.Ž .Ý uT y1­u ž /'= u I u = uŽ . Ž . Ž .jjs1 t u t

< < Ž .The same equation results when N - 0. Hence a prior density p u isu

Ž . Ž . Ž .probability-matching for t u if and only if p c in 3.3 is probability-match-c

Ž .ing for t c . I

4. Invariance of tradeoff priors. This section addresses the invari-
Ž .ance or lack thereof of some of the other noninformative priors that are

proposed in the literature. First we show that the prior of Ghosh and
Ž .Mukerjee 1992 does not remain invariant under different choices of the

Ž .orthogonal nuisance parameter. Suppose u 2 = 1 is orthogonal with informa-
Ž . Ž .tion matrix I u s diag I , I and u is the parameter of interest. Thenu u u u 11 1 2 2

p u , u s I 1r2 .Ž .GM 1 2 u u1 1

Ž . Ž .For the one-to-one transformation c s h u and c s h u , the informa-1 1 1 2 2 2
Ž . Ž� X Ž .4y2 � X Ž .4y2 .tion matrix is I c s diag h u I , h u I and, consequently,1 1 u u 2 2 u u1 1 2 2

Ž . < X Ž . <y1 1r2 Ž .p c , c s h u I and the transformed prior for u , u isGM 1 2 1 1 u u 1 21 1
T Ž . < X Ž . < 1r2 Ž . < X Ž . <p u , u s h u I / p u , u unless h u s 1. Also, the prior ofGM 1 2 2 2 u u GM 1 2 2 21 1
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Ž .Clarke and Sun 1993 is the inverse of the determinant of the Fisher
information matrix, and does not remain invariant under reparameterization.

Ž .The tradeoff prior of Clarke and Wasserman 1992 possesses the invari-
ance property under transformation of the type used in Theorem 2.1 with
m s 2. We shall prove this in the special two-parameter case when u is the1
parameter of interest and u is the nuisance parameter. The general case can2
be proved along the same lines with slightly more complex notations.

First note that the information tradeoff prior of Clarke and Wasserman
Ž .1992 is given by

1r21rŽ2 a .I u , u I u , uŽ . Ž .u11 .2 1 2 u 1 2
4.1 p u , u A .Ž . Ž .a 1 2 Ž .1r aq11r21r2 aHI u , u I u , u duŽ . Ž .ž /u11 .2 1 2 u 1 2 2

Ž . Ž .Consider now the one-to-one transformation c s k u and c s k u , u1 1 1 2 2 1 2
Ž . Ž . Ž .from u , u to c , c , where k ? is also a one-to-one function. Let1 2 1 2 1

T Ž . Ž . Ž .p c , c denote the distribution of c , c derived from p u , u usinga 1 2 1 2 a 1 2
Ž .the usual Jacobian technique. Also, let p c , c denote the informationa 1 2

Ž .tradeoff prior using the information matrix I for c , c . The invariancec 1 2
result is established by proving the following theorem.

T Ž . Ž . Ž .THEOREM 4.1. p c , c s p c , c for all c , c .a 1 2 a 1 2 1 2

Ž . Ž < . Ž .PROOF. Write p u , u s p u u p u , wherea 1 2 ua 2 1 ua 1

1r21rŽ2 a .I u , u I u , uŽ . Ž .u11 .2 1 2 u 1 2
<4.2 p u u s ,Ž . Ž .ua 2 1 1r21rŽ2 a .HI u , u I u , u duŽ . Ž .u11 .2 1 2 u 1 2 2

Ž .ar aq11r21rŽ2 a .HI u , u I u , u duŽ . Ž .u11 .2 1 2 u 1 2 2
4.3 p u s .Ž . Ž .ua 1 Ž .ar aq11r21rŽ2 a .H HI u , u I u u du duŽ . Ž .u11 .2 1 2 u 1 2 2 1

Then

­ u ­ u1 2T <4.4 p c , c s p u c , c u c p u c ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .a 1 2 ua 2 1 2 1 1 ua 1 1 ­c ­c1 2

Ž Ž . Ž ..where u s u c , u s u c , c denotes the inverse transformation. Use1 1 1 2 2 1 2
the facts

y2 y2 y2
­ u ­ u ­ u1 2 1

< < < <4.5 I s I , I s I .Ž . u c u 11 .2 c 11 .2ž / ž / ž /­c ­c ­c1 2 1
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Then, after simplification,

<p u c , c u cŽ . Ž .Ž .ua 2 1 2 1 1

1r2 y11rŽ2 a . < <I c , c I c , c ­ u r­cŽ . Ž .c 11 .2 1 2 c 1 2 2 1s ,1r21rŽ2 a .HI c , c I c , c dcŽ . Ž .c 11 .2 1 2 c 1 2 2

4.6Ž .

p u cŽ .Ž .ua 1 1

Ž .ar aq11r2y1 1rŽ2 a .< <­ u r­c HI c , c I c , c dcŽ . Ž .1 1 c 11 .2 1 2 c 1 2 2
s .Ž .ar aq11r21rŽ2 a .H HI I c , c dc dcŽ .c 11 .2 c 1 2 2 1

4.7Ž .

Ž . Ž . Ž . Ž .Combining 4.4 , 4.6 , 4.7 and 4.1 ,

p T c , c s p c , c . IŽ . Ž .a 1 2 a 1 2

5. Noninformative priors for spherically symmetric distributions.
The noninformative priors, for example, the reference priors of Berger and
Bernardo, Ghosh and Mukerjee, Clarke and Sun and Clarke and Wasserman
considered in the previous sections, are derived based on the maximization of
certain divergence functions. In this section, using the principle of group
invariance, we derive noninformative priors for certain parametric functions
in spherically symmetric distributions. In many cases the priors derived in
this way coincide with reference prior or some of the others priors mentioned
earlier.

Ž .TSuppose X s X , . . . , X has a spherically symmetric distribution with1 p
a pdf

T1 x y m x y mŽ . Ž .
f x ; m , s s f ,Ž . 0p 2ž /s s

Ž .T pwhere m s m , . . . , m g R and s ) 0. We denote the spherically symmet-1 p
Ž 2 . Ž .ric distribution of X by X ; S m, s I . The information matrix for m, sp p

is given by

5.1 I m , s s sy2 diag c I , c ,Ž . Ž . Ž .1 p 2

where
2X Tf u uŽ .02 Tc s 4 u f u u duŽ .H1 1 0Tp f u uŽ .R 0

and
2X Tf u uŽ .0T Tc s p q 2u u f u u du.Ž .H2 0Tp f u uŽ .R 0

We now derive group invariant priors for certain parameters of interest.



INVARIANT NONINFORMATIVE PRIORS 155

EXAMPLE 5.1. We consider deriving noninformative priors when c s1
Ž T .1r2m m rs is the parameter of interest. Note that the estimation problem

Ž . Ž .remains invariant under the orthogonal transformation m, s ª n , t s
Ž . Ž .Qm, s for orthogonal Q p = p as well as under the scale transformation
Ž . Ž . Ž . Ž .n , t s cm, cs for scalar c ) 0. Any reasonable prior p m, s for m, s

Ž .should also be a reasonable prior for n , t . This requirement leads to the
following two conditions on p :

5.2 p m , s s p QTm , s ;Ž . Ž . Ž .
5.3 p m , s s p mrc, src cypy1 .Ž . Ž . Ž .

Simple algebraic manipulations yield

5.4 p m , s s k mTmrs 2 sypy1Ž . Ž . Ž .
Ž .for an arbitrary nonnegative function k ? . Using the polar transformation

Ž . Ž . Ž .Tm, s to r, u , t , where u s u , . . . , u and s s t , we obtain1 py1

5.5 p r , u , t s k r 2rt 2 typy1r py1s py2 ??? s ,Ž . Ž . Ž . 1 py2

where s s sin u , i s 1, . . . , p y 2. Note that c s rrt . Transforming furtheri i 1
Ž . Ž . Ž .r, u , t to c , c , u by c s rrt , c s t , u s u , we get from 5.5 ,1 2 1 2

5.6 p c , c , u s k c 2 c py1cy1s py2 ??? s .Ž . Ž . Ž .1 2 1 1 2 1 py2

Ž . Ž .We now investigate the condition of k ? under which the prior given in 5.6
is a probability-matching prior. First observe that the information matrix
w Ž . xunder the c , c , u parameterization is given by1 2

5.7 I c , u s block diagonal I , I ,Ž . Ž . Ž .c u

where
2c c c c c1 2 1 1 2y2I s c ,c 2 2c c c c c q c1 1 2 1 1 2

I s c c 2 diag 1, s2 , s2s2 , . . . , s2s2 ??? s2 .Ž .u 1 1 1 1 2 1 2 py2

Ž . Ž . Ž . Ž .y1r2 yŽ py1.r2Comparing 3.2 and 5.6 we find k x s c x q c x and the1 2
Ž . Ž 2resulting probability-matching prior is given by p c , c , u s c c q1 2 1 1

.y1r2 y1 py2c c s ??? s . It can be checked that this prior is also the reference2 2 1 py2
� 4prior for the grouping c , c , u and a matching prior for u due to1 2 py1

Ž .Tibshirani 1989 . When p s 2, u is one-to-one with m rm , the parameter1 2 1
Žof interest in the Fieller]Creasy problem and the resulting prior p c , c ,1 2

. Ž 2 .y1r2 y1u s c c q c c will be a matching prior of u . However, in general,1 1 1 2 2 1
this will not be a matching prior for any of the components u , . . . , u .1 py2

REMARK 5.1. Suppose s is known and we want to derive a noninforma-
Ž .T p 2tive prior for m s m , . . . , m when the parameter of interest is c s Ý m .1 p is1 i

Ž . Ž .This example was considered by Bernardo 1979 and Stein 1985 under
normality. For any p = p orthogonal matrix Q, Y s QX is again spherically
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symmetric with location parameter n s Qm. Since mTm s n Tn , any reasonable
Ž . T Tprior p m for estimating m m should also be reasonable for estimating n n .

Ž .Since the transformation m to n is orthogonal, any reasonable prior p m for
m should be invariant under orthogonal transformation. This is equivalent to
Ž . Ž T . Ž .p m s k m m for some nonnegative function k ? . The information matrix is
Ž . y2 Ž .I m s s c I . Note that k x s 1 corresponds to the Jeffreys prior for m. If1 p

Ž .we require p m to be a matching prior for c , then solving again the
Ž . Ž . yŽ py1.r2differential equation 3.2 , we get k x s x resulting in the prior

Ž . Ž p 2 .yŽ py1.r2 Ž .p m s Ý m , which was also derived by Stein 1985 . Using ais1 i
polar transformation, one gets from the above prior of m the prior of c given

Ž . y1r2 wŽ . xby p c s c , which is obtained by Bernardo 1979 , page 125 as thec

reference prior for c .

REMARK 5.2. Suppose p s 1 in Example 5.1. Then the parameter of
< < < <interest is m rs . Note that c s m rs , c s s and the matching prior is1 2

Ž . Ž 2 .y1r2 y1p c , c s c c q c c . Under normality, c s 1, c s 2 and the re-1 2 1 1 2 2 1 2
Ž .sulting prior is identical to the reference prior of Bernardo 1979 . See also

Ž .Tibshirani 1989 .

EXAMPLE 5.2. In this example, we assume s 2 is known and p s 2. We
want to derive the noninformative prior when the parameter of interest is

Y1Ž . Žm m s c say . Note that X is equivalent to Y s , where Y s X q1 2 1 1 1ž /Y1

' '. Ž .X r 2 and Y s X y X r 2 and Y is spherically symmetric with loca-2 2 1 2 'Ž . Ž . Žtion parameter u s u , u with u s m q m r 2 and u s m y1 2 1 1 2 2 1
2 2'. Ž . Ž .m r 2 . The estimation of u u s m y m r2 s c say is equivalent to2 1 2 1 2 2

Ž .the estimation of c . Also since the information matrices of m , m and1 1 2
Ž .u , u are identical, it is natural to expect that any reasonable prior for1 2
Ž .m , m when c s m m is the parameter of interest should also be reason-1 2 1 1 2

Ž 2 2 .able when c s m y m r2 is the parameter of interest. Indeed, since any2 1 2
a ya1 22 = 2 orthogonal matrix of rotation is representable as Q s withž /a a2 1

2 2 Ž 2 . Ž 2 .a q a s 1, X ; S m, s I is equivalent to W s QX ; S n , s I , where1 2 2 2 2 2
Ž .T Ž 2 2 .n s n , n s Qm. Also it should be noted that n n as well as n y n r21 2 1 2 1 2

is a linear function of c and c . Due to this observation, any reasonable1 2
Ž .prior for m , m to estimate m m should also be reasonable to estimate1 2 1 2

n n . This means that since the transformation m to n is orthogonal, the1 2
Ž .prior p m , m , say, should remain invariant under orthogonal transforma-1 2

Ž . Ž 2 2 .tion. This is equivalent to p m , m s k m q m for some nonnegative1 2 1 2
Ž . Ž .function k ? . If we require p m , m to be a matching prior for c s m m ,1 2 1 1 2'Ž . Ž .then solving the differential equation 3.2 , we get k x s x , giving Stein’s

Ž 2 2 .1r2 Ž .prior m q m for m , m , which is also the reference prior derived by1 2 1 2
Ž . w Ž .xBerger and Bernardo 1989 also Datta and Ghosh 1995a . Note that the

Ž . Ž .choice k x s 1 produces the Jeffreys prior for m , m , which is not a1 2
matching prior.
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The group invariance structure for deriving a noninformative prior need
not be confined to spherically symmetric distributions alone. We provide
below two examples where the group invariance structure is exploited to find
noninformative priors for parameters of certain nonspherically symmetric
distributions.

y1 ŽŽ . .EXAMPLE 5.3. Suppose X has location-scale pdf s f x y m rs , where
Ž . Ž . Ž .m, s g y`, ` = 0, ` and f is differentiable in its argument. We want to
derive a noninformative prior for estimating mrs . Note that for any c ) 0,

ŽY s cX has a location-scale pdf with parameters cm and cs . Let u s u ,1
. Ž . Ž . Ž . Ž .u s m, s and f s f , f s cm, cs . Then the estimation of c u s2 1 2

Ž .u ru s mrs is equivalent to the estimation of c f . Also since the informa-1 2
tion matrix of f is a scalar multiple of that of u , it is expected that any

Ž . Ž .reasonable prior p u , u for u for estimating c u should also be reason-u 1 2
Ž . Ž .able for f for estimating c f . That means that if p f , f denotes such af 1 2

prior for f, we should have

5.8 p u , u s p u , uŽ . Ž . Ž .u 1 2 f 1 2

for all u and u . However, since f s cu , by transformation we get1 2

u u 11 2
5.9 p u , u s p ,Ž . Ž .f 1 2 u 2ž /c c c

Ž . Ž . Ž . y2 Ž .for all c ) 0. Combining 5.8 and 5.9 we get p u , u s u k u ru foru 1 2 2 1 2
Ž . Ž . Ž . Ž .some nonnegative function k ? . We choose k ? by satisfying 3.2 for c u .

The information matrix of u can be found to be

c c1 3y25.10 I u s u ,Ž . Ž . 2 c c3 2

where

2 2c s f 9 x rf x f x dx , c s 1 q xf 9 x rf x f x dxŽ . Ž . Ž . Ž . Ž . Ž .H H1 2

and

2c s x f 9 x rf x f x dx .Ž . Ž . Ž .H3

Ž . Ž . Ž 2 .y1r2Once again solving 3.2 , we obtain k x s c q 2c x q c x . The re-2 3 1
sulting prior is given by

y1r2y1 2 2p u , u s u c u q 2c u u q c u ,Ž . Ž .u 1 2 2 2 2 3 1 2 1 1

which is also the reference prior of Berger and Bernardo in this situation.
This example generalizes the example of Remark 5.2 and is considered by

Ž . Ž .Mukerjee and Dey 1993 in estimating m and s . For a symmetric pdf f x ,
Ž .c s 0, and if further f x is normal, then c s 2 and c s 1.3 2 1
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EXAMPLE 5.4. We consider a version of the exponential regression model
Ž . Ž .of Cox and Reid 1987 discussed by Mukerjee and Dey 1993 . Suppose

Ž .X , . . . , X have the joint pdf1 p

p
y1 y1f x , . . . , x ; u s u exp yu z exp yx u exp yu z ,Ž . Ž .� 4Ž . Ł1 p 2 1 i i 2 1 i

is1

x , . . . , x ) 0, y` - u - `, u ) 0, p G 2, z , . . . , z are constants not all1 p 1 2 1 p
equal satisfying Ý p z s 0. Define g s Ý p z 2. Here u is the parameter ofis1 i 2 is1 i 1

Ž .interest and u is a nuisance parameter. From Mukerjee and Dey 1993 the2
Ž . Ž y2 .information matrix of u is given by I u s diag g , pu . Here Jeffreys’2 1

prior, the usual reference prior and the reverse reference prior are all
identical and equal to

5.11 p u , u s p u , u s p u , u s uy1 .Ž . Ž . Ž . Ž .J 1 2 R 1 2 RR 1 2 2

Now consider the group of scale transformations y s cx , i s 1, . . . , p. Theni i
Ž . Ž . Ž . Ž .u , u ª f , f s u , cu . The information matrix of f s f , f is1 2 1 2 1 2 1 2
Ž . Ž 2 .I f s diag g , prf , which has structure the same as that of u . Hence, any2 2

Ž .reasonable prior for u , u to estimate u should also be a reasonable prior1 2 1
Ž .for f , f to estimate f . Proceeding as in Example 5.3, any such prior1 2 1

Ž .p u , u should be of the formu 1 2

5.12 p u , u s k u uy1Ž . Ž . Ž .u 1 2 1 2

Ž .for some arbitrary nonnegative function k ? . Since u and u are orthogonal,1 2
Ž . Ž .if we want to choose k ? such that p u , u is a matching prior for u , thenu 1 2 1

Ž . Ž .it follows from Tibshirani 1989 that k x s 1. The resulting prior is same as
Ž .that given by 5.11 .

Ž .REMARK 5.3. Since u and u are orthogonal, the prior given by 5.11 is1 2
also a matching prior when u is the parameter of interest.2

REMARK 5.4. Example 5.4 reduces to the estimation of the ratio of two
Ž .exponential means with p s 2. In this case z s yz s z say and m s1 2 1

y1 Ž . y1 Ž . Ž .u exp yu z and m s u exp u z . Define c s m rm s exp 2 zu and2 1 2 2 1 1 2 1 1
c s m m s uy2 ; c is the parameter of interest and c is nuisance. The2 1 2 2 1 2

Ž . Ž . y1prior for c , c obtained from p u , u s u by variable transformation is1 2 u 1 2 2
Ž . y1 y3r2 1r2 Ž .y1p c , c A c c c s c c . This prior was obtained by Mukerjeec 1 2 1 2 2 1 2

Ž .and Dey 1993 .
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