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LINEAR RANK STATISTICS, FINITE SAMPLING,
PERMUTATION TESTS AND WINSORIZING'

By GALEN R. SHORACK
University of Washington

Asymptotic normality and a representation of all possible subsequen-
tial limiting distributions of a simple linear rank statistic are obtained.
This is then applied to finite sampling and permutation tests for slope
coefficients. The effects of Winsorizing in these situations are considered
carefully. Of particular interest regarding slope coefficients is that either
using normal score regression constants or Winsorizing slowly increasing
numbers of the population values will guarantee asymptotic normality.

1. Linear rank statistics. Consider numbers ay,..., ayy called scores
and numbers cy, ..., cyy called regression constants. Although the problem
is mathematically symmetric in a,; and cy;, our choices below are guided by
the fact that nature may well choose the ay;’s, while the experimenter
chooses the cy,’s. We let

(1.1)

Let (Ry4,..., Ryy) denote a random permutation of (1,..., N). We will
represent these as the ranks of a random sample of independent Uniform(0, 1)

rv’s &ny,---> Enn- (These &y,’s are an artificial added ingredient to the
statement of the problem, but they are the key to the proofs of our theorems.)
We let (Dy,..., Dyy) denote the inverse permutation, or the antiranks.
Thus Ryp, =i, év; = én.r,, @and &y.; = énp,,- The class of simple linear
rank statistics is of the form
1 N ey, —cy. Qyg. — Q.
T, = 5 N N- ANRy, N
‘/N i=1 O-C,N Ua,N
(1.2)
_ ]. N aNi - aN' CNDNi - CN'
VN i=1 Ya,N O, N
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1372 G. R. SHORACK

Such statistics were studied extensively in Hajek and Sidak (1967). Whereas
they were concerned with determining when T\, was asymptotically N(0, 1),
the main concern here is to identify all possible limiting distributions. Recall
that the statistician typically gets to specify the cy,’s. The choice of normal
scores when cy; = ® (i /(N + 1)) is seen in Corollary 1.2 (the corollary to
Theorem 1.2) to guarantee asymptotic normality for any ay;’s having ay, <
ayn- For very general cy,’s, Winsorizing a slowly growing number of ay;’s is
seen in Corollary 1.1 (the corollary to Theorem 1.1) to guarantee asymptotic
normality for virtually any ay,’s. These last two conclusions are highly
practical.
It is elementary that

N
(13) ETN =0 and Var[TN] = m
To ease notational complication somewhat, we assume
— N oy
(1.4) cy=0 and o’y =1, andthen cy= ) Nl'
i=1

We now consider another representation of Ty. We define the finite sampling
process Ry on [0, 1] by

1 [(N+1)¢] CNp.. — Cn
Ni °

VN i=1 Oc,N
1 [(N+1)x]
== ) cyp, for 0<t<1

NS

[with Ry(2) =0 for 0<¢<1/(N+ 1) and N/(N+ 1) <t < 1]. We now
relabel for convenience so that

Ry (2)
(1.5)

(1.6) ay1 < - < ayw,

and we define an ~ (i.e., nondecreasing), left-continuous function %, on
[0, 1] by
i—1 i )

N <tsﬁandlszsN,

with %, (0) = ay,. Note that ay.= Ehy(£) and oy = Var[hy(&)] for a
generic uniform(0, 1) r.v. £. Also
)

(1.8) Ty = /0 -7
Since Ry converges to Brownian bridge W, a likely “limit” for T} is

W dh
(1.9) Zy = —f01 N

(1.7) hy(t) = ay; for

O-a,N O-a,N

= N(0,1).

Cra,N

We write Ty =, Zy whenever Ty — Zy —, 0 is true.



LINEAR RANK STATISTICS AND WINSORIZING 1373

We will now be more specific about the convergence of R, to W. Let I
denote the identity function, and let || f 12 = supl| f(#)l: @ < ¢ < b}. It is shown
in Shorack [(1991a), (2.54)] that the row independent uniform(0,1) r.v.s

&nts---» Eyn, and the Brownian bridge W can be constructed on a common
probability space in such a way that, for any 0 < v < 1§,
NV(R —W) ||171/(N+2)
N
(1.10) A = s - 0,(1)
[ -D1"* e

whenever lim sup%< «, since for all & > 0 there exists M, > 0 such that, for
all A > 0,

N

AQ

(1.11) P(AY =A) <27 %+ for all N.

[Conclusion (1.10) for values v near 0 undoubtedly holds more generally than
when lim sup ci < %. For this reason, the statements and proofs of all results
are made to depend only on (1.10), and not on lim supc_ﬁ,< o, It would seem
that the cy,’s will at least have to be uan (uniformly asymptotically negligi-
ble) for (1.10) to hold and that a (2 + §)-moment might well suffice.]

THEOREM 1.1. Suppose (1.10) holds. Given &> 0, there exists &, , > 0
such that

(1.12) P(ITy — Zyl= ¢) < h lay; — ayl N
’ - >¢e)<e whenever max ——— ‘
N N 1<i<N VNO.a,N e, M

The approximation in (1.12) is uniform over all a;’s satisfying the requirement.

We say that the a,,;’s satisfy the uan condition if

|aNi - aN.|
max ————
( ) 1<i<N ‘/N‘Ta N
1.13 '
lay: — ayl Vlayy — ay!l
= -0 as N — o«
VNoa, v

We will be particularly interested in Winsorizing the population, as this
step by itself can guarantee that Ty is asymptotically normal. Let 1 < &k <

N + 1 - k)y < N, and consider the (&, k) )-Winsorized population
AN kys > AN kg ON ky+15++ 5 AN N+1—(ky+1)>
(1.14) N N N N

ON N+1-kys- s ON N+1-k)-
Define A, as in (1.7), but for the population of (1.14); then

Gy = ['hy(t)dt = Ehy(¢) and
(1.15) 01 2
G2y = fo [Ay(t) —dy]| dt = Var[hy(£)].
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Let Ty and Z, denote the r.v.’s of (1.8) and (1.9), but with A, and G, y in
place of Ay, and o, y.

Let us observe that the uan condition (1.13) applied to the Winsorized
population displayed in (1.14) becomes the condition that

layk, =@yl Vilay yi1wy — @yl

VNG,

(1.16) -0 as N — o,

Now note that

lank, — Gyl Vlay, Ne1-py, — Gn

VNG, y

lays, — @yl Vlay yi1-py, — Gyl

IA

12
(117) {kN(aNkN _dN)z or kEV(aN,N+17k;V _dN)z}
1

= Vkw ARy

COROLLARY 1.1. Suppose (1.10) holds. Then

o W dh
(1.18) Ty = Zy = - [ —— = N(0,1)
0

a-a, N
if condition (1.16) holds, and condition (1.16) holds if
(1.19) ky ARy —> > and ay,, <ay yi1-p, forall sufficiently large N.

provided ay;, < ay ni1-py-

We summarize this result by saying that “normality is guaranteed by
Winsorizing a slowly increasing number, provided you do not completely
collapse the sample.”

We say that Ty is stochastically compact if and only if every subsequence
N’ contains a further subsequence N” for which Ty, converges in distribu-
tion to a proper r.v. Then from (1.3) we see that T is necessarily stochasti-
cally compact. Consider a subsequence N” on which Ty, —, (some r.v. T).
Since variances are uniformly bounded, the means converge; thus ET = 0.
Moreover, (1.3) guarantees that Var[T] < 1 (use Fatou). We now seek to
describe all possible subsequential limits of 7.

Note that the r.v. ny,; = cyp, , representing the result of the first draw
from the urn, has Eny, = 0 and Var[ny,] = 1. Thus 7y, is necessarily
stochastically compact, and thus any possible subsequential limit n; must
also satisfy En; = 0 and Var[n;] < 1. To ease the notational burden (but
causing no loss of generality, other than replacing “limit” by “possible subse-
quential limit”), we will state our theorem as though my, =, (some r.v. n;).
Some examples should help make things clearer. If, before normalization, the
cy;’s consist of M, copies of the symbol 1 and N — M, copies of the symbol
0, where My /N — p € (0,1), then 7, is (Bernoulli( p) — p)/ y/pq . If, before
normalization, ¢y, = i/N for 1 <i <N, then 7, is uniform(— v3,V3). If,



LINEAR RANK STATISTICS AND WINSORIZING 1375

before normalization, cy; = ® (i /(N + 1)) for 1 <i < N, then 7, is N(0, 1).
If VN /2 of the cy,’s equal each of + N'/* while all the other cy,’s equal 0,
then 7, is point mass at 0; note that these are normed cy,’s that are uan.
Combining the last two examples correctly can give a N(0, d?) limit for any
0 < d? < 1[note (1.2D)].

THEOREM 1.2.  Suppose (1.10) holds, at least one ay; — ay.# 0, and cyp |
~a M-

(1) Then Ty —, N(0,1) if and only if either

lay; — ayl
1.20 max ————
( ) 1<i<N \/]any N
(i) Now Ty —, N(O, d?), where 0 < d < 1 is possible. It can happen [ note
part (iv)] only if

(1.21) theay;’sarenotuan and m, =N(0,d?) with0<d}<1.

-0 or m =N(0,1).

(iii) Any subsequential limiting r.v. of the stochastically compact Ty must
be of the form

(122) TO + TZ + Tl’

where T, T, and Z are independent, Z = N(0,1), 0 < 7 < 1, and
io Jo

(1.23) To= 2 ®o(i)n, and Ty = ), O(j)n,
i=0 j=0

with ny, ny,... and My, M4, ... all iid as ny, and with i, and j, each taking a
value from 0,1,2,3,...,%. The numbers ® (i) and ®,(j) satisfy the following:
—1<®y(1) <---<Py(i) <0 foralli <iy+1(incasei, > 0),

(1.24)
0 <P(j) <-<DPy(1) <1 forallj <j,+1 (in casej,>0)

[where ®,(0) =0 = ®,(0) and n, = 0 = n;, for clarity in the summations];
and

lo Jo
(1.25) Y ®2(i) + 74+ Y DE(j) =1.
i=0 j=0

Now i <i,+ 1in(1.24) meansi < i, if i, is finite, and it means i < © if i, is
infinite.

(iv) Suppose i, V j, = 1. Then the r.v. of (1.22) is N(0,1) if and only if
1, = N(0, 1); and it is N(0,d?) with 0 <d < 1 if and only if n, = N(0,d?)
with 0 < d, < 1, in which case

ig Jo
(1.26) d? =12 +d%| Y ®i(i) + Y D))
i=0 j=0

while (1.25) still holds.
(v) Omitting the hypothesis cyp —4 M, does not change conclusion (iii),
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in that every subsequence N' contains a further subsequence N" on which the
hypothesis does hold.

(vi) Let m, denote any r.v. compatible with cy, —, m; and (1.10). Then
any r.v. of the form (1.22) and (1.23) subject to (1.24) and (1.25) is an
achievable limiting r.v.

COROLLARY 1.2. Suppose cy; = ® (i /(N + 1)) for the N(0,1) d.f. ®. Of
an1,---, Ay We require only ay; < ay.< ayy. Then the Ty of (1.2) satisfies
-, N(, D).

Note the following caveat: Currently, hypothesis (1.10) requires
limsupcy < « in order to be known to be true. However, limsupcy < «
implies d? = 1; that is, bounded fourth moments plus convergence in distri-
bution imply convergence of second moments. However, assuming (1.10) is
shown to hold in situations that allow ¢y, =——, 1y with 0 < d? = Var[n,] <
1, then these 7; can also appear as achievable limits of type (1.26) (with no
change in the proof given below). [In the proof given below, (1.10) is used only
in line (3.32).] Bear in mind that the statistician is typically free to specify the
Cy;’s, while nature supplies the ay;’s. Thus the implications of what is
established here are considerable. 5

It is appropriate to consult Hajek and Sidék [(1967), Exercises 2 and 8,
page 193] in relation to the result in Theorem 1.2. Theorem 1.2 is a more
reasonable formulation since the statistician specifies the cy,’s. The work of
Csorgd, Haeussler and Mason (1988) and Mason and Shorack (1992) inspired
its proof. Work related to the present paper is found in Deheuvels, Mason and
Shorack (1993). The referee points out Zolaterev (1967) and Pardzhanadze
and Khmaladze (1986), especially in regard to non-uan situations.

2. Other examples. The scope of these results is actually much broader,
because, besides linear rank statistics, the theorems of Section 1 apply to the
following situations.

ExaMPLE 2.1 (Finite sampling). Let ay; < - < ayy denote a finite pop-
ulation. Let n = ny, and suppose Xy,..., Xy, are a random sample from
the finite population. Let

_ 1 1 2
(2.1) X, =—) Xy; and S?=— Z (XNZ Xn)
i1 i=1

denote the sample mean and variance. It is elementary that

SVL
(2.2) ( - 1) =0,(1),

[ , N
provided liminf n/N > 0 and the ay;’s are uan.

Suppose now that the cy,’s satisfy 0 < liminfn /N < limsup n/N < 1. When
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this is so, Theorem 1.2 implies (since 7, is not normal in this example) that
Vn (X, —ay.)

g nV1—(n-1)/(N-1)
if and only if the a,,’s are uan. Moreover, we have from (2.2) and (2.3) that
i (%, - ay)
SWT-(n-1/(N-1)
[To apply the earlier results, set the first n of the cy,’s equal to 1 and the rest
to 0 (so that the n; of Theorem 1.2 is a normed Bernoulli r.v.). Then

limsupcy < =, since 0 < liminf n/N < limsup n/N < 1.] More interesting is
the following:

conclusions (2.2), (2.3) and (2.4) apply to the (ky, k))-
(2.5)  Winsorized population (even if k, and k) are random,
though dependent only on the order statistics),

(2.3) -, N(0,1)

(2.4)

-, N(0,1) foruan ay,’s.

provided only that condition (1.19) holds with probability approaching 1 as
N — o,

ExaMPLE 2.2 (Regression tests). Suppose Xy,..., Xyy are iid with non-
degenerate d.f. F. Let X,.; < -~ < X} .y denote the order statistics, and let

(2.6) Xy

1 XN 1 XN

N i:ZIXNi and Sy = N i:ZI(XNi - XN-)2

denote the sample mean and variance. It is shown in Csoérgé and Mason

(1989) that [for D(Normal) the domain of attraction of the Normal]

(2.7) max | Xn;—Xy.| (018030 -, 0, . if and onl.y ifFeD gNorm.al),
1<i<N WSN - 0,a.s, if and only if F' has finite variance.

Let cyq,...,cyy denote regression constants as in (1.1) that satisfy (1.10).
Then form the statistic

N _ _
1 cyi — ¢y Xy — Xy

Ty =

(2.8) VN 5 Oc,N Sy
. _ 1 g Xy.i = Xy. cyp,, — Cn.
N o Sy Oc,N '

Even if F € D (Normal), each subsequence N’ contains a further subse-
quence N” on which condition (2.7) holds a.s. Thus Theorem 1.1 implies that
Ty =4 N(0,1) on N". Thus

(2.9) Ty —4 N(0,1) as N — o, forall F € D (Normal),

for cy;’s satisfying (1.10).
We now seek to extend (at the statistician’s discretion) the conclusion (2.9)
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beyond the case of uan ay,’s. From Corollary 1.2 we obtain

i ) [ Xy — Xy.]

1) forall F,
N1 Sy —-,N(0,1) forall F;

0 — 1 i -1
(2.10) T :Wi;@ (

that is, the choice cy;, = ® '(i/(N + 1)) [or cy;, = P *(3i — /(BN + 1))
etc.] always works. [For emphasis, the only requirement on the ay; = Xy ;
in (2.10) is that P(Xy., < Xy.y) = 1 as N — =, and this does indeed hold
for all nondegenerate d.f’s F']

Instead of choosing special cy;’s, the same effect follows if the statistician
Winsorizes the sample, where %2, and k) are integer-valued r.v.’s that are
dependent on the observations only through the order statistics and satisfy
(1.16). Condition (1.16) necessarily holds if

(2.11) ky Nky —>,% and P(Xy., <Xy.yii-p,) L
or if
(2.12) (k, VEy)/N—,0 and F €D (Normal).

Then (go to subsequences to) apply Corollary 1.1, giving

—cy. Xy — Xy.

(2.13) TN_‘/_Z - B

-, N(0,1) forall F,

provided the cy,’s satisfy (1.10); here Xy, < <XN n is the (ky, k}y)-
Winsorized sample, with mean X,,. and variance SZ. Of course, if we require
“—>w as” and P()=1, in (2.11) and (2.12), then (2.13) holds for a.e.
realization of the r.v.’s. We note that if ¢.= 0 (i.e., in the regressmn situa-
tion), then “Winsorizing does what Winsorizing was supposed to do.”

Another application of these ideas appears in Deheuvels, Mason and
Shorack (1993).

3. Proofs. Let oy = 0, y. Fix 0 < v < , and define

N="[t(1 = t)]*7" dhy(t).
[a,b]

(3.2) o[ a,b] —f

[a,d]’]

(3.1) My[a,b]
fa b](s At —st) dhy(s) dhy(t).

Then, akin to Shorack [(1991b), (2.32) and (2.34)] from estimates used earlier
in Csoérgd, Haeussler and Mason (1988) and Mason and Shorack (1992), for
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arbitrary quantile functions:

(3.3)
My[r/(N+1),1-r"/(N + 1)] 3 .
oy lr/(N+1),1—r /(N +1)] = Vr(rar)”
1 r lay; — ayl
o My N W 5 ad
‘ r' 1 S |aNN_aN'|
MN[l_N+1’1_N+1 =V

for any r,r’ > 1 and any ay;’s having ay; — ay.< 0 <ayy — ay..
Let & > 0 be given. Then (1.10) allows us to choose an M, so large that

(3.5) Ay, = [AY <M,] has P(A§,) <e forall N;

let 1,, denote the indicator function of Ay,.

ProoF oF THEOREM 1.1. Now (1.8), (1.9), (1.10), (3.1), (3.3) and (3.4) show
that

1| vy
|TN_ZN|:_/ J(N+1
On ["1/(N+ 1)
My|ll/(N+1),N/(N+1
oNn
Vrilay, — ayl Vrilayy — ayl
<M — T 32 (A
N{ Ny 200N N oy

|aNi - aN.|
max ——F——— .
<i<N \/NUN

Thus, if r = r’ = r, is so large that M,3v"'/?r; " < ¢/3, then

(3.7) gA<AV,>{3V—1/2(rAr’)"+(¢?+\/r—’)1

g lay;, — ay)
(38) LylTy—Zyl= g + M,2\/r, max ———""

<e for N>N
ElSiSN VNO-N e’

provided N, is chosen so large that
max |ay; — ayl

(39) 1<i<N < ag’M =

N oy

forall N > N,. O

&
BM,fr,
Proor oF THEOREM 1.2. In the left tail of Ty we have

aNi - aN.

(10 Tyl = (B o, = ¥ e,

i=1
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Note that

, 2

(3.11) i ®2, (i) = Lioi(ay; —ay.)
. onl(?) =

i=1 N (ay; — aN~)2

Thus on every subsequence N’ there exists (by diagonalization) a further N”

on which

(3.12) O,y (i) = (some ®y(i)) fori=1,2,... on N".

Recall that ®,,(1) < -+ < & (N) with an average value of 0 and at least

one strictly positive and one strictly negative value. Thus ®,(1) < 0 and

®y(1) < dy(2) < -+ . Let i, denote the supremum of the integers i such that

®,(i) < 0, where any of the values 0,1,2,...,° is possible. To keep the

notation from getting out of hand, we will act as though (3.12) holds on the

whole sequence N. Note from (3.11) that

<1 forall Nandallr.

(3.13) Y ®i(i) <1 forall r;
i=1
and we just learned that
(3.14) —1<®,(1) <Py(2) < <Py(i) <0 forall0<i<iy+1,
where i, may equal 0,1,2,...,%. It is elementary for the reader to show that
if i, = o, then
(3.15) iP2(i) >0 asi— .
We will also require below (at the very end) the fact that d, = ®2(i)
satisfies
&
(3.16) Z£—>O as N > o,

i

Let i, be so large that \/—iﬁ e/ Vi for all i > i,. For N > (some N,), (3.16)
follows from

‘/_\/— -_1/2
1 WS(Z\/—)+W§l ?<e

,9(1 + 2f1x*1/2 dx) < 5e.
0

_1\/1v 1
1+N LZ—\/l/—N

IA

That 7y, has mean 0 and variance 1 and 7y, =, 7;, gives En; = 0 and
Var{n;] < 1. Now the effect of 1 (or even r) draws on an urn of size N is
negligible as N — «. Thus

(3.17) Ty[1,7] =, ¥ ®y(i)n, on N" as N" — o,

for each fixed r < i, + 1. Applying (3.13) and Breiman [(1968), page 46]
shows that T, is a well-defined r.v., where

(3.18) T, = ; Dy (i) ;.



LINEAR RANK STATISTICS AND WINSORIZING 1381

Let (1/2)> ¢, N 0 be a given sequence. If i, < », define /, =i,.
Suppose now that i, = <, and let /,, » « and then let r,, » <« be so large
that

(3.19) Y, ®%(i) <e&?, andthen r

i=1,+1

w— 1>m(Z, +1).
Then specify nondecreasing N, so large that we have all five of

2

1 r 1
(3.20) N_m <—, N_m <—and P y(r,) <0  forall N>N,,
m m

m m

as well as the “uniform” bound

| @0 ()]

m

(8:21) [ @y (i) —Py(i)] <&,

forl1<i<r, forall N>N,;

and, finally [applying a crude variance bound, using (3.21), and then (3.19)],
forall N> N,,
r,—1
Var[Ty[Z,, + 1,r, —1]] <202y YL ®%y(i)
i=/,,+1

(3.22) )
<3 ) ®2(i)<3el.
i=/, +1

We now specify (whether i, < » or i, = %) that, for each m > 1 (with
N, = 1),

(328)  oy-s

Then, in the case i, = © (only /) — « fails if i; < », since then /), = i, < ),

/y=/, and ry=r, forall N, <N<N, ;.

m?’

12 /
N0 WL,

(3.24) /) > =, - ~

0 and (3.22) still holds.
At the time we choose r,, above, we can also insist that r,, is large enough
that
M, 3v Y% g
(3.25) _— < —,
r,. 3

as leading to (3.8).

Let us now introduce an associated situation involving sampling with
replacement. To describe it, we will slightly enlarge the probability space by
introducing a triangular array of independent r.v.’s Ky, ..., ky [yg that are
also independent of all other r.v.’s in this paper. We suppose that «, equals j
with probability (1 — (j — 1)/N) and that it equals each of 1,..., — 1 with
probability 1/N. Then for each N we define Ny, = CNp,,, for 1 <j < [N9].
Thus 7y, ..., Ny ne; represent [ N9 ] independent samplings with replacement
from an urn containing cy, ..., cyy- (The value [ N6] is not crucial, it is just
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a safe upper limit.) Note that, for /,, satisfying Zx/N — 0 as in (3.24),
P(nNi # cyp,, for some 1 < i s/N)

< < -0
N N

It is trivial [in light of my, = cyp, =4 m; from hypotheses, and of (3.19) and
the uniform approximation of (3.21)] that

On ig
(3.27) Z Doy () 2a Ty = E Do(i)m;-
i-1 i=1

Then (3.26) and (3.22) give immediately that

‘n Lo
Ty[1,/x] = X Pon(i)enp,, 2a To = Y. @o(i)n; and
(3.28) i=1 i=1

Ty[/y + 1,7y — 1] =, 0.

A symmetric argument holds in the right tail for analogous j,, /) and ry.
[Statement (3.28) actually attains on N” as N” — «.]
We now turn to consideration of the middle. Define the following:

1

(329)  Zy=-— Wdhy = N(0,1).
On lry/(N+1),1-rj/(N+1)]
ry r]’v
. 52 = 1— )
(3.30) N UN[N+1’ N+1

Integration by parts gives

N+1-rjy

E (I)ON(i)cNDNi

i=ry

1
— [ [hy —ay.]dRy
ON “Irn/(N+1),1-rjy/(N+1)]

[Ay(ry/(N + 1)) —ay|Ry(ry/(N + 1) — 0)

(3.31) oy
G 1
+ —N) ( -— Ry dhy
oN ON Iry/(N+1),1-ri/(N+1]
. [An(1 —ry/(N+ 1)) —ay|Ry(1 —ry/(N + 1))
on

=yy + 5Ty + -



LINEAR RANK STATISTICS AND WINSORIZING 1383

Fix a small v > 0. Then (3.3) and (3.5) show that

- - (Ry — W) dhy
1NsN|TN —Zyl= 1N3N _f - -
[rny/(N+1),1-rj/(N+1)] On
) 1-1/(N+2)
N"(Ry —W) | :
Ne 1/2—v
" [t(l - t)] / 1/(N+2)
dh(t
x/ N‘”[t(l—t)]m’”—lf( )
[rn/(N+1),1-rj/(N+1)] (Y
) )MN[rN/(N—F 1),1 -ry/(N + 1)]
= 1N£NA]’(, =
On
31/71/2 31}71/2
3.32 <1y AY)——8o— < S
(3:32) NN ey A )T T T (ry AT
N
(3.33) < 3 for all N,

using (3.25) (whether i, < ® or i, = »). Since P(Aj}, ) — 0 from (3.5), we
have

(3.34) Ty =, Zy-.

Also 0 < 7y = Gy /0oy < 1, so that (by going to a further subsequence if
need be) we may suppose

(3.35) v = (some 7) € [0,1] on N” as N" — o,

We now turn to consideration of y,. Now (3.31) and finite sampling [see,
e.g., Shorack and Wellner (1986), (13) on page 135] and (3.21) show that, for
N, <N <N, [asin (3.23)],

Var[yy] = CD%N(’”N)Var[‘/ﬁRN(%)] <ry®in(ry)
(3.36) =r,®2(r,) <r,®2(r,) +o0(1) = ry®2(ry) + o(1)

- 0;
by (3.15) if i, = © and j, = %, by proper choice of N,, in conjunction with

lay; — ayl
(3.37) max —— >0,
ip+tl1<i<N+1-(j+1) \/NO'H’N

if i, <% and j, < %, and by combining these reasons if one of i, and j, is
finite and the other infinite. Thus conclusion (3.36) (and a symmetric argu-
ment in the right tail) give

(3.38) vy =, 0 (and vy =, 0).
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Combining (3.28), (3.29), (3.31), (3.34), (3.35) and (3.38), we have
(3.39) Ty = Ty[1, Zx] + TvZy + Ti[1, 2] + 0,(1),
where [recall (3.28) for T\, and a symmetric argument for 7]
TN[l,/N] -, T, TI’\,[I,/]’V] -, Ty,

v = 7 and Zy =N(0,1) on N".
Thus, (1.22) holds, provided
Ty[1,2y], Tylry, N +1 —rj] and

(3.40)

(3.41) ] )
Ty [1, /I'v] are asymptotically independent.

However, this follows as the r.v.’s 7y, of (3.26) and (3.27) are asymptotically
equivalent to the cyp ’s of (3.26), which are asymptotically independent of
the middle term of (3.41) as in Rossberg (1967).

Recall from Cramér’s theorem that the sum (1.22) of independent r.v.’s is
normal if and only if all the components are normal. Thus (i)—(v) are now
clear.

We now turn to (vi). Let m; denote any r.v. with Em; =0 and 0 <
Var{n,] < 1 for which (1.10) and ¢y, = —, m; both hold. Consider any ®,(i)’s,
®,(i)s and 0 < 7 < 1 that satisfy (1.25) and (1.26). We must show that the
r.v. of (1.22) is an achievable limit. Just define

VN®(i) —r, forl<ix<(iyAVN),

-, for (ip A VN ) <i < (N +1)/2,
(3.42) _)0 for i = (N + 1)/2,if N is odd,
Vi = T, for(N+1)/2<i

<(N+1) - (joAVN),
VN®,(i) + 7, for(N+1)—(joAVN)<i<N.
Then (3.16) gives

iy (i) + R ()

3.43 = -0,
( ) an /N
and
- io/\\/Iv io/\\/z\_] 1
(44 @= T D)+ T B{0) (1 Ty +o() 1L
i=0 j=0
Thus
gl -1, ®,v(i) > (i) fori<i, +1 and
(3.45) W, N on (2) o(2) 0

D, n(1) = Dy(2) forj<j,+1,
and the r.v. of (1.22) is achieved. O
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